Abdelraouf Hecham
email: hecham@lirmm.fr

Pierre Bisquert
email: pierre.bisquert@inra.fr

Madalina Croitoru
email: croitoru@lirmm.fr

On a Flexible Representation for Defeasible Reasoning Variants

Keywords: Defeasible Reasoning, Defeasible Logics, Existential Rules

We propose Statement Graphs (SG), a new logical formalism for defeasible reasoning based on argumentation. Using a flexible labeling function, SGs can capture the variants of defeasible reasoning (ambiguity blocking or propagating, with or without team defeat, and circular reasoning). We evaluate our approach with respect to human reasoning and propose a working first order defeasible reasoning tool that, compared to the state of the art, has richer expressivity at no added computational cost. Such tool could be of great practical use in decision making projects such as H2020 NoAW.

INTRODUCTION

Defeasible reasoning [START_REF] Nute | Defeasible reasoning: a philosophical analysis in prolog[END_REF] is used to evaluate claims or statements in an inconsistent setting. It has been successfully applied in many multi-agent domains such as legal reasoning [START_REF] Antoniou | On the analysis of regulations using defeasible rules[END_REF], business rules [START_REF] Morgenstern | Artificial Intelligence Inheritance comes of age : applying nonmonotonic techniques to problems in industry[END_REF], contracting [START_REF] Benjamin N Grosof | A declarative approach to business rules in contracts: courteous logic programs in XML[END_REF], planning [START_REF] Garcia | Planning and defeasible reasoning[END_REF], agent negotiations [START_REF] Dumas | A Formal Approach to Negotiating Agents[END_REF], inconsistency management [START_REF] Vanina Martinez | Inconsistency-Tolerant Reasoning in Datalog +-Ontologies via an Argumentative Semantics[END_REF], etc. Defeasible reasoning can also be used for reasoning with uncertain rules in food science. In the EU H2020 NoAW project we are interested in reasoning logically about how to manage waste from wine by products. Such rules, elicited by experts, non experts, consumers etc via online surveys have to be put together and used as a whole for decision making. Unfortunately, there is no universally valid way to reason defeasibly. An inherent characteristic of defeasible reasoning is its systematic reliance on a set of intuitions and rules of thumb, which have been long debated between logicians [START_REF] Antoniou | Defeasible reasoning: A discussion of some intuitions[END_REF][START_REF] John F Horty | A clash of intuitions: the current state of nonmonotonic multiple inheritance systems[END_REF][START_REF] Makinson | Floating conclusions and zombie paths: two deep difficulties in the "directly skeptical" approach to defeasible inheritance nets[END_REF][START_REF] Prakken | Intuitions and the modelling of defeasible reasoning: some case studies[END_REF]. For example, could an information derived from a contested claim be used to contest another claim (i.e. ambiguity handling)? Could "chains" of reasoning for the same claim be combined to defend against challenging statements (i.e. team defeat)? Is circular reasoning allowed? etc.

The main available 1 defeasible reasoning tools are ASPIC+ [START_REF] Prakken | An abstract framework for argumentation with structured arguments[END_REF], DEFT [START_REF] Hecham | Argumentation-Based Defeasible Reasoning For Existential Rules[END_REF], DeLP [START_REF] García | Defeasible logic programming: An argumentative approach[END_REF], DR-DEVICE [START_REF] Bassiliades | A defeasible logic reasoner for the semantic web[END_REF], and Flora-2 [START_REF] Yang | Flora-2: A Rule-Based Knowledge Representation and Inference Infrastructure for the Semantic Web[END_REF]. Table 1 shows that no tools can support all features.

Existing literature has established the link between argumentation and defeasible reasoning via grounded semantics [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF][START_REF] Prakken | Argument-based extended logic programming with defeasible priorities[END_REF] and 1 Available and runnable as of November 2017.

. Table 1: Defeasible features supported by tools. Trees [START_REF] García | Defeasible logic programming: An argumentative approach[END_REF]. Such approaches only allow for ambiguity propagation without team defeat [START_REF] Governatori | Argumentation Semantics for Defeasible Logic[END_REF][START_REF] Prakken | Intuitions and the modelling of defeasible reasoning: some case studies[END_REF].

In this paper we propose a new logical formalism called Statement Graph (SGs) that captures all features showed in Table 1 via a flexible labelling function. The SG can be seen as a generalisation of Abstract Dialectical Frameworks (ADF) [START_REF] Brewka | Abstract dialectical frameworks[END_REF] that enrich ADF acceptance condition.

After introducing SGs in Section 3 we show in Section 4 how the flexible labelling function of SG can capture ambiguity blocking (Section 4.1), ambiguity propagating (Section 4.2), team defeat (Section 4.3) and circular reasoning (Section 4.4). In Section 5 we evaluate the practical applicability of SGs. We demonstrate (Section 5.2) certain features of human reasoning empirically demonstrated by psychologists. Furthermore, we provide a tool (Section 5.1) that implements SGs and, despite its higher expressivity than the tools in Table 1, performs better or equally good.

BACKGROUND NOTIONS

Language. We consider a propositional language of literals and the connectives (∧, →, ⇒, ⇝). A literal is either an atom (an atomic formula) or the complement of an atom. The complement of atom f is denoted f . ⊤ and ⊥ are considered atoms. Given Φ a finite nonempty conjunction of literals and a literal ψ , a rule r is a formula of the form Φ ⇛ ψ such that ⇛∈ {→, ⇒, ⇝}. We call Φ the body of r denoted B(r) and ψ the head of r denoted H (r). The set R of rules is composed of:

(1) R → the set of strict rules (of the form Φ → ψ) expressing undeniable implications i.e. if Φ then definitely ψ . (2) R ⇒ the set of defeasible rules (of the form Φ ⇒ ψ) expressing a weaker implication i.e. if Φ then generally ψ . (3) R ⇝ the set of defeater rules (of the form Φ ⇝ ψ) used to prevent a complement of a conclusion i.e. if Φ then ψ should not be concluded. It does not imply that ψ is concluded.

Given a literal f , the rule of the form ⊤ → f or ⊤ ⇒ f is called a fact rule. A derivation for f is a sequence of strict and defeasible rules that starts from a fact rule and end with a rule r ∈ R s.t. H (r) = f . A strict derivation contains only strict rules.

A defeasible knowledge base is a tuple KB = (F , R, ≻) where F is a set of fact rules, R is a set of strict, defeasible and defeater rules, and ≻ is a superiority relation on R. A superiority relation is an acyclic relation ≻ (i.e. the transitive closure of ≻ is irreflexive). If r 1 ≻ r 2 , then r 1 is called superior to r 2 , and r 2 inferior to r 1 . This expresses that r 1 may override r 2 . A query (also called claim) on a knowledge base KB is a conjunction of literals. Defeasible reasoning. To reason defeasibly about a conclusion, all chains of rule applications (also called arguments) reaching that conclusion must be evaluated along with any conflict (i.e. attack) that arises from other chains of rules. This can be achieved using two kinds of approaches: (1) approaches based on the evaluation of arguments during their construction, such as defeasible logics [START_REF] Billington | Defeasible Logic is Stable[END_REF][START_REF] Nute | Defeasible reasoning: a philosophical analysis in prolog[END_REF] and (2) approaches using the idea of extensions, where arguments are built then evaluated at a later stage; these encapsulate argumentation-based techniques [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF][START_REF] García | Defeasible logic programming: An argumentative approach[END_REF].

An argument is a minimal sequence of rule applications from a fact rule to a rule with a literal in its head called the conclusion of that argument. An argument arд attacks another argument arд ′ on a literal f if its conclusion is f and f is one of the literals that appear in arд ′ . We say that arд defeats arд ′ if the rule in arд generating f is not inferior to the rule in arд ′ generating f . Ambiguity Handling. A literal f is ambiguous if there is an undefeated argument for f and another undefeated argument for f and the superiority relation does not state which argument is superior, as shown in Example 1.

Example 1. The following defeasible knowledge base KB = (F , R, ∅) describes a situation where a piece of evidence 'A' suggests that a defendant is responsible while an evidence 'B' indicates that he is not responsible; Both evidences are equally reliable. A defendant is presumed not guilty unless responsibility has been proven:

• F = {⊤ ⇒ дuilty, ⊤ → evidA, ⊤ → evidB} • R = {r d 1 : evidA ⇒ responsible, r d 2 : evidB ⇒ responsible, r d 3 : responsible ⇒ дuilty}.
Evaluating the query q = дuilty (i.e. is the defendant not guilty?) requires the construction of all arguments for and against this literal.

• arд 1 = ⟨⊤ ⇒ дuilty⟩.

• arд 2 = ⟨⊤ → evidA, evidA ⇒ responsible⟩.

• arд 3 = ⟨⊤ → evidB, evidB ⇒ responsible⟩.

• arд 4 = ⟨⊤ → evidA, r d 1 , responsible ⇒ дuilty⟩.
arд 2 and arд 3 attack and defeat each other as no argument is superior to the other, therefore their conclusions "responsible" and "responsible" are said to be ambiguous. In an ambiguity blocking setting (such as Nute's defeasible logic [START_REF] Nute | Defeasible reasoning: a philosophical analysis in prolog[END_REF]), the ambiguity of "responsible" blocks (forbids) any ambiguity derived from it, meaning that all arguments containing "responsible" cannot be used to attack other arguments (they are considered as defeated). Therefore arд 1 is uncontested and the answer to q is 'true' (i.e. KB ⊨ block дuilty, where ⊨ block denotes entailment in ambiguity blocking).

On the other hand, in an ambiguity propagating setting (such as grounded semantics and dialectical trees [START_REF] Governatori | Argumentation Semantics for Defeasible Logic[END_REF]), the ambiguity of "responsible" is propagated to "дuilty" because "дuilty" can be derived (arд 4 is allowed to defeat arд 1), hence, the answer to the query q is 'false' (i.e. KB ⊭ pr op дuilty, where ⊨ pr op denotes entailment in ambiguity propagating).

Ambiguity propagation results in fewer conclusions (as more ambiguities are allowed) and may be preferable when the cost of an incorrect conclusion is high. Ambiguity blocking may be appropriate in situations where contested claims cannot be used to contest other claims (e.g. in the legal domain) [START_REF] John F Horty | A clash of intuitions: the current state of nonmonotonic multiple inheritance systems[END_REF]. Team Defeat. The absence of team defeat means that for an argument to be undefeated it has to single-handedly defeat all its attackers, as shown in Example 2.

Example 2. Generally, animals do not fly unless they are birds. Also, penguins do not fly except magical ones. 'Tweety' is an animal, a bird, and a magical penguin. Can 'Tweety' fly? KB = (F , R, ≻):

• F = {⊤ ⇒ animal, ⊤ ⇒ bird, ⊤ ⇒ penдuin, ⊤ ⇒ maдical }. • R = {r d 1 : animal ⇒ f ly, r d 2 : bird ⇒ f ly, r d 3 : penдuin ⇒ f ly, r d 4 : maдical ∧ penдuin ⇒ f ly}. • (r d 2 ≻ r d 1), (r d 4 ≻ r d 3).
The query is q = f ly. In the absence of team defeat, the answer to q is 'false' (i.e. KB ⊭ noT D f ly, where ⊨ noT D denotes entailment in defeasible reasoning without team defeat) because there is no chain of reasoning for "f ly" that can defend itself from all attacks: even if r d 2 defends itself from r d 1 (because r d 2 ≻ r d 1), it does not defend against r d 3 (since r d 2 ⊁ r d 3), and the same applies for r d 4 : it defends against r d 3 but fails against r d 1 because r d 4 ⊁ r d 1 . If team defeat is allowed then the answer to q is 'true' (i.e. KB ⊨ T D f ly, where ⊨ T D denotes entailment in defeasible reasoning with team defeat) because all attacks are defeated: r d 1 is defeated by r d 2 (r d 2 ≻ r d 1) and r d 3 is defeated by r d 4 (r d 4 ≻ r d 3). Argumentation-based techniques for defeasible reasoning do not allow for team defeat, whereas defeasible logics do [START_REF] Antoniou | A Family of Defeasible Reasoning Logics and its Implementation[END_REF][START_REF] Prakken | Intuitions and the modelling of defeasible reasoning: some case studies[END_REF].

THE STATEMENT GRAPH

A Statement Graph (SG) can be seen as a graph representation of the reasoning process happening inside a knowledge base. It is built using logical building blocks (called statements) that describe a situation (premises) and a rule that can be applied on that situation. Definition 1 (Statement). A statement is a tuple s = (Φ, r) where Φ is a (possibly empty) set of literals (called premises) and r ∈ R ∪ {⊤} ∪ {∅} is either a rule, the Top literal or an empty set. A statement can be of three types:

(1) A 'claim statement' for a claim C of the form (C, ∅).

(2) A 'Top statement' of the form (∅, ⊤).

(3) A 'rule application statement' of the form (Φ, r) such that B(r) = Φ.

We denote by Rule(s) = r and Premise(s) = Φ the rule and premises of a statement s respectively.

A statement s 1 can attack (or support) a statement s 2 if it provides a justification against (or for) the premises of s 2 .

Definition 2 (Attack and Support). Given two statements s 1 = (Φ 1 , r 1) and s 2 = (Φ 2 , r 2):

• s 1 supports s 2 iff: ∃f ∈ Φ 2 s.t. H (r 1) = f and r 1 R ⇝ . (we say that s 1 supports s 2 on f). • s 1 attacks s 2 iff:

(1) Either ∃f ∈ Φ 2 s.t. H (r 1) = f and r 1 R ⇝ . (we say that s 1 undercuts s 2 on f). (2) Or r 1 ∈ R ⇝ and H (r 1) = H (r 2) (we say that s 1 attacks the rule application of s 2).

Statements are generated from a knowledge base, they can be structured in a graph according to the support and attack relations they have between each other.

Definition 3 (Statement Graph). A Statement Graph of the knowledge base KB is a directed graph SG K B = (V, E A , E S): • V is the set of statements generated from KB. • E S ⊆ V × V is the set of support edges. There is a support edge e = (s 1 , s 2) ∈ E S iff s 1 supports s 2 . • E A ⊆ V × V is the set of attack edges. There is an attack edge e = (s 1 , s 2) ∈ E A iff the statement s 1 attacks s 2 .
For an edge e = (s 1 , s 2), we denote s 1 by Source(e) and s 2 byT arдet(e). For a statement s we denote its incoming attack edges by E - A (s)={e ∈ E A |T arдet(e) = s} and its incoming support edges by E - S (s)={e ∈ E S |T arдet(e) = s}. We also denote its outgoing attack edges by

E + A (s)={e ∈ E A |Source(e)
= s} and outgoing support edges by

E + S (s)={e ∈ E S |Source(e)=s}.
An SG can be constructed in two ways, either by generating all possible statements in a knowledge base then adding the attack and support edges (in order to have a general overview of the knowledge base), or by starting from a specific statement and generating recursively all statements that support or attack it until no other statement can be generated, as shown in Example 3. An SG provides statements and edges with a label using a labeling function that starts from the Top statement and propagates labels to the other statements. Query answering can then be determined based on the label of the claim statement for a query. This can be seen as a logic-based instantiation of ADFs (Abstract Dialectical Frameworks) [START_REF] Brewka | Abstract dialectical frameworks[END_REF] but rather than using a boolean acceptance condition, SG uses a labeling function.

Definition 4 (Labeling Function). A labeling function applied to a statement graph is a function

St : V ∪ E A ∪ E S → Label that takes as input a statement s ∈ V or an edge e ∈ E A ∪ E S and returns a label in Label = {IN st r , IN def , OUT st r , OUT def , AMBIG, UNSUP}.
The intuition behind these labels is as follows:

• IN st r indicates that the statement is accepted and its rule can be strictly applied based on strictly accepted premises. • IN def indicates that the statement is accepted and its rule can be defeasibly applied based on strictly or defeasibly accepted premises.

• OUT st r and OUT def indicate that the statement is not accepted because its rule or premises have been strictly or defeasibly defeated respectively. • AMBIG indicates that the statement's rule or premises are challenged and the superiority relation cannot be used to determine if it is accepted or not. • UNSUP indicates that the statement's premises are not supported by facts. A statement is given a label based on its incoming edges and their labels. The notion of complete support describes the situation where a statement has a support edge for each one of its premises. Definition 5 (Complete Support). A complete support for a statement s is a set of support edges denoted E s CS such that:

• ∀f ∈ Premise(s), ∃e ∈ E s CS s.t. Source(e) supports s on f . • ∄S ′ s.t. S ′ ⊂ E s
CS and S ′ is a complete support for s. (minimality w.r.t. set inclusion).

Given a complete support E s

CS : We say that an edge e is superior to another edge e ′ and that e ′ is inferior to e iff Rule(Source(e)) ≻ Rule(Source(e ′)), and we say that a support edge e sup defends against an attack edge e at t iff e sup is supporting the literal attacked by e at t and:

• E s CS is called "IN st r complete support" iff ∀e ∈ E s CS , St(e) = IN st r . • E s CS is called "IN def complete support" iff it is not a IN st
(1) Either e sup is labeled IN st r .

(2) Or e sup is labeled IN def and e sup is superior to e at t (i.e.

Rule(Source(e sup)) ≻ Rule(Source(e at t))).

Let us conclude this section by explaining how the SG is built from a propositional knowledge base. The nodes correspond to each of the rules in the knowledge base. The edges are constructed in a bottom up manner starting from the fact rules. The next section presents reasoning and labeling functions and how cycles are prevented.

STATEMENT GRAPH REASONING

Statement Graphs are flexible enough to represent all variants of defeasible reasoning depicted in Table 1. This flexibility is due to the labeling function that evaluates all supports and attacks for a specific rule application step. In the next section we first explain how SGs capture basic defeasible reasoning with ambiguity blocking, team defeat, and without cycles.

Labeling for Ambiguity Blocking

In SGs ambiguity blocking means that all ambiguous attack edges can be discarded and not taken into account. Team defeat means that a statement survives as long as the edges attacking it are defeated by its support edges. We use the labeling function 'BDL' (Blocking Defeasible Logic) to obtain entailment results equivalent to Billington's defeasible logic [START_REF] Billington | Defeasible Logic is Stable[END_REF] (i.e. defeasible reasoning with ambiguity blocking, team defeat and without cycles). BDL is defined as follows: edges are given the same label as their source statements (i.e. given an edge e, BDL(e) = BDL(Source(e)). Given A statement is labeled IN de f iff it is not strictly accepted or strictly defeated and it has a strict or defeasibly accepted complete support (i.e. there is a strict or defeasibly accepted derivation for each of its premises) and (c.1.) for all defeasibly accepted attacks it receives, it has a superior edge that defeats it (this condition allows for team defeat since a support edge does not have to defeat all attacks by itself) and (c.2.) the statement rule is either a strict rule or is superior to any defeasibly applicable rule attacking it.

(A statement is labeled OUT de f iff it is not strictly defeated and it has a strict or defeasibly accepted complete support and either (d.1.) one of its premises is not strictly supported and for all its defeasibly accepted or ambiguous support edges, there exists a defeasibly accepted attack edge that is superior to it (this condition allows for team defeat as an attack edge does not have to defeat all supports by itself). Or (d.2.) the statement's rule is not strict and there is a defeasibly accepted edge with a superior rule attacking it.

(e) BDL(s) = AMBIG if BDL(s) {IN st r , OUT st r , OUT def } and A statement is labeled AMBIG if it is not strictly accepted or strictly or defeasibly defeated and it either (e.1.) has an ambiguous complete support and no strict or defeasibly accepted complete support, or (e.2.) has a strict or defeasibly accepted complete support and either (e.2.1.) one of its premises is not strictly supported and for all its defeasibly accepted support edges, there exists a defeasibly accepted attack edge that is neither superior nor inferior to it, or (e.2.2) the statement's rule is not strict and is defeasibly attacked by an edge with neither a superior nor an inferior rule.

(The equivalence between BDL and reasoning with ambiguity blocking and team defeat is shown in Proposition 1. Proposition 1. Let f be a literal in a defeasible KB:

(1) KB ⊨ T D block f iff SG BDL K B ⟨({ f }, ∅)⟩ ∈ {IN st r , IN def }. (2) KB ⊭ T D block f iff SG BDL K B ⟨({ f }, ∅)⟩ ∈ {OUT st r , OUT def , UNSUP}.
Sketch. Proof using the formalization of ambiguity blocking with team defeat shown in [START_REF] Antoniou | A Family of Defeasible Reasoning Logics and its Implementation[END_REF][START_REF] Billington | Defeasible Logic is Stable[END_REF]. (See Footnote 2) □

Labeling for Ambiguity Propagation

Defeasible reasoning via structured argumentation such as ASPIC+ with grounded semantics [START_REF] Prakken | An abstract framework for argumentation with structured arguments[END_REF] yields the same entailment results as defeasible reasoning with ambiguity propagation and no team defeat [START_REF] Governatori | Argumentation Semantics for Defeasible Logic[END_REF]. The intuition behind ambiguity propagation is to reject a literal if there is an argument attacking it (whether it relies on ambiguous literals or not) and is not inferior to it.

From an SG point of view, ambiguity propagating means that ambiguous attack edges are considered valid attacks that make the statement ambiguous if it cannot defend against them.

We use the labeling function 'PDL' (Propagating Defeasible Logic) to obtain entailment results equivalent to defeasible reasoning with ambiguity propagating, team defeat and without cycles [START_REF] Antoniou | A Family of Defeasible Reasoning Logics and its Implementation[END_REF]. PDL is defined the same as BDL except for the definition of IN de f and AMBIG labels. Edges are given the same label as their source statements (i.e. given an edge e, PDL(e) = PDL(Source(e)) and given a statement s: In PDL, a statement is also labeled AMBIG if it is attacked on its premises or rule by an ambiguous edge that is not inferior. Example 5. Consider the SG in Example 3. Applying PDL labeling function results in Figure 3. In particular, the statement ({дuilty}, ∅) is labeled AMBIG because it has a defeasibly accepted support edge that is not superior to the ambiguous attack edge. The equivalence between PDL and reasoning with ambiguity propagating and team defeat is shown in Proposition 2. Proposition 2. Let f be a literal in a defeasible KB:

(1) KB ⊨ T D pr op f iff SG PDL K B ⟨({ f }, ∅)⟩ ∈ {IN st r , IN def }. (2) KB ⊭ T D pr op f iff SG PDL K B ⟨({ f }, ∅)⟩ ∈ {OUT st r , OUT def , UNSUP}.

Labeling without Team Defeat

An inherent characteristic of defeasible reasoning is its systematic reliance on a set of intuitions and rules of thumb, which have been longly debated between logicians [START_REF] Antoniou | Defeasible reasoning: A discussion of some intuitions[END_REF][START_REF] John F Horty | A clash of intuitions: the current state of nonmonotonic multiple inheritance systems[END_REF][START_REF] Makinson | Floating conclusions and zombie paths: two deep difficulties in the "directly skeptical" approach to defeasible inheritance nets[END_REF][START_REF] Prakken | Intuitions and the modelling of defeasible reasoning: some case studies[END_REF]. Team defeat (also called direct reinstatement) is not an exception. Some defeasible reasoning techniques -such as argumentation-based ones-do not allow for team defeat, they consider that for an argument to be accepted, it has to defend itself, alone, against all its direct surviving attacks.

From SG's perspective, forbidding team defeat means that a support edge has to defend itself from all attacks. We denote the labeling function for ambiguity blocking without team defeat by BDL noT D which is almost the same as BDL except that rather than considering all support edges, we only consider those in the complete support. For IN def , condition (c.1) is changed to: (c).

(1) KB ⊨ noT D block f iff SG BDL noT D K B ⟨({ f }, ∅)⟩ ∈ {IN st r , IN def }.
(

) KB ⊭ noT D block f iff SG BDL noT D K B ⟨({ f }, ∅)⟩ ∈ {OUT st r , OUT def , UNSUP}. (3) KB ⊨ noT D pr op f iff SG PDL noT D K B ⟨({ f }, ∅)⟩ ∈ {IN st r , IN def }. (2
) KB ⊭ noT D pr op f iff SG PDL noT D K B ⟨({ f }, ∅)⟩ ∈ {OUT st r , OUT def , UNSUP}. 4

Circular Reasoning and Attack Cycles

The first formalisms of defeasible reasoning [START_REF] Antoniou | A Family of Defeasible Reasoning Logics and its Implementation[END_REF][START_REF] Billington | Defeasible Logic is Stable[END_REF][START_REF] Nute | Defeasible reasoning: a philosophical analysis in prolog[END_REF] did not take cycles into account and would loop infinitely and fail to draw reasonable conclusions in some cases [START_REF] Maier | Well-founded semantics for defeasible logic[END_REF]. There are two types of cycles, circular reasoning (a.k.a. positive loops [START_REF] Billington | Propositional clausal defeasible logic[END_REF]) where cycles are due to rule applications (in SGs the cycle would only contain support edges), and cyclic attacks (a.k.a. negative loops [START_REF] Billington | Propositional clausal defeasible logic[END_REF]) where the cycles are due to conflicting rules (these cycles contain attack and possibly support edges). Failure-by-looping is a mechanism to avoid drawing unreasonable conclusions in presence of cycles [START_REF] Maier | Well-founded semantics for defeasible logic[END_REF].

Circular reasoning cycle is a sequence of unlabeled edges ⟨e 0 , . . . , e n ⟩ where e i ∈ E S and Source(e 0) = T arдet(e i). If all statements in the cycle cannot be labeled by taking into account other edges outside this cycle then these statements are labeled UNSUP, as described in the following Example 6. Formally, (for all labeling functions, not only BDL):

(g) BDL(s) = UNSUP if BDL(s) {IN st r , OUT st r , IN def , OUT def ,
AMBIG} and s is part of a support cycle.

Example 6. Consider the following KB = (F , R, ∅) (and

SG BDL K B
in Figure 4) representing the knowledge that a defendant is responsible iff he is guilty, he is presumed not guilty unless responsibility is proven, and there is no proof for or against his responsibility.

• F = {⊤ ⇒ дuilty} • R = {r d 1 : responsible ⇒ дuilty, r d 2 : дuilty ⇒ responsible}.
The query 'is the defendant not guilty?' cannot be answered without failure-by-looping. The defendant is not guilty (i.e. SG BDL K B ⟨(дuilty, ∅)⟩ = IN de f therefore KB ⊨ block дuilty). Attack cycle is a sequence of unlabeled edges ⟨e 0 , . . . , e n ⟩ where e i ∈ E A ∪ E S and Source(e 0) = T arдet(e i). If all statements in the cycle cannot be labeled using edges outside this cycle then these statements are labeled AMBIG, as described in Example 7. Formally: in Figure 5) that represents a process of deciding if the Platypus is a reptile. The rules are (all defeasible): If it lays eggs and does not have wings then it is a reptile. If it is a reptile then it does not have fur. If it has fur then it is a mammal. If it is a mammal then it does not lay eggs. The Platypus lays eggs, has fur, and does not have wings.

• F = {⊤ ⇒ layEддs, ⊤ ⇒ winдs, ⊤ ⇒ f ur } • R = {r d 1 : layEддs ∧ winдs ⇒ reptile, r d 2 : reptile ⇒ f ur, r d 3 : f ur ⇒ mammal, r d 4 : mammal ⇒ layEддs}.
The answer to the query 'is the Platypus a reptile?' is 'false' (i.e. SG PDL K B ⟨(reptile, ∅)⟩ = AMBIG therefore KB ⊭ pr op reptile). Circular reasoning is avoided by argumentation approaches as all constructed arguments start from ⊤ while attack cycles are handled inherently by grounded semantics and dialectical trees. Propositions 1, 2, and 3 still hold with failure-by-looping.

EVALUATION 5.1 Defeasible Reasoning Tool

While defeasible reasoning has been applied in various domains, available tools lack many functionalities. For example there are no first order tool that provide ambiguity propagating with team defeat (cf. Table 1). In order to expand the usability and appeal of defeasible reasoning, we propose an implementation of Statement Graph called ELDR (Existential Logic for Defeasible Reasoning) that provides defeasible reasoning with first order existential rules 3 , ambiguity blocking or propagating, with or without team defeat, and with failure-by-looping. Existential rules (∃-rules) [START_REF] Calì | A general datalogbased framework for tractable query answering over ontologies[END_REF] are built with (∃, ∀) quantifiers, the connectors (→, ⇒, ⇝) and conjunction (∧). An atom is of the form p(t 1 , • • • , t k) and its complement is of the form p(t 1 , • • • , t k), where p is a predicate and t i are variables (denoted by uppercase) or constants (denoted by lowercase or nulls). A rule r is a formula of the form ∀ ì

X, ì Y B(ì X, ì Y) ⇛ ∃ ì Z H (ì X, ì Z) such that ⇛∈ {→, ⇒, ⇝},
where ì X, ì Y are tuples of variables, ì Z is a tuple of existential variables, and B, H are finite non-empty conjunctions of atoms. To generate the statements we restrict rules to the FES (Finite Expansion Set) fragment [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF] which are guaranteed to stop in forward chaining. We use skolemisation in order to ground the rule applications with existentials. A statement is composed of ground atoms (atoms without variables) and a rule as shown in Example 8.

Example 8. The following KB = (F , R, ∅) (and SG BDL K B in Figure 6) of an animal shelter describes the process of deciding if a found animal is a stray or not. An animal is assumed to be a stray unless proven otherwise. Generally, if an animal has a collar then it has an owner and if it has an owner then it is not a stray. An animal called 'dogo' with a collar is found alone, is it a stray?

• F = {⊤ ⇒ stray(doдo), ⊤ → hasCollar (doдo)} • R = {r d 1 : ∀X hasCollar (X) ⇒ ∃Y hasOwner (X, Y), r d 2 : ∀X hasOwner (X, Y) ⇒ stray(X)}.
The answer to 'is 'dogo' a stray is 'false' (i.e. KB ⊭ block stray(doдo) since SG BDL K B ⟨(stray(doдo), ∅)⟩ = AMBIG). Tools and Performance. The main reasoning tools considered are ASPIC+ [START_REF] Prakken | An abstract framework for argumentation with structured arguments[END_REF], DEFT [START_REF] Hecham | Argumentation-Based Defeasible Reasoning For Existential Rules[END_REF], DeLP [START_REF] García | Defeasible logic programming: An argumentative approach[END_REF] and Flora-2 [START_REF] Yang | Flora-2: A Rule-Based Knowledge Representation and Inference Infrastructure for the Semantic Web[END_REF]. Table 1 (cf. Section 1) shows which variants of defeasible reasoning these tools support compared to ELDR that handles them all. Except for DEFT none supports FES rules.

Handling more variants of defeasible reasoning is a desirable feature as long as performance does not significantly suffer. We conducted an empirical evaluation of ELDR in order to measure its performance w.r.t. the available implementations of first order defeasible reasoning tools 4 . The experiments are built upon a preestablished defeasible reasoning benchmark proposed in [START_REF] Michael | Efficient defeasible reasoning systems[END_REF]. The benchmark we consider is composed of 5 parameterized knowledge bases (also known as theories): Chain Theory tests performance when faced with a simple chain of rules; Circle Theory tests infinite loops (cycles); Trees Theories test a large number of arguments with small derivations; Levels Theory tests performance for ambiguity blocking or propagating; and Teams Theory tests performance w.r.t. a sizeable number of conflicts when team defeat is allowed or not. Table 2 presents the time (in CPU seconds) for each tool to answer the query of each theory. ∞ denotes a stack overflow, T .O. denotes a timeout (set to 300 seconds).

3.05

Tools can only be compared on situations where they compute the same results, we used PDL noT D to compare against ASPIC+, DEFT, and DeLP, and BDL to compare against Flora-2. Results indicate that ELDR outperforms existing tools on certain tests and gives the same results as the best tools on all other tests. These results are due to various factors: first, some tools were made as proofs of concept with no performance in mind, second, the used inference mechanism (resolution vs forward chaining), third, the number of generated arguments (e.g. if there is a rule application used in different arguments, SG evaluates only one statement for it, however other formalisms might evaluate it for each argument).

Labeling for Human Reasoning

We conclude the paper by a discussion on how the flexibility of SGs can allow to capture human reasoning. We focus in this paper on the suppression task [START_REF] Ruth | Suppressing valid inferences with conditionals[END_REF], a psychological study showing that people tend to change (suppress) previously drawn conclusions when additional information becomes available. The "modus-ponens suppression task" is explained in Example 9.

Example 9. Consider the following situation 1 [START_REF] Ruth | Suppressing valid inferences with conditionals[END_REF]: (1) "If Lisa has an essay to write, she will study late in the library".

(2) "Lisa has an essay to write".

-Will Lisa study late in the library? Most subjects (96%) conclude that she will study late in the library. However, if subjects receive an additional information (situation 2):

(3) "If the library stays open, she will study late in the library". Only a minority (38%) concludes she will study late in the library.

This study shows that, much like non-monotonic reasoning, conclusions can be suppressed in human reasoning in presence of additional information. To represent the situation in a logical form, a background knowledge rule stronger than (1) is added: "if the library does not stay open then Lisa will not study late in the library" as shown in Example 10.

Example 10. Consider a representation of Example 9 s.t.:

• "essay" denotes "She has an essay to write".

• "library" denotes "She will study late in the library".

• "open"denotes "Library stays open".

Let KB 1 = (F , R 1 , ∅) be the representation of situation 1:

• R 1 = {r d 1 : essay ⇒ library}. F = {⊤ ⇒ essay}.

Let KB 2 = (F , R 2 , ≻) be the representation of situation 2:

• R 2 = R 1 ∪ {r d 2 : open ⇒ library, r d 3 : open ⇒ library}. • r d 3 ≻ r d 1 .
Defeasible reasoning (in all its variants) cannot represent the suppression task as "library" is derivable and not defeasibly contested (i.e KB 1 ⊨ library and KB 2 ⊨ library). However, threevalued logics could model human reasoning [START_REF] Dietz | Modeling the suppression task under weak completion and well-founded semantics[END_REF][START_REF] Ragni | Formal Nonmonotonic Theories and Properties of Human Defeasible Reasoning[END_REF][START_REF] Stenning | Human reasoning and cognitive science[END_REF].

A possible explanation for the modus-ponens suppression effect is that humans consider as possibly valid unsupported counterarguments (attacks), they think that the library might be closed and therefore cannot conclude that Lisa will study in the library. Let us show in the reminder of the section how such reasoning behavior could be captured by the labeling function of the SGs. More precisely, this can be represented by a labeling function (denoted SUP) that considers UNSUP attack edges valid if superior to the support edges to make the statement AMBIG. Given an edge e, SUP(e) = SUP(Source(e)). Given a statement s: For IN de f we add extend (c) with the conditions (c.3) and (c.4) that for all attack edge e s.t. SUP(e) = UNSUP, if e attacks a premise then there must exist a support edge for that premise that is not inferior to e, and if e attacks the rule, then the rule must not be inferior to e. A statement is also AMBIG if there is a UNSUP attack on the premise that is superior to the support edge, or if it attacks the rule and is superior to it. Please note that we defined SUP using BDL but there is no proof that human use ambiguity blocking with team defeat. However we make this assumption for simplicity. A labeling function based on the same intuition as SUP but using ambiguity propagating (with or without team defeat) would also effectively model the modusponens suppression effect. Empirical data and more testing are needed to justify one or the other.

Last, let us note that while the suppression effect can occur either as a consequence of a suitable reasoning mechanism or due to specific logical representation of the situation [START_REF] Ragni | Formal Nonmonotonic Theories and Properties of Human Defeasible Reasoning[END_REF], we made sure to use the "plain" representation where only the background knowledge is added [START_REF] Ragni | Formal Nonmonotonic Theories and Properties of Human Defeasible Reasoning[END_REF]. Other representations can be used such as the "necessary condition" by using the rule "essay∧open ⇒ library" or the weak completion and adding an abnormality predicate [START_REF] Dietz | Modeling the suppression task under weak completion and well-founded semantics[END_REF].

DISCUSSION

In this paper we introduced a new argumentation-based formalism called Statement Graph that represents rule applications as "statements" with attack and support relations (i.e. edges) between them. By applying a flexible labeling function on edges, different variants of defeasible reasoning can be obtained (ambiguity propagating or blocking with or without team defeat). We evaluated our work by proposing the ELDR tool that implements SGs and not only covers gaps not addressed by the existing tools but it also has the same and sometimes better performance results. In future work we plan on studying if SGs can be used to represent other non-monotonic reasoning such as the selection task and other classes of defeasible reasoning logics ([START_REF] Billington | Propositional clausal defeasible logic[END_REF][START_REF] Maier | Well-founded semantics for defeasible logic[END_REF]).

Example 3 .дuilty {responsible} r d 3 {evidA} r d 1 {evidB} r d 2 {⊤}Figure 1 :

 3321 Figure 1: SG generated from KB in Example 1.

Example 4 .{responsible} r d 3 AMBIG {evidA} r d 1 IN d e f {evidB} r d 2 IN

 4312 Consider the SG in Example 3. Applying BDL labeling function results in Figure 2. In particular, the statement ({⊤}, ⊤ → evidA) is labeled IN st r because it has a complete IN st r support and a strict rule. The statement ({дuilty}, ∅) is labeled IN def because it has a defeasibly accepted complete support that is not challenged by a strictly or defeasibly accepted edge.

Figure 2 :

 2 Figure 2: Applying BDL on SG of Example 3.

 (a) PDL(s) = IN st r iff BDL(s) = IN st r . (b) PDL(s) = OUT st r iff BDL(s) = OUT st r . (d) PDL(s) = OUT de f iff BDL(s) = OUT de f . (f) PDL(s) = UNSUP iff BDL(s) = UNSUP. The only difference between ambiguity blocking (BDL) and ambiguity propagating (PDL) is that in the latter ambiguous attacks are taken into account and can make the statement ambiguous. This change only affects the labeling of IN de f and AMBIG. (c) PDL(s) = IN de f iff

 Rule(s) and Rule(s) ⊁ Rule(Source(e))) or (PDL(e) = AMBIG attacking the rule of s and Rule(s) ⊁ Rule(Source(e))).

Figure 3 :

 3 Figure 3: Applying PDL on SG of Example 3.

Figure 4 :

 4 Figure 4: SG BDL K B of Example 6.

(h)Example 7 .

 h7 BDL(s) = AMBIG if BDL(s) {IN st r , OUT st r , IN def , OUT def , AMBIG} and s is not part of a support cycle and is part of an attack cycle. Consider the following KB = (F , R, ∅) (and SG PDL K B

{layEддs, winдs} r d 1 AMBIG {reptile} r d 2 AMBIG{ f ur } r d 3 AMBIG{mammal } r d 3 AMBIGFigure 5 :

 12335 Figure 5: SG PDL K B of Example 7.

null 1)} r d 2 IN

 12

Figure 6 :

 6 Figure 6: SG BDL K B of Example 8.

 (a) SUP(s) = IN st r iff BDL(s) = IN st r . (b) SUP(s) = OUT st r iff BDL(s) = OUT st r . (d) SUP(s) = OUT de f iff BDL(s) = OUT de f . (f) SUP(s) = UNSUP iff BDL(s) = UNSUP.

 (c).3 and ∀e ∈ E -A (s) s.t SUP(e) = UNSUP and e undercuts s on f , ∃e s ∈ E - S (s) for f s.t. e s is not inferior to e.(c).4 and ∀e ∈ E -A (s) s.t. SUP(e) = UNSUP and e attacks the rule application of s, Rule(s) is either a strict rule or Rule(Source(e)) ⊁ Rule(s).

(e). 2 . 1 1 ⟨ 2 ⟨

 2112 either ∃f ∈ Premise(s) s.t. ∄e s ∈ E - S (s) for f s.t. SUP(e s) = IN st r and ∀e ′ s ∈ E - S (s) for f s.t. SUP(e ′ s) = IN def , ∃e ∈ E - A (s) attacking s on f s.t. either (SUP(e) = IN def and e is neither superior nor inferior to e ′ s) or (SUP(e) = UNSUP and e is superior to e ′ s). (e).2.2 or Rule(s) is not a strict rule and ∃e ∈ E - A (s) s.t. either (SUP(e) = INde f attacking the rule of s and (Rule(Source(e)) ⊁ Rule(s) and Rule(s) ⊁ Rule(Source(e))) or (SUP(e) = UNSUP attacking the rule of s and Rule(Source(e)) ⊁ Rule(s)). The SUP labeling function gives SG SUP K B (library, ∅)⟩ = IN def and SG SUP K B (library, ∅)⟩ = AMBIG (as shown in Figures7 and 8) which correctly models the modus ponens suppression effect.

Figure 7 Figure 8 :

 78 Figure 7: SG SUP K B 1 of Example 10.

 a statement s, if s is the Top statement (∅, ⊤) then BDL(s) = IN st r . Otherwise: (a) BDL(s) = IN st r if s has a IN st r complete support and Rule(s) is either ∅ or a strict rule, and ∄e ∈ E - A (s) s.t. BDL(e) = IN st r . A statement is labeled IN st r iff it is the top statement or if it has a complete strict support (i.e. there is a strict derivation for each of its premises), an empty or strict rule, and is not strictly attacked. IN st r .A statement is labeled OUT st r iff it is strictly attacked (i.e there is a strict derivation against its premises or rule).

(b) BDL(s) = OUT st r iff ∃e ∈ E - A (s) s.t. BDL(e) = (c) BDL(s) = IN de f iff BDL(s) {IN st

r , OUT st r } and s has a IN st r or IN de f complete support E s CS 1. and ∀e ∈ E - A (s) s.t BDL(e) = IN de f and e undercuts s, ∃e s ∈ E - S (s) s.t. e s defends against e. 2. and ∀e ∈ E - A (s) s.t. BDL(e) = IN de f and e attacks the rule application of s, Rule(s) is either a strict rule or Rule(s) ≻ Rule(Source(e)).

 Premise(s) where ∄e s ∈ E - S (s) for f s.t. BDL(e s) = IN st r and ∀e ′ s ∈ E - S (s) for f s.t. BDL(e ′ s) ∈ {IN def , AMBIG}, ∃e ∈ E - A (s) attacking s on f s.t. BDL(e) = IN def and e is superior to e ′ s . 2. or ∃e ∈ E - A (s) s.t. BDL(e) = IN de f attacking the rule of s and Rule(s) is not a strict rule and Rule(Source(e)) ≻ Rule(s).

d) BDL(s) = OUT de f iff BDL(s) OUT st r and s has an IN st r or IN de f complete support E s CS and 1. either ∃f ∈

 1. either s has an AMBIG complete support and no IN st r or IN def complete support. 2. or s has an IN st r or IN def complete support E s CS and 1. either ∃f ∈ Premise(s) s.t. ∄e s ∈ E - S (s) for f s.t. BDL(e s) = IN st r and ∀e ′ s ∈ E - S (s) for f s.t. BDL(e ′ s) = IN def , ∃e ∈ E - A (s) attacking s on f s.t. BDL(e) = IN def and e is neither superior nor inferior to e ′ s . 2. or ∃e ∈ E - A (s) s.t. BDL(e) = IN def attacking the rule of s and Rule(s) is not a strict rule and Rule(Source(e)) ⊁ Rule(s) and Rule(s) ⊁ Rule(Source(e)).

 f) BDL(s) = UNSUP if BDL(s) OUT st r and ∃f ∈ Premise(s) s.t. ∄e s ∈ E - S (s) where BDL(e s) ∈ {IN st r , IN def , AMBIG}. A statement is labeled UNSUP iff it is not strictly defeated and it has a premise that is not supported by a strictly accepted, defeasibly accepted, or ambiguous edge.

 =∈ {IN de f , AMBIG} and e attacks the rule application of s, Rule(s) is either a strict rule or Rule(s) ≻ Rule(Source(e)). BDL, a IN de f statement has to defend against defeasibly accepted attacks; in PDL it also has to defend against ambiguous ones. (e) PDL(s) = AMBIG iff PDL(s) {IN st r , OUT st r , OUT def } and 1. either s has an AMBIG complete support and no IN st r or IN de f complete support. 2. or s has a IN st r or IN de f complete support E s

	In CS and 1. either ∃f ∈ Premise(s) s.t. ∄e s ∈ E -S (s) for f s.t. PDL(e s) = IN st r and ∀e ′ s ∈ E -S (s) for f s.t. PDL(e ′ s) = IN def , ∃e ∈ E -

PDL(s) {IN st r , OUT st r } and s has a IN st r or IN de f complete support E s CS 1. and ∀e ∈ E - A (s) s.t PDL(e) ∈ {IN de f , AMBIG} and e undercuts s, ∃e s ∈ E - S (s) s.t. e s defends against e. 2. and ∀e ∈ E - A (s) s.t. BDL(e) A (s) attacking s on f s.t. either (PDL(e) = IN def and e is neither superior nor inferior to e ′ s) or (PDL(e) = AMBIG and e is not inferior to e ′ s). 2. or Rule(s) is not a strict rule and ∃e ∈ E - A (s) s.t. either (PDL(e) = IN de f attacking the rule of s and Rule(Source(e)) ⊁

 1 and ∀e ∈ E - A (s) s.t BDL noT D (e) = IN def and e undercuts s, ∃e s ∈ E s CS s.t. e s defends against e. For OUT def , an attack has to be superior to all supports: (d).1 either ∃f ∈ Premise(s) where ∄e s ∈ E - IN de f and ∀e ′ s ∈ E - S (s) for f s.t. BDL noT D (e ′ s) ∈ {IN def , AMBIG}, e is superior to e ′ s . For AMBIG, an attack has to be neither superior nor inferior to all supports: (e).1.1 either ∃f ∈ Premise(s) s.t. ∄e s ∈ E - S (s) for f s.t. BDL noT D (e s) = IN st r and ∃e ∈ E - A (s) attacking s on f s.t. BDL noT D (e) = IN de f and ∀e ′ s ∈ E - S (s) for f s.t. BDL noT D (e ′ s) = IN def , and e is neither superior nor inferior to e ′ s . As for ambiguity propagating without team defeat (denoted by PDL noT D) the same changes are done accordingly. The entailment equivalence is described in Proposition 3. Proposition 3. Let f be a literal in a defeasible KB:

S (s) for f s.t. BDL noT D (e s) = IN st r and ∃e ∈ E - A (s) attacking s on f s.t. BDL noT D (e) =

Table 2 :

 2 Execution time in seconds (selected results)

			Propagating without Team Defeat	Blocking with TD
	Theory						
			ELDR	ASPIC+	DEFT	DeLP	ELDR	Flora-2
	chain(n)	n = 500 n = 2000	0.39 1.93	58.52 ∞	0.33 1.86	64.26 T .O .	0.39 1.92	2.33 7.77
	cir cl e(n)	n = 500 n = 2000	1.15 3.92	∞ ∞	0.31 1.88	99.85 T .O .	1.14 3.93	2.42 7.84
	l evels(n)	n = 500 n = 2000	2.16 72.09	0.83 51.23	3.65 64.94	T .O . T .O .	2.41 75.14	53.94 T .O .
	t r ees(n)	n = 2 n = 5	0.06 0.07	0.04 ∞	0.01 1.32	253.38 T .O .	0.06 0.07	0.81 5.07
	t eams(n)	n = 2 n = 5	0.93 54.22	0.54 120.73	0.31 30.04	27.87 T .O .	0.66 2.36	0.59

Full proofs available at https://www.dropbox.com/s/n6k79oduzu5mzvf/proofs_sg.pdf

The minimal superset of the languages used in first order logic defeasible reasoning.

For ASPIC+ we used an implementation provided by the authors of the tool. For DeLP we used the implementation in Tweety1.7 libraries. For DEFT and Flora-2 we used their open source version.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the H2020 CORDIS NoAW project (project ID 688338).