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ABSTRACT
We propose Statement Graphs (SG), a new logical formalism for

defeasible reasoning based on argumentation. Using a flexible label-

ing function, SGs can capture the variants of defeasible reasoning

(ambiguity blocking or propagating, with or without team defeat,

and circular reasoning). We evaluate our approach with respect

to human reasoning and propose a working first order defeasible

reasoning tool that, compared to the state of the art, has richer

expressivity at no added computational cost. Such tool could be

of great practical use in decision making projects such as H2020

NoAW.
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1 INTRODUCTION
Defeasible reasoning [25] is used to evaluate claims or statements

in an inconsistent setting. It has been successfully applied in many

multi-agent domains such as legal reasoning [3], business rules [24],

contracting [17], planning [15], agent negotiations [12], inconsis-

tency management [23], etc. Defeasible reasoning can also be used

for reasoning with uncertain rules in food science. In the EU H2020

NoAW project we are interested in reasoning logically about how

to manage waste from wine by products. Such rules, elicited by ex-

perts, non experts, consumers etc via online surveys have to be put

together and used as a whole for decision making. Unfortunately,

there is no universally valid way to reason defeasibly. An inherent

characteristic of defeasible reasoning is its systematic reliance on a

set of intuitions and rules of thumb, which have been long debated

between logicians [1, 19, 22, 26]. For example, could an information

derived from a contested claim be used to contest another claim

(i.e. ambiguity handling)? Could “chains” of reasoning for the same

claim be combined to defend against challenging statements (i.e.

team defeat)? Is circular reasoning allowed? etc.

The main available
1
defeasible reasoning tools are ASPIC+ [27],

DEFT [18], DeLP [14], DR-DEVICE [5], and Flora-2 [31]. Table 1

shows that no tools can support all features.

Existing literature has established the link between argumenta-

tion and defeasible reasoning via grounded semantics [13, 28] and

1
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.

Table 1: Defeasible features supported by tools.
Tool Blocking Propagating Team Defeat No Team Defeat

ASPIC+ - ✓ - ✓

DEFT - ✓ - ✓

DeLP - ✓ - ✓

DR-DEVICE ✓ - ✓ -

Flora-2 ✓ - ✓ -

Dialectical Trees [14]. Such approaches only allow for ambiguity

propagation without team defeat [16, 26].

In this paper we propose a new logical formalism called State-
ment Graph (SGs) that captures all features showed in Table 1 via
a flexible labelling function. The SG can be seen as a generalisa-

tion of Abstract Dialectical Frameworks (ADF) [8] that enrich ADF

acceptance condition.

After introducing SGs in Section 3 we show in Section 4 how the

flexible labelling function of SG can capture ambiguity blocking

(Section 4.1), ambiguity propagating (Section 4.2), team defeat (Sec-

tion 4.3) and circular reasoning (Section 4.4). In Section 5 we evalu-

ate the practical applicability of SGs. We demonstrate (Section 5.2)

certain features of human reasoning empirically demonstrated by

psychologists. Furthermore, we provide a tool (Section 5.1) that

implements SGs and, despite its higher expressivity than the tools

in Table 1, performs better or equally good.

2 BACKGROUND NOTIONS
Language.We consider a propositional language of literals and the

connectives (∧,→,⇒,⇝). A literal is either an atom (an atomic

formula) or the complement of an atom. The complement of atom

f is denoted f . ⊤ and ⊥ are considered atoms. Given Φ a finite non-

empty conjunction of literals and a literalψ , a rule r is a formula

of the form Φ⇛ ψ such that⇛∈ {→,⇒,⇝}. We call Φ the body

of r denoted B(r ) andψ the head of r denotedH(r ). The set R of

rules is composed of:

(1) R→ the set of strict rules (of the form Φ → ψ ) expressing
undeniable implications i.e. if Φ then definitelyψ .

(2) R⇒ the set of defeasible rules (of the form Φ ⇒ ψ ) express-
ing a weaker implication i.e. if Φ then generallyψ .

(3) R⇝ the set of defeater rules (of the form Φ ⇝ ψ ) used to

prevent a complement of a conclusion i.e. if Φ thenψ should

not be concluded. It does not imply thatψ is concluded.

Given a literal f , the rule of the form ⊤ → f or ⊤ ⇒ f is called

a fact rule. A derivation for f is a sequence of strict and defeasible

rules that starts from a fact rule and end with a rule r ∈ R s.t.

H(r ) = f . A strict derivation contains only strict rules.

A defeasible knowledge base is a tuple KB = (F ,R, ≻) where

F is a set of fact rules, R is a set of strict, defeasible and defeater

rules, and ≻ is a superiority relation on R. A superiority relation is



an acyclic relation ≻ (i.e. the transitive closure of ≻ is irreflexive).

If r1 ≻ r2, then r1 is called superior to r2, and r2 inferior to r1. This
expresses that r1 may override r2. A query (also called claim) on a

knowledge base KB is a conjunction of literals.

Defeasible reasoning. To reason defeasibly about a conclusion,

all chains of rule applications (also called arguments) reaching that

conclusion must be evaluated along with any conflict (i.e. attack)

that arises from other chains of rules. This can be achieved using

two kinds of approaches: (1) approaches based on the evaluation

of arguments during their construction, such as defeasible logics

[6, 25] and (2) approaches using the idea of extensions, where

arguments are built then evaluated at a later stage; these encapsulate

argumentation-based techniques [13, 14].

An argument is a minimal sequence of rule applications from

a fact rule to a rule with a literal in its head called the conclusion

of that argument. An argument arд attacks another argument arд′

on a literal f if its conclusion is f and f is one of the literals that

appear in arд′. We say that arд defeats arд′ if the rule in arд gen-

erating f is not inferior to the rule in arд′ generating f .

Ambiguity Handling. A literal f is ambiguous if there is an

undefeated argument for f and another undefeated argument for

f and the superiority relation does not state which argument is

superior, as shown in Example 1.

Example 1. The following defeasible knowledge base KB = (F ,

R, ∅) describes a situation where a piece of evidence ‘A’ suggests that
a defendant is responsible while an evidence ‘B’ indicates that he is
not responsible; Both evidences are equally reliable. A defendant is
presumed not guilty unless responsibility has been proven:

• F = {⊤ ⇒ дuilty,⊤ → evidA,⊤ → evidB}
• R = {rd1 : evidA ⇒ responsible,

rd2 : evidB ⇒ responsible,
rd3 : responsible ⇒ дuilty}.

Evaluating the query q = дuilty (i.e. is the defendant not guilty?)
requires the construction of all arguments for and against this literal.

• arд1 = ⟨⊤ ⇒ дuilty⟩.
• arд2 = ⟨⊤ → evidA, evidA ⇒ responsible⟩.
• arд3 = ⟨⊤ → evidB, evidB ⇒ responsible⟩.
• arд4 = ⟨⊤ → evidA, rd1, responsible ⇒ дuilty⟩.

arд2 and arд3 attack and defeat each other as no argument is

superior to the other, therefore their conclusions “responsible” and

“responsible” are said to be ambiguous. In an ambiguity block-
ing setting (such as Nute’s defeasible logic [25]), the ambiguity

of “responsible” blocks (forbids) any ambiguity derived from it,

meaning that all arguments containing “responsible” cannot be
used to attack other arguments (they are considered as defeated).

Therefore arд1 is uncontested and the answer to q is ‘true’ (i.e.

KB ⊨block дuilty, where ⊨block denotes entailment in ambigu-

ity blocking).

On the other hand, in an ambiguity propagating setting (such

as grounded semantics and dialectical trees [16]), the ambiguity

of “responsible” is propagated to “дuilty” because “дuilty” can be

derived (arд4 is allowed to defeat arд1), hence, the answer to the

query q is ‘false’ (i.e. KB ⊭prop дuilty, where ⊨prop denotes

entailment in ambiguity propagating).

Ambiguity propagation results in fewer conclusions (as more

ambiguities are allowed) and may be preferable when the cost of an

incorrect conclusion is high.Ambiguity blockingmay be appropriate

in situations where contested claims cannot be used to contest other

claims (e.g. in the legal domain) [19].

Team Defeat. The absence of team defeat means that for an ar-

gument to be undefeated it has to single-handedly defeat all its

attackers, as shown in Example 2.

Example 2. Generally, animals do not fly unless they are birds.
Also, penguins do not fly except magical ones. ‘Tweety’ is an animal,
a bird, and a magical penguin. Can ‘Tweety’ fly? KB = (F ,R, ≻):

• F = {⊤ ⇒ animal,⊤ ⇒ bird ,⊤ ⇒penдuin,⊤ ⇒maдical}.
• R = {rd1 : animal ⇒ f ly, rd2 : bird ⇒ f ly,

rd3 : penдuin ⇒ f ly, rd4 :maдical ∧ penдuin ⇒ f ly}.
• (rd2 ≻ rd1), (rd4 ≻ rd3).

The query is q = f ly. In the absence of team defeat, the
answer to q is ‘false’ (i.e. KB ⊭noTD f ly, where ⊨noTD denotes

entailment in defeasible reasoning without team defeat) because

there is no chain of reasoning for “f ly” that can defend itself from

all attacks: even if rd2 defends itself from rd1 (because rd2 ≻ rd1),
it does not defend against rd3 (since rd2 ⊁ rd3), and the same

applies for rd4: it defends against rd3 but fails against rd1 because
rd4 ⊁ rd1. If team defeat is allowed then the answer to q is ‘true’
(i.e. KB ⊨TD f ly, where ⊨TD denotes entailment in defeasible

reasoning with team defeat) because all attacks are defeated: rd1 is
defeated by rd2 (rd2 ≻ rd1) and rd3 is defeated by rd4 (rd4 ≻ rd3).
Argumentation-based techniques for defeasible reasoning do not

allow for team defeat, whereas defeasible logics do [2, 26].

3 THE STATEMENT GRAPH
A Statement Graph (SG) can be seen as a graph representation of

the reasoning process happening inside a knowledge base. It is built

using logical building blocks (called statements) that describe a

situation (premises) and a rule that can be applied on that situation.

Definition 1 (Statement). A statement is a tuple s = (Φ, r )
where Φ is a (possibly empty) set of literals (called premises) and
r ∈ R ∪ {⊤} ∪ {∅} is either a rule, the Top literal or an empty set. A
statement can be of three types:

(1) A ‘claim statement’ for a claim C of the form (C, ∅).
(2) A ‘Top statement’ of the form (∅,⊤).
(3) A ‘rule application statement’ of the form (Φ, r ) such that

B(r ) = Φ.
We denote by Rule(s) = r and Premise(s) = Φ the rule and premises
of a statement s respectively.

A statement s1 can attack (or support) a statement s2 if it provides
a justification against (or for) the premises of s2.

Definition 2 (Attack and Support). Given two statements
s1 = (Φ1, r1) and s2 = (Φ2, r2):

• s1 supports s2 iff: ∃f ∈ Φ2 s.t. H(r1) = f and r1 < R⇝. (we
say that s1 supports s2 on f ).

• s1 attacks s2 iff:



(1) Either ∃f ∈ Φ2 s.t. H(r1) = f and r1 < R⇝. (we say that
s1 undercuts s2 on f ).

(2) Or r1 ∈ R⇝ and H(r1) = H(r2) (we say that s1 attacks
the rule application of s2).

Statements are generated from a knowledge base, they can be

structured in a graph according to the support and attack relations

they have between each other.

Definition 3 (Statement Graph). A Statement Graph of the
knowledge base KB is a directed graph SG

KB
= (V, EA, ES ):

• V is the set of statements generated from KB.
• ES ⊆ V × V is the set of support edges. There is a support
edge e = (s1, s2) ∈ ES iff s1 supports s2.

• EA ⊆ V ×V is the set of attack edges. There is an attack edge
e = (s1, s2) ∈ EA iff the statement s1 attacks s2.

For an edge e = (s1, s2), we denote s1 by Source(e) and s2 byTarдet(e).
For a statement swe denote its incoming attack edges byE−

A(s)={e ∈

EA |Tarдet(e) = s} and its incoming support edges by E−
S (s)={e ∈

ES |Tarдet(e) = s}. We also denote its outgoing attack edges by
E+A(s)={e ∈ EA |Source(e) = s} and outgoing support edges by
E+S (s)={e ∈ ES |Source(e)=s}.

An SG can be constructed in two ways, either by generating all

possible statements in a knowledge base then adding the attack and

support edges (in order to have a general overview of the knowl-

edge base), or by starting from a specific statement and generating

recursively all statements that support or attack it until no other

statement can be generated, as shown in Example 3.

Example 3. Consider the knowledge base in Example 1. A SG
for the claim statements ({дuilty}, ∅) and ({дuilty}, ∅) is shown in
Figure 1 (support edges depicted by dashed arrows).

{дuilty} ∅ {дuilty} ∅

{⊤} ⊤ ⇒ дuilty {responsible} rd3

{evidA} rd1 {evidB} rd2

{⊤} ⊤ → evidA {⊤} ⊤ → evidB

∅ ⊤

Figure 1: SG generated from KB in Example 1.

An SG provides statements and edges with a label using a la-
beling function that starts from the Top statement and propagates

labels to the other statements. Query answering can then be deter-

mined based on the label of the claim statement for a query. This

can be seen as a logic-based instantiation of ADFs (Abstract Dialec-

tical Frameworks) [8] but rather than using a boolean acceptance

condition, SG uses a labeling function.

Definition 4 (Labeling Function). A labeling function applied
to a statement graph is a function St : V ∪ EA ∪ ES → Label
that takes as input a statement s ∈ V or an edge e ∈ EA ∪ ES and
returns a label in Label = {INstr , INdef , OUTstr , OUTdef , AMBIG,
UNSUP}.

The intuition behind these labels is as follows:

• INstr indicates that the statement is accepted and its rule

can be strictly applied based on strictly accepted premises.

• INdef indicates that the statement is accepted and its rule can

be defeasibly applied based on strictly or defeasibly accepted

premises.

• OUTstr and OUTdef indicate that the statement is not ac-

cepted because its rule or premises have been strictly or

defeasibly defeated respectively.

• AMBIG indicates that the statement’s rule or premises are

challenged and the superiority relation cannot be used to

determine if it is accepted or not.

• UNSUP indicates that the statement’s premises are not sup-

ported by facts.

A statement is given a label based on its incoming edges and

their labels. The notion of complete support describes the situation
where a statement has a support edge for each one of its premises.

Definition 5 (Complete Support). A complete support for a
statement s is a set of support edges denoted Es

CS such that:
• ∀f ∈ Premise(s), ∃e ∈ Es

CS s.t. Source(e) supports s on f .
• ∄S ′ s.t. S ′ ⊂ Es

CS and S ′ is a complete support for s. (mini-
mality w.r.t. set inclusion).

Given a complete support Es
CS :

• Es
CS is called “INstr complete support” iff ∀e ∈ Es

CS ,

St(e) = INstr .

• Es
CS is called “INdef complete support” iff it is not a INstr

complete support, and ∀e ∈ Es
CS , St(e) ∈ {INstr , INdef }.

• Es
CS is called “AMBIG complete support” iff it is not a

INstr or INdef complete support, and ∀e ∈ Es
CS , St(e) ∈

{INstr , INdef ,AMBIG}.

We say that an edge e is superior to another edge e′ and that e′

is inferior to e iff Rule(Source(e)) ≻ Rule(Source(e′)), and we say

that a support edge esup defends against an attack edge eatt iff
esup is supporting the literal attacked by eatt and:

(1) Either esup is labeled INstr .

(2) Or esup is labeled INdef and esup is superior to eatt (i.e.

Rule(Source(esup )) ≻ Rule(Source(eatt ))).

Let us conclude this section by explaining how the SG is built

from a propositional knowledge base. The nodes correspond to

each of the rules in the knowledge base. The edges are constructed

in a bottom up manner starting from the fact rules. The next sec-

tion presents reasoning and labeling functions and how cycles are

prevented.

4 STATEMENT GRAPH REASONING
Statement Graphs are flexible enough to represent all variants of

defeasible reasoning depicted in Table 1. This flexibility is due

to the labeling function that evaluates all supports and attacks

for a specific rule application step. In the next section we first



explain how SGs capture basic defeasible reasoning with ambiguity

blocking, team defeat, and without cycles.

4.1 Labeling for Ambiguity Blocking
In SGs ambiguity blocking means that all ambiguous attack edges

can be discarded and not taken into account. Team defeat means

that a statement survives as long as the edges attacking it are

defeated by its support edges. We use the labeling function ‘BDL’
(Blocking Defeasible Logic) to obtain entailment results equivalent

to Billington’s defeasible logic [6] (i.e. defeasible reasoning with

ambiguity blocking, team defeat and without cycles). BDL is defined

as follows: edges are given the same label as their source statements

(i.e. given an edge e , BDL(e) = BDL(Source(e)). Given a statement

s, if s is the Top statement (∅,⊤) then BDL(s) = INstr . Otherwise:
(a) BDL(s) = INstr if s has a INstr complete support and Rule(s)

is either ∅ or a strict rule, and ∄e ∈ E−
A(s) s.t. BDL(e) = INstr .

A statement is labeled INstr iff it is the top statement or if it has a

complete strict support (i.e. there is a strict derivation for each of

its premises), an empty or strict rule, and is not strictly attacked.

(b) BDL(s) = OUTstr iff ∃e ∈ E−
A(s) s.t. BDL(e) = INstr .

A statement is labeled OUTstr iff it is strictly attacked (i.e there is

a strict derivation against its premises or rule).

(c) BDL(s) = INdef iff BDL(s) < {INstr ,OUTstr } and s has a
INstr or INdef complete support Es

CS
1. and ∀e ∈ E−

A(s) s.t BDL(e) = INdef and e undercuts s,
∃es ∈ E−

S (s) s.t. es defends against e.
2. and ∀e ∈ E−

A(s) s.t. BDL(e) = INdef and e attacks the rule
application of s, Rule(s) is either a strict rule or Rule(s) ≻
Rule(Source(e)).

A statement is labeled INdef iff it is not strictly accepted or

strictly defeated and it has a strict or defeasibly accepted complete

support (i.e. there is a strict or defeasibly accepted derivation for

each of its premises) and (c.1.) for all defeasibly accepted attacks it

receives, it has a superior edge that defeats it (this condition allows

for team defeat since a support edge does not have to defeat all

attacks by itself) and (c.2.) the statement rule is either a strict rule

or is superior to any defeasibly applicable rule attacking it.

(d) BDL(s) = OUTdef iff BDL(s) , OUTstr and s has an INstr
or INdef complete support Es

CS and
1. either∃f ∈ Premise(s)where∄es ∈ E−

S (s) for f s.t. BDL(es) =
INstr and∀e′s ∈ E−

S (s) for f s.t. BDL(e
′
s) ∈ {INdef ,AMBIG},

∃e ∈ E−
A(s) attacking s on f s.t. BDL(e) = INdef and e is

superior to e′s.
2. or ∃e ∈ E−

A(s) s.t. BDL(e) = INdef attacking the rule of
s and Rule(s) is not a strict rule and Rule(Source(e)) ≻

Rule(s).
A statement is labeled OUTdef iff it is not strictly defeated and

it has a strict or defeasibly accepted complete support and either

(d.1.) one of its premises is not strictly supported and for all its

defeasibly accepted or ambiguous support edges, there exists a

defeasibly accepted attack edge that is superior to it (this condition

allows for team defeat as an attack edge does not have to defeat all

supports by itself). Or (d.2.) the statement’s rule is not strict and

there is a defeasibly accepted edge with a superior rule attacking it.

(e) BDL(s) = AMBIG if BDL(s)<{INstr , OUTstr , OUTdef } and

1. either s has an AMBIG complete support and no INstr or
INdef complete support.

2. or s has an INstr or INdef complete support Es
CS and

1. either ∃f ∈ Premise(s) s.t. ∄es ∈ E−
S (s) for f s.t. BDL(es)

= INstr and ∀e′s ∈ E−
S (s) for f s.t. BDL(e′s) = INdef ,

∃e ∈ E−
A(s) attacking s on f s.t. BDL(e) = INdef and e is

neither superior nor inferior to e′s.
2. or ∃e ∈ E−

A(s) s.t. BDL(e) = INdef attacking the rule of
s and Rule(s) is not a strict rule and Rule(Source(e)) ⊁
Rule(s) and Rule(s) ⊁ Rule(Source(e)).

A statement is labeled AMBIG if it is not strictly accepted or strictly

or defeasibly defeated and it either (e.1.) has an ambiguous complete

support and no strict or defeasibly accepted complete support, or

(e.2.) has a strict or defeasibly accepted complete support and either

(e.2.1.) one of its premises is not strictly supported and for all its

defeasibly accepted support edges, there exists a defeasibly accepted

attack edge that is neither superior nor inferior to it, or (e.2.2) the

statement’s rule is not strict and is defeasibly attacked by an edge

with neither a superior nor an inferior rule.

(f) BDL(s) = UNSUP if BDL(s) , OUTstr and ∃f ∈ Premise(s)
s.t. ∄es ∈ E−

S (s) where BDL(es) ∈ {INstr , INdef , AMBIG}.
A statement is labeled UNSUP iff it is not strictly defeated and it

has a premise that is not supported by a strictly accepted, defeasibly

accepted, or ambiguous edge.

Example 4. Consider the SG in Example 3. Applying BDL labeling
function results in Figure 2. In particular, the statement ({⊤},⊤ →

evidA) is labeled INstr because it has a complete INstr support and
a strict rule. The statement ({дuilty}, ∅) is labeled INdef because it
has a defeasibly accepted complete support that is not challenged by
a strictly or defeasibly accepted edge.

{дuilty} ∅

I
N
d
e
f

{дuilty} ∅

A
M
B
I
G
{⊤} ⊤ ⇒ дuilty

I
N
d
e
f

{responsible} rd3

A
M
B
I
G

{evidA} rd1

I
N
d
e
f

{evidB} rd2

I
N
d
e
f

{⊤} ⊤ → evidA

I
N
st
r

{⊤} ⊤ → evidB

I
N
st
r

∅ ⊤

I
N
st
r

INstrINstr

INstr

INstr INstr

INdef
INdef

AMBIG

AMBIG

INdef INdef

Figure 2: Applying BDL on SG of Example 3.

SGBDL

KB
denotes an SG that uses the BDL labeling function, and

SGBDL

KB
⟨s⟩ denotes the label of a statement s.

Lemma 4.1 (BDL is a function).
2 All statement in a knowledge

base KB have exactly one label in SGBDL
KB

.

2
Full proofs available at https://www.dropbox.com/s/n6k79oduzu5mzvf/proofs_sg.pdf

https://www.dropbox.com/s/n6k79oduzu5mzvf/proofs_sg.pdf


The equivalence between BDL and reasoning with ambiguity

blocking and team defeat is shown in Proposition 1.

Proposition 1. Let f be a literal in a defeasible KB:
(1) KB ⊨TDblock f iff SGBDL

KB
⟨({ f }, ∅)⟩ ∈ {INstr , INdef }.

(2) KB ⊭TDblock f iff SGBDL
KB

⟨({ f }, ∅)⟩ ∈ {OUTstr , OUTdef ,
UNSUP}.

Sketch. Proof using the formalization of ambiguity blocking

with team defeat shown in [2, 6]. (See Footnote 2) □

4.2 Labeling for Ambiguity Propagation
Defeasible reasoning via structured argumentation such as ASPIC+

with grounded semantics [27] yields the same entailment results

as defeasible reasoning with ambiguity propagation and no team

defeat [16]. The intuition behind ambiguity propagation is to reject

a literal if there is an argument attacking it (whether it relies on

ambiguous literals or not) and is not inferior to it.

From an SG point of view, ambiguity propagating means that

ambiguous attack edges are considered valid attacks that make the

statement ambiguous if it cannot defend against them.

We use the labeling function ‘PDL’ (Propagating Defeasible

Logic) to obtain entailment results equivalent to defeasible rea-

soning with ambiguity propagating, team defeat and without cycles

[2]. PDL is defined the same as BDL except for the definition of

INdef and AMBIG labels. Edges are given the same label as their

source statements (i.e. given an edge e , PDL(e) = PDL(Source(e))
and given a statement s:

(a) PDL(s) = INstr iff BDL(s) = INstr .
(b) PDL(s) = OUTstr iff BDL(s) = OUTstr .
(d) PDL(s) = OUTdef iff BDL(s) = OUTdef .
(f) PDL(s) = UNSUP iff BDL(s) = UNSUP.
The only difference between ambiguity blocking (BDL) and am-

biguity propagating (PDL) is that in the latter ambiguous attacks

are taken into account and can make the statement ambiguous.

This change only affects the labeling of INdef and AMBIG.

(c) PDL(s) = INdef iff PDL(s) < {INstr ,OUTstr } and s has a
INstr or INdef complete support Es

CS
1. and ∀e ∈ E−

A(s) s.t PDL(e) ∈ {INdef ,AMBIG} and e under-
cuts s, ∃es ∈ E−

S (s) s.t. es defends against e.
2. and ∀e ∈ E−

A(s) s.t. BDL(e) =∈ {INdef ,AMBIG} and e
attacks the rule application of s, Rule(s) is either a strict
rule or Rule(s) ≻ Rule(Source(e)).

In BDL, a INdef statement has to defend against defeasibly accepted

attacks; in PDL it also has to defend against ambiguous ones.

(e) PDL(s) = AMBIG iff PDL(s)<{INstr , OUTstr , OUTdef } and
1. either s has an AMBIG complete support and no INstr or

INdef complete support.
2. or s has a INstr or INdef complete support Es

CS and
1. either ∃f ∈ Premise(s) s.t. ∄es ∈ E−

S (s) for f s.t. PDL(es)
= INstr and ∀e′s ∈ E−

S (s) for f s.t. PDL(e′s) = INdef ,
∃e ∈ E−

A(s) attacking s on f s.t. either ( PDL(e) = INdef
and e is neither superior nor inferior to e′s) or (PDL(e)
= AMBIG and e is not inferior to e′s).

2. or Rule(s) is not a strict rule and ∃e ∈ E−
A(s) s.t. either

(PDL(e) = INdef attacking the rule of s andRule(Source(e)) ⊁

Rule(s) and Rule(s) ⊁ Rule(Source(e))) or (PDL(e) =
AMBIG attacking the rule of s andRule(s) ⊁ Rule(Source(e))).

In PDL, a statement is also labeled AMBIG if it is attacked on its

premises or rule by an ambiguous edge that is not inferior.

Example 5. Consider the SG in Example 3. Applying PDL labeling
function results in Figure 3. In particular, the statement ({дuilty}, ∅)
is labeled AMBIG because it has a defeasibly accepted support edge
that is not superior to the ambiguous attack edge.
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Figure 3: Applying PDL on SG of Example 3.

The equivalence between PDL and reasoning with ambiguity

propagating and team defeat is shown in Proposition 2.

Proposition 2. Let f be a literal in a defeasible KB:
(1) KB ⊨TDprop f iff SGPDL

KB
⟨({ f }, ∅)⟩ ∈ {INstr , INdef }.

(2) KB ⊭TDprop f iff SGPDL
KB

⟨({ f }, ∅)⟩ ∈ {OUTstr , OUTdef ,
UNSUP}.

4.3 Labeling without Team Defeat
An inherent characteristic of defeasible reasoning is its systematic

reliance on a set of intuitions and rules of thumb, which have been

longly debated between logicians [1, 19, 22, 26]. Team defeat (also

called direct reinstatement) is not an exception. Some defeasible

reasoning techniques -such as argumentation-based ones- do not

allow for team defeat, they consider that for an argument to be

accepted, it has to defend itself, alone, against all its direct surviving

attacks.

From SG’s perspective, forbidding team defeat means that a

support edge has to defend itself from all attacks. We denote the

labeling function for ambiguity blocking without team defeat by

BDLnoTD which is almost the same as BDL except that rather

than considering all support edges, we only consider those in the

complete support. For INdef , condition (c.1) is changed to:

(c).1 and ∀e ∈ E−
A(s) s.t BDLnoTD (e) = INdef and e undercuts s,

∃es ∈ Es
CS s.t. es defends against e.

For OUTdef , an attack has to be superior to all supports:

(d).1 either∃f ∈ Premise(s)where∄es ∈ E−
S (s) for f s.t. BDLnoTD (es) =

INstr and ∃e ∈ E−
A(s) attacking s on f s.t. BDLnoTD (e)



= INdef and ∀e′s ∈ E−
S (s) for f s.t. BDLnoTD (e′s) ∈ {INdef ,

AMBIG}, e is superior to e′s.

For AMBIG, an attack has to be neither superior nor inferior to

all supports:

(e).1.1 either∃f ∈ Premise(s) s.t. ∄es ∈ E−
S (s) for f s.t. BDLnoTD (es)

= INstr and ∃e ∈ E−
A(s) attacking s on f s.t. BDLnoTD (e)

= INdef and ∀e′s ∈ E−
S (s) for f s.t. BDLnoTD (e′s) = INdef ,

and e is neither superior nor inferior to e′s.

As for ambiguity propagating without team defeat (denoted by

PDLnoTD ) the same changes are done accordingly. The entailment

equivalence is described in Proposition 3.

Proposition 3. Let f be a literal in a defeasible KB:

(1) KB ⊨noTDblock f iff SGBDLnoTD
KB

⟨({ f }, ∅)⟩ ∈ {INstr , INdef }.

(2) KB ⊭noTDblock f iff SGBDLnoTD
KB

⟨({ f }, ∅)⟩ ∈ {OUTstr ,OUTdef ,
UNSUP}.

(3) KB ⊨noTDprop f iff SGPDLnoTD
KB

⟨({ f }, ∅)⟩ ∈ {INstr , INdef }.

(4) KB ⊭noTDprop f iff SGPDLnoTD
KB

⟨({ f }, ∅)⟩ ∈ {OUTstr ,OUTdef ,
UNSUP}.

4.4 Circular Reasoning and Attack Cycles
The first formalisms of defeasible reasoning [2, 6, 25] did not take

cycles into account and would loop infinitely and fail to draw rea-

sonable conclusions in some cases [21]. There are two types of

cycles, circular reasoning (a.k.a. positive loops [7]) where cycles

are due to rule applications (in SGs the cycle would only contain

support edges), and cyclic attacks (a.k.a. negative loops [7]) where

the cycles are due to conflicting rules (these cycles contain attack

and possibly support edges). Failure-by-looping is a mechanism to

avoid drawing unreasonable conclusions in presence of cycles [21].

Circular reasoning cycle is a sequence of unlabeled edges ⟨e0, . . . , en⟩
where ei ∈ ES and Source(e0) = Tarдet(ei ). If all statements in the

cycle cannot be labeled by taking into account other edges outside

this cycle then these statements are labeled UNSUP, as described in

the following Example 6. Formally, (for all labeling functions, not

only BDL):

(g) BDL(s) = UNSUP if BDL(s) < {INstr ,OUTstr , INdef ,OUTdef ,
AMBIG} and s is part of a support cycle.

Example 6. Consider the following KB = (F ,R, ∅) (and SGBDL
KB

in Figure 4) representing the knowledge that a defendant is responsible
iff he is guilty, he is presumed not guilty unless responsibility is proven,
and there is no proof for or against his responsibility.

• F = {⊤ ⇒ дuilty}
• R = {rd1 : responsible ⇒ дuilty, rd2 : дuilty ⇒ responsible}.

The query ‘is the defendant not guilty?’ cannot be answered without
failure-by-looping. The defendant is not guilty (i.e. SGBDL

KB
⟨(дuilty, ∅)⟩ =

INdef therefore KB ⊨block дuilty).
Attack cycle is a sequence of unlabeled edges ⟨e0, . . . , en⟩ where
ei ∈ EA ∪ ES and Source(e0) = Tarдet(ei ). If all statements in the

cycle cannot be labeled using edges outside this cycle then these

statements are labeled AMBIG, as described in Example 7. Formally:
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Figure 4: SGBDL
KB

of Example 6.

(h) BDL(s) = AMBIG if BDL(s) < {INstr ,OUTstr , INdef ,OUTdef ,
AMBIG} and s is not part of a support cycle and is part of an
attack cycle.

Example 7. Consider the following KB = (F ,R, ∅) (and SGPDL
KB

in Figure 5) that represents a process of deciding if the Platypus is a
reptile. The rules are (all defeasible): If it lays eggs and does not have
wings then it is a reptile. If it is a reptile then it does not have fur. If it
has fur then it is a mammal. If it is a mammal then it does not lay
eggs. The Platypus lays eggs, has fur, and does not have wings.

• F = {⊤ ⇒ layEддs,⊤ ⇒ winдs,⊤ ⇒ f ur }

• R = {rd1 : layEддs ∧winдs ⇒ reptile, rd2 : reptile ⇒ f ur ,

rd3 : f ur ⇒mammal, rd4 :mammal ⇒ layEддs}.
The answer to the query ‘is the Platypus a reptile?’ is ‘false’ (i.e.
SGPDL

KB
⟨(reptile, ∅)⟩ = AMBIG therefore KB ⊭prop reptile).
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Figure 5: SGPDL
KB

of Example 7.

Circular reasoning is avoided by argumentation approaches as

all constructed arguments start from ⊤ while attack cycles are

handled inherently by grounded semantics and dialectical trees.

Propositions 1, 2, and 3 still hold with failure-by-looping.

5 EVALUATION
5.1 Defeasible Reasoning Tool
While defeasible reasoning has been applied in various domains,

available tools lack many functionalities. For example there are

no first order tool that provide ambiguity propagating with team

defeat (cf. Table 1). In order to expand the usability and appeal of

defeasible reasoning, we propose an implementation of Statement

Graph called ELDR (Existential Logic for Defeasible Reasoning)

that provides defeasible reasoning with first order existential rules
3
,

3
The minimal superset of the languages used in first order logic defeasible reasoning.



ambiguity blocking or propagating, with or without team defeat,

and with failure-by-looping.

Existential rules (∃-rules) [10] are built with (∃,∀) quantifiers, the
connectors (→,⇒,⇝) and conjunction (∧). An atom is of the form

p(t1, · · · , tk ) and its complement is of the form p(t1, · · · , tk ), where
p is a predicate and ti are variables (denoted by uppercase) or con-

stants (denoted by lowercase or nulls). A rule r is a formula of the

form ∀ ®X , ®Y
(
B( ®X , ®Y ) ⇛ ∃ ®Z H( ®X , ®Z )

)
such that⇛∈ {→,⇒,⇝},

where ®X , ®Y are tuples of variables, ®Z is a tuple of existential variables,
and B, H are finite non-empty conjunctions of atoms. To generate

the statements we restrict rules to the FES (Finite Expansion Set)

fragment [4] which are guaranteed to stop in forward chaining. We

use skolemisation in order to ground the rule applications with exis-

tentials. A statement is composed of ground atoms (atoms without

variables) and a rule as shown in Example 8.

Example 8. The followingKB = (F ,R, ∅) (and SGBDL
KB

in Figure
6) of an animal shelter describes the process of deciding if a found
animal is a stray or not. An animal is assumed to be a stray unless
proven otherwise. Generally, if an animal has a collar then it has an
owner and if it has an owner then it is not a stray. An animal called
‘dogo’ with a collar is found alone, is it a stray?

• F = {⊤ ⇒ stray(doдo),⊤ → hasCollar (doдo)}
• R = {rd1 : ∀X hasCollar (X ) ⇒ ∃Y hasOwner (X ,Y ),

rd2 : ∀X hasOwner (X ,Y ) ⇒ stray(X )}.
The answer to ‘is ‘dogo’ a stray is ‘false’ (i.e.KB ⊭block stray(doдo)
since SGBDL

KB
⟨(stray(doдo), ∅)⟩ = AMBIG).
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KB

of Example 8.

Tools and Performance. The main reasoning tools considered

are ASPIC+ [27], DEFT [18], DeLP [14] and Flora-2 [31]. Table 1 (cf.

Section 1) shows which variants of defeasible reasoning these tools

support compared to ELDR that handles them all. Except for DEFT

none supports FES rules.

Handling more variants of defeasible reasoning is a desirable

feature as long as performance does not significantly suffer. We

conducted an empirical evaluation of ELDR in order to measure

its performance w.r.t. the available implementations of first order

defeasible reasoning tools
4
. The experiments are built upon a pre-

established defeasible reasoning benchmark proposed in [20]. The

4
For ASPIC+ we used an implementation provided by the authors of the tool. For DeLP

we used the implementation in Tweety1.7 libraries. For DEFT and Flora-2 we used

their open source version.

benchmark we consider is composed of 5 parameterized knowledge

bases (also known as theories): Chain Theory tests performance

when faced with a simple chain of rules; Circle Theory tests in-

finite loops (cycles); Trees Theories test a large number of argu-

ments with small derivations; Levels Theory tests performance

for ambiguity blocking or propagating; and Teams Theory tests

performance w.r.t. a sizeable number of conflicts when team defeat

is allowed or not. Table 2 presents the time (in CPU seconds) for

each tool to answer the query of each theory. ∞ denotes a stack

overflow, T .O . denotes a timeout (set to 300 seconds).

Table 2: Execution time in seconds (selected results)

Theory

Propagating without Team Defeat Blocking with TD

ELDR ASPIC+ DEFT DeLP ELDR Flora-2

chain(n)
n = 500 0.39 58.52 0.33 64.26 0.39 2.33

n = 2000 1.93 ∞ 1.86 T .O . 1.92 7.77

circle(n)
n = 500 1.15 ∞ 0.31 99.85 1.14 2.42

n = 2000 3.92 ∞ 1.88 T .O . 3.93 7.84

levels(n)
n = 500 2.16 0.83 3.65 T .O . 2.41 53.94

n = 2000 72.09 51.23 64.94 T .O . 75.14 T .O .

tr ees(n)
n = 2 0.06 0.04 0.01 253.38 0.06 0.81

n = 5 0.07 ∞ 1.32 T .O . 0.07 5.07

teams(n)
n = 2 0.93 0.54 0.31 27.87 0.66 0.59

n = 5 54.22 120.73 30.04 T .O . 2.36 3.05

Tools can only be compared on situations where they compute

the same results, we used PDLnoTD to compare against ASPIC+,

DEFT, and DeLP, and BDL to compare against Flora-2. Results

indicate that ELDR outperforms existing tools on certain tests and

gives the same results as the best tools on all other tests. These

results are due to various factors: first, some tools were made as

proofs of concept with no performance in mind, second, the used

inference mechanism (resolution vs forward chaining), third, the

number of generated arguments (e.g. if there is a rule application

used in different arguments, SG evaluates only one statement for it,

however other formalisms might evaluate it for each argument).

5.2 Labeling for Human Reasoning
We conclude the paper by a discussion on how the flexibility of SGs

can allow to capture human reasoning. We focus in this paper on

the suppression task [9], a psychological study showing that peo-

ple tend to change (suppress) previously drawn conclusions when

additional information becomes available. The “modus-ponens
suppression task” is explained in Example 9.

Example 9. Consider the following situation 1 [9]:
(1) “If Lisa has an essay to write, she will study late in the library”.
(2) “Lisa has an essay to write”.
- Will Lisa study late in the library?

Most subjects (96%) conclude that she will study late in the library.
However, if subjects receive an additional information (situation 2):

(3) “If the library stays open, she will study late in the library”.
Only a minority (38%) concludes she will study late in the library.

This study shows that, much like non-monotonic reasoning,

conclusions can be suppressed in human reasoning in presence of

additional information. To represent the situation in a logical form,

a background knowledge rule stronger than (1) is added: “if the



library does not stay open then Lisa will not study late in the library”
as shown in Example 10.

Example 10. Consider a representation of Example 9 s.t.:

• “essay” denotes “She has an essay to write”.
• “library” denotes “She will study late in the library”.
• “open”denotes “Library stays open”.

Let KB1 = (F ,R1, ∅) be the representation of situation 1:

• R1 = {rd1 : essay ⇒ library}. F = {⊤ ⇒ essay}.

Let KB2 = (F ,R2, ≻) be the representation of situation 2:

• R2 = R1 ∪ {rd2 : open ⇒ library, rd3 : open ⇒ library}.
• rd3 ≻ rd1.

Defeasible reasoning (in all its variants) cannot represent the
suppression task as “library” is derivable and not defeasibly con-

tested (i.e KB1 ⊨ library and KB2 ⊨ library). However, three-
valued logics could model human reasoning [11, 29, 30].

A possible explanation for the modus-ponens suppression effect

is that humans consider as possibly valid unsupported counter-

arguments (attacks), they think that the library might be closed

and therefore cannot conclude that Lisa will study in the library.

Let us show in the reminder of the section how such reasoning

behavior could be captured by the labeling function of the SGs.More

precisely, this can be represented by a labeling function (denoted

SUP) that considers UNSUP attack edges valid if superior to the

support edges to make the statement AMBIG. Given an edge e ,
SUP(e) = SUP(Source(e)). Given a statement s:

(a) SUP(s) = INstr iff BDL(s) = INstr .
(b) SUP(s) = OUTstr iff BDL(s) = OUTstr .
(d) SUP(s) = OUTdef iff BDL(s) = OUTdef .
(f) SUP(s) = UNSUP iff BDL(s) = UNSUP.

For INdef we add extend (c) with the conditions (c.3) and (c.4)

that for all attack edge e s.t. SUP(e) = UNSUP, if e attacks a premise

then there must exist a support edge for that premise that is not

inferior to e, and if e attacks the rule, then the rule must not be

inferior to e.

(c).3 and ∀e ∈ E−
A(s) s.t SUP(e) = UNSUP and e undercuts s on f ,

∃es ∈ E−
S (s) for f s.t. es is not inferior to e.

(c).4 and ∀e ∈ E−
A(s) s.t. SUP(e) = UNSUP and e attacks the rule ap-

plication of s,Rule(s) is either a strict rule orRule(Source(e)) ⊁
Rule(s).

A statement is also AMBIG if there is a UNSUP attack on the

premise that is superior to the support edge, or if it attacks the rule

and is superior to it.

(e).2.1 either ∃f ∈ Premise(s) s.t. ∄es ∈ E−
S (s) for f s.t. SUP(es)

= INstr and ∀e′s ∈ E−
S (s) for f s.t. SUP(e′s) = INdef , ∃e ∈

E−
A(s) attacking s on f s.t. either (SUP(e) = INdef and e is

neither superior nor inferior to e′s) or (SUP(e) = UNSUP and e
is superior to e′s).

(e).2.2 orRule(s) is not a strict rule and∃e ∈ E−
A(s) s.t. either (SUP(e) =

INdef attacking the rule of s and (Rule(Source(e)) ⊁ Rule(s)
and Rule(s) ⊁ Rule(Source(e))) or (SUP(e) = UNSUP attack-
ing the rule of s and Rule(Source(e)) ⊁ Rule(s)).

The SUP labeling function gives SGSUP

KB1

⟨(library, ∅)⟩ = INdef

and SGSUP

KB2

⟨(library, ∅)⟩ = AMBIG (as shown in Figures 7 and 8)

which correctly models the modus ponens suppression effect.
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of Example 10.

Please note that we defined SUP using BDL but there is no proof

that human use ambiguity blocking with team defeat. However we

make this assumption for simplicity. A labeling function based on

the same intuition as SUP but using ambiguity propagating (with

or without team defeat) would also effectively model the modus-

ponens suppression effect. Empirical data and more testing are

needed to justify one or the other.

Last, let us note that while the suppression effect can occur

either as a consequence of a suitable reasoning mechanism or due

to specific logical representation of the situation [29], we made

sure to use the “plain” representation where only the background

knowledge is added [29]. Other representations can be used such as

the “necessary condition” by using the rule “essay∧open ⇒ library”
or the weak completion and adding an abnormality predicate [11].

6 DISCUSSION
In this paper we introduced a new argumentation-based formalism

called Statement Graph that represents rule applications as “state-

ments” with attack and support relations (i.e. edges) between them.

By applying a flexible labeling function on edges, different variants

of defeasible reasoning can be obtained (ambiguity propagating or

blocking with or without team defeat). We evaluated our work by

proposing the ELDR tool that implements SGs and not only covers

gaps not addressed by the existing tools but it also has the same

and sometimes better performance results. In future work we plan

on studying if SGs can be used to represent other non-monotonic

reasoning such as the selection task and other classes of defeasible

reasoning logics ([7, 21]).
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