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Abstract

In this paper, we place ourselves in the Ontology
Based Data Access (OBDA) setting and investigate
reasoning with inconsistent existential rules knowl-
edge bases. We use the notion of inconsistency
measures on sets of facts to rank and filter repairs.
We propose a generic framework to answer queries
by using the best repairs and study productivity and
properties of such a framework.

1 Introduction
In this paper we place ourselves in the OBDA setting and in-
vestigate query answering over a set of fact bases enriched
by the ontology [Poggi et al., 2008]. One of the main chal-
lenges of reasoning in OBDA applications is handling the in-
herent inconsistency that might occur amongst independently
built data sources partially describing the same knowledge
of interest [Benferhat et al., 1997; Lukasiewicz et al., 2015;
Lembo et al., 2015; Hecham et al., 2017b]. Classically in-
consistent tolerant semantics consider all maximally consis-
tent subsets of a fact base (called repairs) that they manipulate
using a modifier (expansion, splitting, etc.) and an inference
strategy (intersection, universality, etc.) [Baget et al., 2016a].

Using all repairs might be inappropriate for certain applica-
tions that would rather focus on particular sources of knowl-
edge. For instance, when considering more reliable knowl-
edge (i.e. sensor information, provenance data etc.) one could
only consider repairs using mostly facts from such sources.
Preferences on facts have been used for inconsistency toler-
ant reasoning in [Staworko et al., 2012]. In that setting, the
authors suppose that the preference order on the facts is given
but unfortunately, this is not always the case. In such cases
we propose to use the inconsistency of the elements of the
knowledge base (KB) as an intrinsic preference on the facts.
Such inherent preference on the facts (i.e. facts that are more
or less guilty for the inconsistencies) generates a preference
on the repairs that are containing these facts (i.e. repairs that
contain more or less controversial facts). In this paper, we
propose a framework that takes into consideration the incon-
sistency on the facts when using the repairs for query answer-
ing and restricts the set of repairs to the “best” with respect
to inconsistency values. Since we consider a subset of repairs

we obtain more answers than classical inconsistency tolerant
query answering.

In this paper, we characterise desirable properties of such
frameworks like free facts entailment, syntax independence
and reliability preservation. We also provide an implementa-
tion of our approach and discuss its performance. The salient
point of this paper lies in it being the first approach in the
literature capable of ranking repairs using only the inherent
structure of the KB. This is a significant result as our approach
is applicable on a large variety of domains without requiring
additional preference information. Furthermore, we show the
significance and the practical interest of our approach using
the real data collected in the framework of the Pack4Fresh
project for reducing food wastes. During this project, we col-
lected data using an online poll from a set of professionals of
the food industry, including wholesalers, quality managers,
floorwalkers and warehouse managers, about food packag-
ings and their characteristics. The framework was able to
rank the repairs efficiently and the results were then analysed
and evaluated by experts from the packaging industry.

2 Background Notions
The existential rules language [Calı̀ et al., 2009] is composed
of formulae built with the usual quantifiers (∃,∀) and only
two connectors: implication (→) and conjunction (∧) and is
composed of facts, rules and negative constraints. A fact is
a ground atom of the form p(t1, . . . , tk) where p is a pred-
icate of arity k and ti, with i ∈ [1, . . . , k], constants. The
set of all possible facts is denoted by A. An existential rule
is of the form ∀

−→
X,
−→
Y H[

−→
X,
−→
Y ] → ∃

−→
ZC[
−→
Z ,
−→
X ] where H

and C are existentially closed atoms or conjunctions of exis-
tentially closed atoms and

−→
X,
−→
Y ,
−→
Z their respective vectors

of variables. A rule is applicable on a set of facts F if and
only if there exists a homomorphism [Baget et al., 2016b]
from H to F . Applying a rule to a set of facts (also called
chase) consists of adding the set of atoms of C to the facts
according to the application homomorphism. Different chase
mechanisms use different restrictions that prevent infinite re-
dundancies [Baget et al., 2011]. Here, we use recognisable
classes of existential rules where the chase is guaranteed to
stop [Baget et al., 2011]. A negative constraint is a rule
of the form ∀

−→
X,
−→
Y H[

−→
X,
−→
Y ] → ⊥ where H is an exis-

tentially closed atom or conjunctions of existentially closed



atoms,
−→
X,
−→
Y , their respective vectors of variables and ⊥ is

absurdum. Please note that the number of atoms in H is not
bounded and that negative constraints generalise simple bi-
nary conflicts that can easily be translated between the two
representations: ¬p( ~X) is transformed into np( ~X) and the
negative constraint p( ~X)∧np( ~X)→ ⊥ is added to the rules.

We say that F1 entails F2 denoted by F1 |= F2 if and only
if there is a homomorphism from the set of atoms in F2 to
the set of atoms in F1 where F1 and F2 are two existentially
closed conjunctions of atoms. A conjunctive query is an exis-
tentially quantified conjunction of atoms. For readability, we
restrict ourselves to boolean conjunctive queries, which are
closed formulas (the framework and the obtained results can
be extended to general conjunctive queries). The set of all
possible boolean conjunctive queries is denoted by Q.

Definition 2.1. A knowledge base K is a tuple K =
(F ,R,N ) where F is a finite set of facts, R a set of exis-
tential rules and N a set of negative constraints.

The set of all KBs is denoted by Kbs. The saturation of
F by R is the set of all possible atoms and conjunctions of
atoms that are entailed, after using all possible rule applica-
tions from R over F until a fixed point. The output of this
process is called the closure and is denoted by SatR(F). A
set F is said to be R-consistent if no negative constraint hy-
pothesis can be entailed, i.e. SatR(F) 6|= ⊥. Otherwise,
F is said to be R-inconsistent. The ground closure of a set
F by R, denoted C`R(F), is different from the closure of
the saturation since it only keeps ground atoms. Namely,
C`R(F) = {ground atoms a | a ∈ SatR(F)}. The no-
tion of ground closure is widely used in the literature and es-
pecially when dealing with inconsistency tolerant inference
since computing the intersection of closures is ambiguous.
Indeed, atoms resulting from the application of rules with ex-
istential variables contain null variables which makes the in-
tersection of two closures undefined.

We assume that the existential rules are skolemized [Mar-
nette, 2009], namely ∀

−→
X,
−→
Y H[

−→
X,
−→
Y ]→ ∃

−→
ZC[
−→
Z ,
−→
X ] will

be replaced with ∀
−→
X,
−→
Y H[

−→
X,
−→
Y ] → C[f(X),

−→
X ] where

f is a new symbol function. Using the above mentioned
methodology in our setting enables us to have the closure
equal to the ground closure and guarantees a finite saturation.

We recall the notion of minimal inconsistent sets and max-
imal consistent sets of a KB [Reiter, 1987].

Definition 2.2. Let K = (F ,R,N ) be a KB, we say that:

• Minimal R-inconsistent sets of K are defined as
MI(K) = {X ⊆ F | SatR(X) |= ⊥ and ∀X ′ ⊂
X,SatR(X ′) 6|= ⊥}. A fact f ∈ F is called a free fact
if and only if there is no X ∈MI(K) s.t. f ∈ X .

• Maximal for set inclusion R-consistent sets (repairs) of
K are defined as Comax(K) = {X ⊆ F | SatR(X) 6|=
⊥ and for every X ⊂ X ′,SatR(X) |= ⊥}

In the OBDA setting rules and constraints act as an ontol-
ogy used to “access” different data sources. These sources are
prone to inconsistencies. As it is common in the literature, we
suppose that the rules are compatible with the negative con-
straints, i.e. the union of those two sets is satisfiable [Lembo

et al., 2010]. Indeed, the ontology is believed to be reliable
as it is the result of a robust construction by domain experts.
However, as data can be heterogeneous due to merging and
fusion, the data is assumed to be the source of inconsistency.

3 The Ranking-Based Inference Framework
In this section, we introduce the ranking-based inference
framework (RIF) and its three main components: the incon-
sistency value, the lifting function and the inconsistency tol-
erant inference. It is similar to the work in argumentation
by [Konieczny et al., 2015], where only the best extensions
are used for reasoning. The section is organised as follows:
in Section 3.1, we recall the notion of Drastic and MI Shap-
ley inconsistency values, in Section 3.2, we give examples of
lifting functions and in Section 3.3, we show how inconsis-
tency tolerant inferences are modified in order to be used in
the framework.

An inconsistency measure according to [Grant and Hunter,
2011] is a function that, given a KB K = (F ,R,N ), asso-
ciates a number to each set of facts.
Definition 3.1. An inconsistency measure is a function I :
Kbs × 2A → R such that for every K = (F ,R,N ) ∈ Kbs
and C ∈ 2A, I(K, C) = 0 if and only if C is R-consistent,
I(K, C ∪ C ′) ≥ I(C) and if α is a free fact of K, then
I(K,F) = I(K,F\{α}). For readability purposes, we will
use the notation IK(C) instead of I(K, C) and I(C) if the
working KB K is obvious.

An inconsistency value is a function that associates a num-
ber to each fact of a KB K. Many inconsistency values were
defined by [Hunter and Konieczny, 2010] using existing in-
consistency measures and the Shapley value from coalitional
game theory. We introduce a framework that makes use of
these inconsistency values together with a lifting function and
an inconsistency tolerant inference relation to improve the
productivity of query answering for an inconsistent KB.

Our framework is based on three layers. First, an inconsis-
tency value is used to calculate the score of each fact of K.
We previously mentioned Shapley inconsistency values, but
any function returning a score for each fact of K can be used.
Definition 3.2. An inconsistency value is a function S : Kbs×
A → R. Let �S

A be the total, reflexive and transitive binary
order on A with respect to K and S defined as: for every
a, b ∈ A, a �S

A b if and only if S(K, a) ≤ S(K, b). For
readability purposes, we write Sa(K) instead of S(K, a).

Second, we need a lifting function, i.e. a function that com-
pares the set of repairs, based on the individual scores of facts
with respect to an inconsistency value. A criterion of compar-
ison would be to evaluate the “strongest” fact of each set. A
generalisation of this criterion is the so-called leximax which,
in the case where the best facts are equally strong, proceeds
to compare the next best fact of each set. Please note that the
set of all total, reflexive and transitive binary orders on X is
denoted by �X .
Definition 3.3. A lifting function is a function L :
2A× �A→�2A . For readability purposes, we use the no-
tation L�(X) for L(X,�). Furthermore, (E,E′) ∈ L�(X)
means that E is better than or equal to E′.



Third, we use an inconsistency tolerant inference relation
restricted to the best repairs sets ranked by the lifting function
to answer the query. At this step, one can use the usual incon-
sistency tolerant inference relations such as AR, IAR, ICR or
any of the modifier-based semantics of [Baget et al., 2016a]
Definition 3.4. An inconsistency tolerant inference relation
is a function |=: Kbs ×Q → {True, False}.

Based on the previous notions, we define our framework.
Definition 3.5. A ranking-based inference framework (RIF)
is a tuple RIF = (S, L, |=) where S is an inconsistency
value, L is a lifting function and |= is an inconsistency tol-
erant inference. The top result of RIF = (S, L, |=) on a
KB K = (F ,R,N ) is O(RIF ,K) = {E ∈ Comax(K) |
for all E′ ∈ Comax(K), (E,E′) ∈ L�

S
F (F)}.

3.1 RIF Inconsistency Value
An inconsistency value is a function that associates a value to
each fact of the KB. This value is supposed to be higher the
more a fact is conflicting with the other facts. In this paper,
we make the choice to focus on the Shapley inconsistency
value introduced by [Hunter and Konieczny, 2010] because
it possesses many desirable properties as will be shown in
Proposition 3.1 below. The Shapley inconsistency value uses
notions from game theory to measure the responsibility of
each fact to the overall inconsistency of the KB.
Definition 3.6. Let I be an inconsistency measure, K =
(F ,R,N ) a KB and f ∈ F , the Shapley inconsistency value
corresponding to I , noted SI is defined as:

SIf (K) =
∑
C⊆F

(|C| − 1)!(|F| − |C|)!
|F|!

(IK(C)−IK(C\{f}))

Note that if one considers F as the vector (f1, f2, . . . , fn),
then SI(K) is the vector of corresponding Shapley inconsis-
tency values, i.e. SI(K) = (SIf1(K), S

I
f2
(K), . . . , SIfn(K)).

Let K = (F ,R,N ) be a KB, the inconsistency values in-
vestigated by this paper are the following:
• The drastic Shapley inconsistency value is computed by

using the following inconsistency measure:

IKd (X) =

{
0 if X isR-consistent with respect to K
1 otherwise

• The MI Shapley Inconsistency value is computed by us-
ing the following inconsistency measure:

IKMI(X) = |MI((X,R,N ))|

We now show that every Shapley inconsistency value sat-
isfies Distribution, Symmetry and Minimality. The result and
its proof are similar to that of [Hunter and Konieczny, 2010].
Proposition 3.1. Let I be an arbitrary inconsistency measure
and K = (F ,R,N ) a KB, the Shapley inconsistency value
corresponding to I satisfies:
• (Distribution)

∑
a∈F

SIa(K) = IK(F)

• (Symmetry) If a, b ∈ F such that for allX ′ ⊆ F , a, b /∈
X ′ we have IK(X ′∪{a}) = IK(X ′∪{b}) then it holds
that SIa(K) = SIb(K)

• (Minimality) If a is a free fact of K then SIa(K) = 0

In Example 3.1, we show how the MI and drastic inconsis-
tent values are computed from a simple KB.
Example 3.1. Let us consider the KBK = (F ,R,N ) where
F = {d(M), a(M), c(M), b(M,S)}, R = {∀x(c(x) ∧
b(x, S) → u(x))} and N = {∀x (d(x) ∧ a(x) → ⊥), ∀x
(u(x) ∧ d(x) → ⊥), ∀x (u(x) ∧ a(x) → ⊥)}. We have that
SIdd(M)(K) = 4× 1

12 = 1
3 and SIMI

d(M)(K) = 4× 1
12+

1
4×2 = 5

6 .
Thus, here we have thatF = {d(M), a(M), c(M), b(M,S)}
and SId(K) = ( 13 ,

1
3 ,

1
6 ,

1
6 ) and SIMI (K) = ( 56 ,

5
6 ,

2
3 ,

2
3 ).

Since the higher score means being more inconsistent, the
resulting ranking on facts, for both inconsistency values, is
c(M) ∼ b(M,S) � d(M) ∼ a(M).

We recall that we work with the total, reflexive and transi-
tive ranking�S

F on F extracted from the inconsistency value.

3.2 RIF Lifting
A lifting function L� compares sets of elements with respect
to the ranking � and returns a total order on the sets.

Let us first introduce the sort relation that will be used in
order to define the L

�
leximax notion below. Given a set of el-

ements X = {x1, x2, . . . , xn} and a total, reflexive and tran-
sitive binary relation � on X , sort(X,�) returns a sorted
vector (x1, x2, . . . , xn) such that for every xi, xj , we have
that xi � xj if and only if i ≤ j. The element at position i in
the vector sort(X,�) is denoted by sorti(X,�). Note that
the returned vector is not necessarily unique due to the fact
that some elements might be equivalent, i.e. xi ∼ xj .

In this paper, we consider two possible instantiations of the
lifting function L. The L�max lifting function compares the
subsets with respect to their maximal elements and L

�
leximax

compares the elements after sorting them in decreasing order.
Let Y be a set of elements, � a ranking on Y, E,E′ ∈

2Y , sort(E,�) = (x1, x2, . . . , xn) and sort(E′,�) =
(x′1, x

′
2, . . . , x

′
m). We say that:

• (E,E′) ∈ L�max(Y ) if and only if max(E) �
max(E′), where max(X) = sort1(X,�).

• (E,E′) ∈ L
�
leximax(Y ) if and only if one of the follow-

ing holds: (1)m = n and for every i ∈ {1, . . . , n}, xi ∼
x′i, (2) there exists i ∈ {1, . . . ,min(m,n)} s.t. xi � x′i
and for every j ∈ {1, . . . , i− 1}, xj ∼ x′j or (3) n > m
and for every i ∈ {1, . . . ,m}, xi ∼ x′i.

Example 3.2 (Ex 3.1 cont.). Let us consider the RIFRIF =

(SId, L�leximax, |=). We have for every R ∈ Comax(K) \
{c(M), b(M,S)}, it holds that ({c(M), b(M,S)}, R) ∈
L
�
leximax(F) but (R, {c(M), b(M,S)}) /∈ L

�
leximax(F) and

thus, O(RIF ,K) = {{c(M), b(M,S)}}

3.3 RIF Inference
Inconsistency-Tolerant Query Answering is a challenging
problem that received a lot of attention recently. We recall
that we place ourselves in the context of OBDA, where the
ontology is assumed to be satisfiable and fully reliable. In
the following, we recall some of the most well-known incon-
sistency tolerant inferences that have been proposed in the



literature. Let K = (F ,R,N ) be a KB and q be a boolean
conjunctive query. Then:

• q is said to be AR entailed by K denoted by K |=AR q if
and only if for every R ∈ Comax(K), C`R(R) |= q

• q is said to be IAR entailed by K denoted by K |=IAR q

if and only if C`R

( ⋂
R∈Comax(K)

R

)
|= q

• q is said to be ICR entailed by K denoted by K |=ICR q
if and only if

⋂
R∈Comax(K)

C`R(R) |= q

Example 3.3 (Ex 3.1 cont.). A query q = ∃x(c(x)) is not
AR, IAR nor ICR entailed. Indeed, we cannot entail q from
the closure of all the repairs, the intersection of the closure of
all the repairs nor the closure of the intersection of all repairs.

We propose here to reuse AR, IAR, ICR by restricting them
to the output of aRIF instead of the whole set of repairs.
Definition 3.7. Let x ∈ {AR, IAR, ICR}. |=RIFx denote
the restriction of |=x to the output of RIF instead of the
whole set of repairs.

For instance, the restricted version of AR will be denoted
by |=RIFAR and defined as K |=RIFAR q if and only if for every
R ∈ O(RIF ,K), C`R(R) |= q.
Example 3.4 (Ex 3.2 cont.). Let q be the query ∃x(c(x)).
The query q is AR, IAR and ICR entailed with respect to
RIF since O(RIF ,K) = {{c(M), b(M,S)}}.

4 RIF Results
This section presents a characterisation of the framework in
terms of properties and general productivity results. In Sec-
tion 4.1, we show some desirable properties of the frame-
work and how such component properties relate to framework
properties. In Section 4.2, we show an algorithm for com-
puting the output of the framework and its performance on a
given set of data. In Section 4.3, we explicit the use of our
framework on a real life scenario.

4.1 RIF Properties
In this section, we show that the desirable properties on the
components can lead to desirable properties on the entire
framework. First, we introduce desirable properties for gen-
eral inconsistency values. The Minimality property states
that a free fact should have the lowest score. The Flawed
property conveys the idea that a non-free fact should have
a strictly positive score. Lastly, the Bottom Facts property
states that anR-inconsistent fact should have the score 1.

Minimality For any KB K and every free fact a of K, it
holds that SIa(K) = 0.
Flawed For any KB K and every non free fact a of K, it
holds that Sf (K) > 0.
Bottom Facts For any KB K = (F ,R,N ) and f ∈ F
such that {f} isR-inconsistent, it holds that Sf (K) = 1

The R-Append and N-Append properties are satisfied if the
addition of a rule or a negative constraint to a KB cannot de-
crease the score of any fact.

R-Append For any KB K = (F ,R,N ) and r /∈ R, if
K′ = (F ,R ∪ {r},N ) then for every f ∈ F , Sf (K) ≤
Sf (K′).
N-Append For any KB K = (F ,R,N ) and n /∈ N , if
K′ = (F ,R,N ∪ {n}) then for every f ∈ F , Sf (K) ≤
Sf (K′).

The Abstraction-I property states that an inconsistency
value should not rely on the names of constants or predicates.

Abstraction-I For any KB K and any isomorphism1 γ
such that γ(K) = K′, we have that for every f ∈ F ,
Sf (K) = Sγ(f)(K′).

The Cardinality-MI property says that the score is based on
minimal inconsistent subsets. Namely, if the score of a fact is
strictly inferior to the score of an other fact, it means that the
number of minimal inconsistent sets the first fact belongs to
is strictly lower than the number of minimal inconsistent sets
the second facts belongs to.

Cardinality-MI For any KB K = (F ,R,N ) and
f, f ′ ∈ F such that Sf (K) < Sf ′(K) then |{X ∈
MI(K) | f ∈ X}| < |{X ∈MI(K) | f ′ ∈ X}|

Proposition 4.1. It holds that:
• SIMI satisfies Minimality, Flawed, Abstraction-I, Bot-

tom Facts and does not satisfy Cardinality-MI, R-
Append and N-Append.

• SId satisfies Minimality, Flawed, Abstraction-I and does
not satisfy Cardinality-MI, R-Append, N-Append and
Bottom Facts.

The lifting function uses a ranking on elements in order to
provide a ranking on sets. We introduce some basic desirable
properties for lifting functions below.

The Data Sensitive property ensures that element ranking
is taken into account by the lifting function. The Abstraction-
L states that the ranking returned by the lifting function
should not be concerned with the names of the elements.

Data Sensitive For any set of elements Y such that
|Y | > 1 and E,E′ ∈ 2Y , there exist two different to-
tal, reflexive and transitive binary relations �,�′ on Y
such that (E,E′) ∈ L�(Y ) and (E,E′) /∈ L�

′
(Y ).

Abstraction-L For any set of elements Y , any total, re-
flexive and transitive binary relation � on Y , E,E′ ∈
2Y and isomorphism γ such that γ(Y ) = Y ′ and γ(�
) = �′, we have that (E,E′) ∈ L�(Y ) if and only if
(γ(E), γ(E′)) ∈ L�

′
(Y ′).

Proposition 4.2. L�max, L
�
leximax satisfy Data Sensitive and

Abstraction-L.
Please note that |=RIFx with x ∈ {AR, IAR, ICR} sat-

isfies the QCE, QCI, Cons, ConsS, ConsC properties from
[Baget et al., 2016b]. The next additional property states that
if there is an isomorphism on KBs such that the output from
the RIF is the same up to an isomorphism, then the answer to
the query should remain the same too.

1The isomorphism γ renames the predicates and the constants.
We use an abuse of notation and apply γ to sets of facts, sets of rules,
negative constraints and to KBs (meaning we apply to all three).



Abstraction-Q For any KBK, any RIFRIF , any query
q and any isomorphism γ such that γ(K) = K′ and
E ∈ O(RIF ,K) if and only if γ(E) ∈ O(RIF ,K′),
it holds that K |=RIF q if and only if γ(K) |=RIF γ(q)

We now introduce some properties on the whole frame-
work. A desirable property is the entailment of free facts (the
Free property). The Supremacy property states that if a fact
is strictly less controversial than any other fact, then it should
be entailed. Non Entailment Ejection states that if a fact is
only entailed by the closure of a repair which is not ranked
amongst the best repairs, then it will not be entailed by the
KB. The Abstraction property states that if there is a renam-
ing of the constants and predicates in a KB, the answers of
our framework should remain unchanged.

Free For any KB K and any free fact a of K, it holds
that K |=RIF a.

Supremacy For any KB K, if there exists f ∈ F such
that Sf (K) 6= 1 and for every f ′ ∈ F \ {f}, we have
Sf (K) < Sf ′(K) then K |= f .

Non Entailment Ejection For any KB K, R ∈
Comax(K)\O(RIF ,K) and f ∈ C`R(R), if there is no
R′ ∈ Comax(K) \ {R} with f ∈ C`R(R′) then K 6|= f .

Abstraction For any KB K, any RIFRIF , any isomor-
phism γ such that γ(K) = K′ and any query q, it holds
that K |=RIF q if and only if γ(K) |=RIF γ(q).

Proposition 4.3. It holds that:

• Abstraction-I, Abstraction-L and Abstraction-Q imply
Abstraction.

• Let RIF = (S, L�, |=RIFx ) where x ∈ {AR, IAR,
ICR} then RIF satisfies Free and Non Entailment
Ejection.

• Let RIF = (S, L�y , |=RIFx ) where x ∈ {AR, IAR,
ICR}, y ∈ {leximax,max} and S satisfies Bottom
Facts thenRIF satisfies Supremacy.

Although it is not always better to be more productive for
all applications, the following result shows that the RIF is
more productive than the usual IAR, AR and ICR semantics.

Proposition 4.4. LetRIF be a RIF and q a query, then:

• IfK |=x q thenK |=RIFx q with x ∈ {AR, IAR, ICR}
• If K |=RIFIAR q then K |=RIFICR q

• If K |=RIFICR q then K |=RIFAR q

However, it is worth noting that our framework does not
make every inconsistency tolerant inference relation more
productive. For instance, that is not the case with the non
objection semantics from [Benferhat et al., 2016].

4.2 Algorithmic Results
In this section, we show a simple recursive algorithm that uses
minimal inconsistent sets to compute the output of our frame-
work and we study the behaviour of this algorithm thanks to
an experiment. Since finding each minimal inconsistent set
has been proven to be practically feasible as it is polynomial

for data complexity and exponential for combined complex-
ity ([Lembo et al., 2010; Hecham et al., 2017a]), we make the
assumption that this set is given. The output of our framework
is obtained by calling Algorithm 1 withX and Z initialised to
∅ and M to the set of minimal inconsistent sets of K. The pa-
rameter X is the set considered for building the result and Z
is the set used for avoiding redundancies by memorising en-
countered sets. In Algorithm 1, we begin by checking if the
set considered was already encountered (see line l1). Then,
we proceed by finding facts with a minimal score that can be
added to X without triggering a minimal inconsistent set (see
line l2). If such facts cannot be found, it means that the con-
sidered set X is indeed a repair and should be returned (see
line l3). Otherwise, the above mentioned process is repeated
by augmenting the set of the considered set X with the facts
found in line l2 (see line l4). The set E contains repairs with
maximal elements with respect to SIMI 2. However, although
these repairs contain maximal elements, they are not equiva-
lent with respect to leximax and this is why we have to refine
the set E (see line l5). Please note that an alternate definition
of SIMI found in the work of [Hunter and Konieczny, 2010]
can be used for a faster computation.

Data: Two sets of sets of facts M,Z and a set of facts X
Result: A set of repairs O(RIF ,K) where

RIF = (SIMI , L�leximax, |=RIF )
begin

l1 if X /∈ Z then
Z ←− Z ∪ {X}
Y ←− {f ∈ F \X | for all
m ⊆ X,m ∪ {f} /∈M}

l2 Y ′ ←− {y ∈ Y | SIMI
y is minimal}

if Y ′ = ∅ then
l3 return {X}

else
E ←− ∅
for y′ ∈ Y ′ do

l4 E ←− E ∪OFRecc(M,X ∪ {y′})
end

l5 E′ ←− top sets of E with L
�
leximax with

respect to SIMI

return E′
end

else
return ∅

end
end

Algorithm 1: The OFRecc algorithm

We ran the algorithm on the KBs described by [Yun et al.,
2017] and compared its performance with a basic algorithm
for computing the RIF, namely naively finding all repairs,
computing the inconsistency values and refining them by us-
ing leximax. The KBs were split in two sets: A first set A
of 108 KBs with 2 to 7 facts, 0 to 6 rules and 1 to 4 binary

2The obtained set is similar to the notion of preferred sub-
theories of a stratification defined by [Brewka, 1989].



or ternary negative constraints and a second set B of 26 KBs
with 8 facts, 6 rules and between 1 and 2 binary or ternary
negative constraints. For further details about the KBs, the
reader is invited to consult the original paper of [Yun et al.,
2017]. The results were as follows:

• For the set A, the average number of repairs per KB was
2.89 and the average number of repairs in the output of
the RIF was 2.11. It means that the average number of
repair was reduced by 26.92%. Moreover, it takes an av-
erage of 543ms per KB to find the output of the RIF with
the basic algorithm whereas it takes an average of 601ms
per KB to find the same output with our algorithm.
• For the set B, the average number of repairs per KB was
4.5 and the average number of repairs in the output of
the RIF was 3.62. It means that the average number of
repair was reduced by of 19.66%. Moreover, it takes an
average of 1.764s per KB to find the output of the RIF
with the basic algorithm whereas it takes an average of
1.617s per KB to find the output with our algorithm.

Although finding the set Y ′ and E′ (see l2 and l5) can be
found in polynomial time, in the worst case scenario, we
would still have to search throughout all the subsets of F
which would be exponential with respect to |F|. All experi-
ments were performed on a Mac machine running on macOS
High Sierra with an Intel core i5 2.8 GHz and 8GB of RAM
and were reproduced multiple times.

4.3 Application Scenario
We now consider an application scenario constructed in the
setting of the Pack4Fresh project ([Yun et al., 2016]) which
was aimed at choosing the best packaging for strawberries.
In this project, an online poll consisting of 66 questions
was submitted to an audience of 21 professionals from the
food industry. We distinguished four kinds of profession-
als: the wholesalers, the floorwalkers, the quality managers
and the warehouse managers. The questions were aimed
at collecting the individual vision of each person about the
characteristics of four packagings: the wooden packaging
(WP), the plastic packaging with a plastic film (PPF), the
plastic packaging with a rigid lid (PRL) and the opened
plastic packaging without lid (OPL). The answers of this
poll were formalised into a set of 50 facts and 160 rules.
In our application scenario, the inconsistency of the KB
comes from the fusion of the divergent visions of the sev-
eral professionals about the four aforementioned packag-
ings. These visions were explicitly expressed using the
rules. For instance, the rule ∀x(PPF (x,wholesaler0) →
cheapCost(x)) conveys the idea that the entity wholesaler0
believes that the PPF is cheap. A group of packaging ex-
perts constructed another set of 18 rules constituting expert
knowledge. For instance, the rule ∀x(keepHumidity(x)→
badFridgeConservation(x)) states that if x is a packaging
that keeps humidity then x is a bad packaging for fridge con-
servation whereas the rule ∀x(accelerateDecaying(x) →
badEffectOnFruits(X)) states that if x is a packaging that
accelerates decay then it is considered as having a bad effect
on fruits. Lastly, a set of 34 negative constraints representing
conflicting atoms, such as ∀x(notBadEffectOnFruits(x)
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Table 1: Ranking on repairs. For simplicity, repairs are denoted by
the packaging they are referencing

∧ badEffectOnFruits(x) → ⊥), and incompatibili-
ties between packagings, such as ∀x, y, z, t(OPL(x, y) ∧
PRL(z, t)→ ⊥), was added.

The formalisation yielded a set of 33 repairs where
each repair corresponds to the vision of a collec-
tion of individuals about a single packaging. For in-
stance, the repair OPL2 = {OPL(po, floorwalker0),
OPL(po, wharehouse manager0)} corresponds to the vi-
sion of floorwalker0 and wharehouse manager0 about
the OPL. Amongst the 33 repairs, 16 concerned the WP, 6
concerned the PRL, 9 concerned the PPF and 2 concerned
the OPL. The different number of repairs is explained by the
diverse quantity of disagreements amongst individuals. For
instance, only two wholesalers disagreed about the character-
istics of the OPL whereas eight wholesalers disagreed about
the characteristics of WP. In our model, the size of the repair
corresponds to the number of individuals that agreed on all
the characteristics of a specific packaging. Please note that
the repairs are not ranked solely based on their cardinality.

Surprisingly, the ranking on repairs was extremely clear
as it showed that WP > PRL ∼ PPF > OPL (see Ta-
ble 1). Indeed, the repairs about WP were ranked above the
other repairs. The repairs about the PRL were ranked roughly
equally with the repairs about PPF and the repairs about OPL
were last. The ranking was evaluated by a group of packag-
ing experts which confirmed that the ranking on packagings
was intuitive with respect to the data of the KB. Indeed, the
experts acknowledged that WP was ranked first because its
characteristics were slightly less contested by the experts.

The KB in DLGP format as well as a JAVA implementa-
tion of the tool for computing the output of our framework is
accessible at: https://gite.lirmm.fr/yun/IJCAI2018.

5 Discussion
In this paper, we presented a framework that takes into con-
sideration the inconsistency on the facts when using the re-

https://gite.lirmm.fr/yun/IJCAI2018


pairs for query answering and restricts the set of repairs to
the best with respect to inconsistency values. Since we con-
sider a subset of repairs, we obtain more answers than classi-
cal inconsistency tolerant query answering in most cases. We
characterised the desirable properties of such framework with
respect to the following properties: Abstraction, Free, Non
Entailment Ejection and Supremacy. We also introduced an
algorithm for computing the output of such a framework and
showed its results on a real-life scenario about packagings.

Our framework is more abstract than the work of [Sta-
worko et al., 2012]: we can consider an inconsistency value
returning the same preferences on facts, a lifting function that
uses these preferences such that the completion optimal re-
pairs are ranked first, Globally optimal repairs second, Pareto
optimal repairs third and followed by the other repairs.
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