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Abstract. This paper proposes to exploit heterogeneous data, i.e. data
described by both numerical and categorical features, so as to gain knowl-
edge about the categorical attributes from the numerical ones. More
precisely, it aims at discovering whether, according to a given data set,
based on information provided by the numerical attributes, some categor-
ical attributes actually are ordinal ones and, additionally, at establishing
ranking relations between the category values. To that aim, the paper
proposes the 3-step methodology OSACA, standing for Order Seeking Al-
gorithm for Categorical Attributes: it first consists in extracting gradual
patterns from the numerical attributes, to identify rich ranking infor-
mation about the data; it then applies mathematical morphology tools,
more precisely alternated filters, to induce an associated order on the cat-
egorical attributes. The third step evaluates the quality of the candidate
rankings through measures derived from the rank entropy discrimination.

Keywords: Heterogeneous Data · Ordinal Attributes · Gradual Pat-
terns · Rank Discrimination Measure · Mathematical Morphology.

1 Introduction

By definition, heterogeneous data are described using several types of features,
including numerical and categorical attributes. Research issues about such data
usually aim at simultaneously exploiting all the attributes, raising questions
about how to combine the information they respectively provide. For instance,
clustering tasks can then be addressed using relational approaches and appro-
priate distance measures, classification can be performed using decision trees,
that can efficiently process both types of attributes.

This paper proposes another point of view, aiming at exploiting the infor-
mation provided by the numerical attributes so as to gain knowledge about the
categorical ones. More precisely, the goal is to determine whether some of the
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Table 1. Illustrative toy data set.

Id X Y colour

o1 0 1 blue
o2 1.2 1.5 blue
o3 1.8 1.6 red
o4 2.3 9.3 yellow
o5 2.5 9.8 red
o6 3.0 2.1 blue
o7 4.8 3.2 yellow
o8 5.0 8.5 yellow

categorical features actually are ordinal, and additionally identify the associated
order.

For an illustration, consider the toy data set given in Table 1 where the data
points are described by two numerical attributes and a categorical ones. It can be
considered that, for this data set, the numerical attributes lead to the knowledge
that the categorical attribute is ordinal, with partial order blue ≺ yellow.

To that aim, the paper proposes an original method called OSACA, stand-
ing for Order Seeking Algorithm for Categorical Attributes, that combines three
tools, as detailed in Section 2, namely gradual patterns, mathematical morphol-
ogy and rank entropy discrimination: gradual patterns are patterns of the form
the higher/lower a1, . . . , the higher/lower ak where ai are numerical attributes.
In the proposed approach, they are extracted to discover how the objects of the
data base can be ranked. These rankings are then processed by mathematical
morphology tools, more precisely alternated filters, to induce candidate orders
on the categorical attributes. The candidates are finally evaluated through mea-
sures derived from the rank entropy discrimination.

The paper is organized as follows: Section 2 recalls some preliminaries, for
the three types of tools, Section 3 describes the proposed approach and Section 4
presents illustrative results showing the relevance of OSACA. Section 5 concludes
the paper and gives some directions for future works.

2 Preliminaries

This section provides some reminder about the three major tools used in the pro-
posed method, successively gradual patterns, rank entropy measures and math-
ematical morphology tools.

Throughout the paper, Ω = {o1, . . . , on} denotes a set of n objects, or data
points, described by a set m+ p attributes made of the union of the set N , con-
taining m numerical attributes, and the set C, containing p categorical attributes.
The value of attribute a for object o is denoted by o[a].



Discovering Ordinal Attributes 3

2.1 Gradual Patterns

Gradual patterns extract linguistic knowledge from data described by numeri-
cal attributes that can be expressed by patterns of the form the higher/lower
a1, . . . , the higher/lower ak, where ai ∈ N , e.g.the higher the budget, the higher
the number of Champion’s cup wins. Initially introduced in the fuzzy implica-
tion formalism [5, 6, 9], gradual itemsets have then been interpreted as expressing
constraints on the attribute covariations. Within this framework, several inter-
pretations of the constraints have in turn been proposed, as regression [10],
correlation of induced order [2, 11] or identification of compatible object subsets
[3, 4]. Each interpretation is associated with the definition of a support to quan-
tify the validity of gradual itemsets and with methods for the identification of
the itemsets that are frequent according to these support definitions.

This section focuses on the approach based on the identification of compatible
object subsets [3, 4], which is the one exploited in OCASA.

Definition 1 (Gradual Item). A gradual item i is a pair (a, ∗) where a ∈ N
is a numerical attribute and ∗ ∈ {↑, ↓} is the variation direction.

For instance budget ↑ is a gradual item meaning the higher the budget.

Definition 2 (Gradual Pattern). A gradual pattern P of size k is a set of k
gradual items {(a1, ∗1), . . . , (ak, ∗k)}, interpreted as their conjunction.

For instance {(X, ↑), (Y, ↑)} is a gradual pattern meaning the higher X, the
higher Y.

The main question is then the evaluation of the quality of candidate gradual
patterns, with respect to the considered data set. One approach [3, 4] proposes
to consider that a pattern is all the truer as it occurs frequently in the data,
measuring the truth degree by its support. In regular frequent patterns and
association rules, computing the support amounts to counting the number of
objects containing the pattern [1]. For gradual pattern, counting the support
requires to rank the objects with respect to the pattern. This relies on the
definition of the pattern-induced precedence relation, which defines a partial
order on the objects:

Definition 3 (Object Precedence w.r.t. a Gradual Pattern). Given a
data set Ω, two objects o, o′ ∈ Ω and a gradual pattern P = {(a1, ∗1), . . . , (ak, ∗k)},
the precedence relation o ≺P o′ in Ω holds if and only ∀j ∈ [1, k]:

– if ∗j = ↑ then o[aj ] < o′[aj ]
– if ∗j = ↓ then o[aj ] > o′[aj ]

For instance, considering the data set given in Table 1 and for the pattern
P = {(X, ↑), (Y, ↑)}, it holds that o3 ≺P o4, as o3[X] = 1.8 < 2.3 = o4[X] and
o3[Y ] = 8.3 < 8.8 = o4[Y ].

The precedence relation leads to the definition of a precedence graph, where
nodes represent objects and the directed edges the existence of a precedence
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o1 o2 o3 o4 o5 o6 o7 o8
o1 0 1 1 1 1 1 1 1
o2 0 1 1 1 1 1 1 1
o3 0 0 0 1 0 0 0 0
o4 0 0 0 0 0 0 0 0
o5 0 0 0 0 0 1 1 1
o6 0 0 0 0 0 0 0 1
o7 0 0 0 0 0 0 0 1
o8 0 0 0 0 0 0 0 0

Fig. 1. Precedence graph and matrix for pattern {(X, ↑), (Y, ↑)} and data from Table 1.

relation, as illustrated on Figure 1. The graph can equivalently be represented
by its adjacency matrix, also shown on Figure 1.

The precedence relation then leads to the definition of a support path:

Definition 4 (Support Path). Given a data set Ω and a gradual pattern
P = {(a1, ∗1), . . . , (ak, ∗k)}, a support path p of length l is an ordered subset
{oρ1 , . . . , oρl} containing l objects from Ω such that ∀j ∈ [1, l− 1], oρj ≺P oρj+1 .

We denote P the set of all the paths supporting P .

Definition 5 (Support by Longest Path). Given a data set Ω and a gradual
pattern P , the support of P in Ω is defined by the length of the longest support

path, relative to the total number of objects: supp(P ) =
1

|Ω|
max
p∈P

(length(p)).

For instance, for the pattern P = (X ↑, Y ↑), we have the chains 〈o3, o4〉 and
〈o1, o2, o3, o5, o6, o7, o8〉 (and all sub-chains from these chains). The support of
P is thus supp(P ) = 6

8 = 0.75.
Based on this quality criterion, one can then define the gradual patterns of

interest, which must be both frequent and maximal:

Definition 6 (Frequent Gradual Pattern). Given a data set Ω and a mini-
mal support value minsup, a gradual pattern P is said to be frequent if we have
supp(P ) ≥ minsup.

Definition 7 (Maximal Frequent Gradual Pattern). Given a data set Ω
and a minimal support value minsup, a frequent gradual pattern P is said to be
maximal if there does not exist any frequent pattern P ′ such that P ⊂ P ′.
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The gare algorithm [4] proposes an efficient method to mine the maximal
frequent gradual patterns according to these definitions.

2.2 Rank Discrimination Measures

Rank discrimination measures [14, 15] have been studied in the setting of a spe-
cific classification task, when the class (or label) to be predicted is ordinal, and
not categorical as it is usually the case. We propose to describe these data as
ordinally labelled . The aim in such a task is then to preserve the rank knowledge
on the class in the trained classifier and to highlight a gradual relation between
the numerical attributes and the class.

Monotonic decision trees [15] for instance allow to address this task. Such
decision trees are built from attributes that are the most gradually related to
the class. They rely on the notion of rank discrimination measures: the latter
are an extension of discrimination measures used in the attribute selection step
of the tree building, so as to favour attributes whose behaviour satisfies the
monotonicity aim.

It applies to ordinally labelled numerical datasets: first, the data description
only contains numerical attributes, i.e. C = ∅. Second, each data point is associ-
ated to a class by the labelling function λ : Ω → C where C = {c1, . . . ck} is an
ordered set of class, i.e. associated with a ranking ≺C .

Rank discrimination measures are based on the concept of dominance [7]:

any object o ∈ Ω is associated to the sets [o]≤λ and [o]≤a for any attribute a,
respectively defined as

[o]≤λ = {o′ ∈ Ω : λ(o) �C λ(o′)}
[o]
≤
a = {o′ ∈ Ω : o[a] ≤ o′[a]}

In this paper, we focus on the rank Shannon entropy that corresponds to a
rank version of the classical Shannon entropy. It is obtained by substituting the
conditional probabilities with the corresponding measures obtained by means of
the dominant sets, as shown in the next definition. The rank Shannon entropy
can also be considered as a measure comparing the orders of two ordered sets:
Ωλ the ordered set of objects from Ω according to λ, and Ωa the ordered set of
objects from Ω according to a. We thus denote H∗S(Ωλ|Ωa) the rank Shannon
entropy of attribute a with respect to the class labelling λ.

Definition 8 (Rank Shannon Entropy [8]). For an ordinally labelled nu-
merical dataset Ω, the rank Shannon entropy of attribute a with respect to the
class labelling λ is computed as

H∗S(Ωλ|Ωa) = − 1

|Ω|
∑
o∈Ω

log2

(
|[o]≤λ ∩ [o]≤a |
|[o]≤a |

)
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2.3 Mathematical Morphology to Induce Order

Mathematical morphology [17] defines a set of tools for the identification of spa-
tial structures as the shape and size of objects, it has been extensively used for
image processing and functional analysis. One-dimensional mathematical mor-
phology [12, 13] applies to symbolic words, obtained as data transcriptions on
a set of symbols. In particular, it has been proposed as an efficient approach
to perform an automatic fuzzy partition method to discretise a numerical at-
tribute: it makes it possible to identify class homogeneous intervals, tolerating
some noise in the intervals, i.e. to highlight class homogeneous class kernels. One-
dimensional mathematical morphology has also been applied to enrich gradual
patterns through characterising clauses exploiting categorical attributes [16].

Considering a numerical attribute a whose universe Xa has to be partitioned,
first, a ”word” is built, made by the values of the class for all o ∈ Ω ordered
by the corresponding values of a for o. Then, a smoothing of this word is done
to highlight consistent kernels of class values. During this smoothing, maximally
homogeneous sequences of letters are searched for to define kernels for the fuzzy
sets. To obtain such a sequence, a morphological filter is applied to the word
using a particular class as structuring element.

A morphological filter is defined as the composition of opening and closure
operators, themselves defined as composition of dilation and erosion operators:
according to the class c used as structuring element, the dilation operator enables
the merging of two sequences of letters c separated by a ”small” number of
other classes; the erosion operator enables the deletion of very small sequences
of letters c. The strength of the filter is defined as the number of repetitions of
each operator in the sequence [13].

3 Proposed Method

This section describes the proposed OSACA approach which consists in three
steps, described in turn in the following subsections: the first one exploits the
numerical attributes to highlight rich ordering information, inducing an object
ranking, based on gradual patterns extraction and their supporting paths. The
second step considers these paths from the point of view of the categorical at-
tributes. and processing the induced class words using a morphological alternated
filter, so as to smooth it and identify kernels of homogeneous values and leads to
a candidate (partial) ranking on the categorical attribute. The third step eval-
uates the candidate rankings and outputs the relevant ones, based on quality
measures regarding both the ranking compatibility to the order induced by the
gradual pattern and the number of involved objects.

3.1 Identification of Compatible Object Subsets

The first step exploits the numerical attributes to extract rich knowledge through
gradual patterns using the covariation interpretation: they allow to maximally
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combine the attributes so as to derive rich ordering information, inducing an
object ranking.

We propose to apply the gare algorithm [4], whose theoretical principles are
recalled in Section 2.1, as it offers the additional advantage of providing a subset
of objects satisfying the induced ranking.

Given the data set Ω, this step outputs a set of gradual patterns from the
numerical attributes N , each of them being associated to a set of supporting
paths P.

3.2 Construction of Candidate Rankings

In the second step, for each gradual pattern P extracted by gare in the previous
step, each associated supporting path p is considered in turn to build a tentative
ranking on each categorical attribute c ∈ C. In the following, we consider the
categorical attribute as a labelling function: for any o ∈ Ω, λ(o) = o[c].

Given a path p ∈ P, i.e. an ordered set of object p = 〈o1, . . . , o|p|〉, and λ,
the construction of a candidate ranking on C first builds the word made of the
corresponding sequence of categorical values wp = 〈λ(o1), . . . , λ(o|p|)〉, denoted
w = 〈w1, . . . wp〉 below.

The principle then consists in smoothing w in order to highlight kernels for
each class. As recalled in Section 2.3, morphological alternated filters are appro-
priate tools to perform such an operation. In the particular setting considered
here, a specific dilation operator needs to be defined: it must indeed enable the
deletion of any class distinct from the structuring element, which is not possible
in the classical approaches [12, 13]. We thus introduce a strong dilation operator
to achieve this aim and apply the induced alternated filter F .

The obtained filtered word w′p = F (wp) then allows to define a partial order
of the values taken by the considered attribute c: for each value ci, the largest
kernel associated to ci in w′ is retained (the first one in case of ties), and the
order of these kernels provide the ranking of the associated values.

It can occur that no kernel for ci survives after the filtering. In this case,
the class is not concerned by the ranking and the result is a partial order ≺p of
the values of C induced by p. We denote λ∗ ⊆ λ the subsets of labels that are
comparable according to ≺p. In the extreme case where λ∗ = ∅, no order can be
induced for this class: the corresponding attribute is only categorical and not,
even partially, ordinal.

In the case of the toy data given in Table 1, considering the gradual pattern
P = {(X, ↑), (Y, ↑)}, and the maximal support path p = 〈o1, o2, o5, o6, o7, o8〉, the
obtained word is wp = 〈blue, blue, red, blue, yellow, yellow〉, which can be filtered
to w′p = 〈blue, blue, ·, ·, yellow, yellow〉, suggesting the ranking blue ≺p yellow.

3.3 Evaluation of a Candidate Ranking

In this step, any order ≺p identified in the previous step is evaluated by com-
bining several quality criteria.



8 C. Marsala, A. Laurent, M.-J. Lesot, M. Rifqi, and A. Castelltort

First, a notion of support is considered so as to quantify the proportion of
data points concerned by the candidate ranking. This support is defined as the
sum of the sizes of the kernels considered for building the ranking, divided by the
path length. For the considered example, the support of the candidate partial
ranking blue ≺p yellow is therefore 4/6 = 0.666.

Second, the quality of the compatibility between the candidate ranking of
categorical values and the pattern ranking is considered. It corresponds to a rank
Shannon entropy applied to the subset of all data points Ω that are present in
the considered path p with the orders ≺p on the categorical attribute and ≺P
on the numerical attributes involved in the considered pattern.

It must be underlined that the induced ranking≺p may not apply to all points
in p, as it can be only partial, as is for instance the case for the considered toy
example. Therefore, we introduce, as a second quality criterion of the candidate
ranking, the partial rank Shannon entropy defined as follows:

Definition 9 (Partial Rank Shannon Entropy).
Given P a gradual pattern, ≺P the induced data ranking,
p a support path associated to P ,
c a categorical attribute, ≺p the categorical value ranking induced by p on c,
and λ∗ the subset of c values comparable according to ≺p,
the partial rank Shannon entropy is defined as:

H∗S(Ωλ∗ |p) = − 1

|p|
∑
o∈p

(
log2

(
|[o]≺p

λ∗ ∩ [o]≺P |
|[o]≺P |

))

It can be noted that, contrary to the rank Shannon entropy, the intersection
[o]
≺p

λ∗ ∩ [o]≺P can be empty. In this case, the corresponding term in the sum is
set to 0.

For instance, for the considered example, the partial rank Shannon entropy
equals − 1

6

(
log2( 5

6 ) + log2( 5
5 ) + 0 + log2( 3

3 ) + log2( 2
2 ) + log2( 1

1 )
)

= 0.0659.

4 Illustrative Results

A set of experiments has been conducted to evaluate the OCASA approach on
a set with 100 randomly generated data. Each data point is described by two
numerical attributes X and Y and is associated with a categorical attribute, also
called class, among the unordered set {blue, red, yellow, green}.

4.1 Gradual Relation on X and Y but no Order on the Class

In the first experiment, represented on Fig. 2, the class values are not correlated
with the numerical attributes: it is expected that no ranking is identified.

As there is a gradual relation between the two attributes X and Y , the
gradual pattern extraction provides several paths for the gradual pattern P =
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Fig. 2. Gradual relation on X and Y but no order on the classes.

{(X, ↑), (Y, ↑)}. There are 16 longest paths, each containing 34 objects. Paths
are rather long as they contain one third of the objects of the dataset, which
highlights the gradual relation.

When applying the morphological filtering on each of these paths, no kernel
can be found and thus, as expected, no order on the class can be identified.

4.2 Gradual Relation on X and Y and Partial Order on the Class

In the second experiment, three of the four class values are generated with an
underlying ranking (see Fig. 3): smaller values of the numerical attributes are
associated with class value blue, middle values with yellow, and bigger values
with green. The red class is uniformly spread among the universes.

As in the previous experiment, the gradual relation between the two numer-
ical attributes X and Y is highlighted by the fact that several paths for the
gradual pattern {(X, ↑), (Y, ↑)} are found: 2160 longest paths, each containing
24 objects are found. They are still rather long as they contain one quarter of
the objects of the dataset, which highlights the existing gradual relation between
X and Y .

In this case, the ranking of the class values is successfully identified: when
applying the morphological filtering on each of these paths, 1800 paths among
the 2160 highlight the order blue ≺ yellow ≺ green, with a support ranging from
0.75 to 0.875 and a partial rank Shannon entropy very small, ranging from 0.0
to 0.008.

The other paths highlight the order blue ≺ green with a support ranging
from 0.583 to 0.625.
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Fig. 3. Gradual relation on X and Y and partial order on the class.

Fig. 4. Gradual relation on X and Y and order on the class

4.3 Gradual Relation on X and Y and Order on the Class

In the third experiment, all 4 class values are ordered (see Fig. 3): the expected
ranking should indicate blue before red, before yellow, before green.

As in the previous experiment, the gradual relation between the two at-
tributes X and Y is highlighted by the fact that several paths for the gradual
pattern {(X, ↑), (Y, ↑)} are found: 16 longest paths, each containing 34 objects.
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As expected, after applying the morphological filtering on each of these paths,
all paths induce the ranking blue≺ red≺ yellow≺ green. In all cases, the support
is 1 and the partial rank Shannon entropy is very small, ranging from 0.02 to
0.03.

5 Conclusion and Future Works

In this paper, we consider gradual patterns and use them to suggest ordinal
attributes within the categorical ones. When such an attribute is pointed out,
the OCASA method suggests a tentative ranking over its values and asses the
quality of this suggestion with a ranking measure. When applied to toy data
sets, the method appears to provide relevant results, and opens many directions
for future works, beside experiments on real data sets.

One question is to determine which gradual patterns should be considered:
OSACA considers all gradual patterns whose support is greater than the min-
imum support. It may be relevant to consider only patterns with maximum
number of attributes or only patterns with maximum support value, knowing
that the longer a pattern, the lower the support, due to the anti-monotonicity
property. Besides, it may be relevant to choose a subset of categorical attributes
to be studied, or even only one. Indeed, OSACA scans all categorical attributes
from the database while some of them may not be interesting for end-users.
Finally, we may consider evaluating the quality of the method by computing a
kind of precision and recall describing on the one hand to which extent ordinal
attributes have been retrieved, and on the other hand to which extent the orders
suggested are relevant.
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10. Hüllermeier, E.: Association rules for expressing gradual dependencies. In: Proc.
of PKDD’02. pp. 200–211 (2002)

11. Laurent, A., Lesot, M.J., Rifqi, M.: Graank: Exploiting rank correlations for ex-
tracting gradual dependencies. In: Proc. of FQAS’09 (2009)

12. Marsala, C.: Fuzzy partitioning methods. In: Pedrycz, W. (ed.) Granular Comput-
ing: an Emerging Paradigm, pp. 163–186. Springer-Verlag (2001)

13. Marsala, C., Bouchon-Meunier, B.: Fuzzy partioning using mathematical morphol-
ogy in a learning scheme. In: Fifth IEEE Int. Conf. on Fuzzy Systems. vol. 2, pp.
1512–1517. New Orleans, USA (1996)

14. Marsala, C., Petturiti, D.: Hierarchical model for rank discrimination measures.
In: European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty (ECSQARU). pp. 412–423. Springer (2013)

15. Marsala, C., Petturiti, D.: Rank discrimination measures for enforcing monotonic-
ity in decision tree induction. Information Sciences 291, 143–171 (Jan 2015)

16. Oudni, A., Lesot, M.J., Rifqi, M.: Characterisation of gradual itemsets through”
especially if” clauses based on mathematical morphology tools. In: Conference of
the European Society for Fuzzy Logic and Technology (EUSFLAT 2013) (2013)

17. Serra, J.: Introduction to mathematical morphology. Computer vision, graphics,
and image processing 35(3), 283–305 (1986)


