
HAL Id: lirmm-01894747
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01894747v1

Submitted on 12 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A First Order Logic Benchmark for Defeasible
Reasoning Tool Profiling

Abdelraouf Hecham, Madalina Croitoru, Pierre Bisquert

To cite this version:
Abdelraouf Hecham, Madalina Croitoru, Pierre Bisquert. A First Order Logic Benchmark for De-
feasible Reasoning Tool Profiling. RuleML+RR, Sep 2018, Luxembourg, Luxembourg. pp.81-97,
�10.1007/978-3-319-99906-7_6�. �lirmm-01894747�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01894747v1
https://hal.archives-ouvertes.fr

A First Order Logic Benchmark for Defeasible
Reasoning Tool Profiling

Abdelraouf Hecham1, Madalina Croitoru1, Pierre Bisquert2

1 LIRMM, University of Montpellier, France
2 INRA, France

Abstract. In this paper we are interested in the task of a data engineer choosing
what tool to use to perform defeasible reasoning with a first order logic knowl-
edge base. To this end we propose the first benchmark in the literature that allows
one to classify first order defeasible reasoning tools based on their semantics,
expressiveness and performance.

1 Introduction

Used in many practical domains [21, 3, 14], defeasible reasoning allows to reason with
incomplete or inconsistent knowledge where conclusions can be challenged by addi-
tional information. An inherent characteristic of defeasible reasoning is its systematic
reliance on a set of intuitions and rules of thumb, which have been long debated be-
tween logicians [17, 20, 23, 1]. For example, should an information that is derived from
a contested claim be used to contest another claim (i.e. ambiguity handling)? Or, can
different ‘chains’ of reasoning for the same claim be combined to defend against chal-
lenging statements (i.e. reinstatement)? It appears that no single approach is appropriate
in all situations, or for all purposes. When it comes to the defeasible reasoning tools in
the literature, confusingly, each follows different subsets not clearly stated in the tool
description or companion papers.

We are interested in the task of a data engineer looking to select what tool to use to
perform defeasible reasoning. To facilitate this task we propose the first benchmark
in the literature for first order logic defeasible reasoning tools profiling. We show
how to use the proposed benchmark in order to categorize existing tools based on their
semantics (e.g. ambiguity handling), logical language (e.g. existential rules) and expres-
siveness (e.g. priorities). We stress that we do not want to compare the tools amongst
themselves but to be able to provide an informative benchmark to allow understanding
the strengths and intuitions of available tools.

After introducing in Section 2 the logical language and defeasible reasoning, in
Section 3 we enumerate the various criteria for analysing defeasible reasoning tools.
In Section 4 we present the proposed benchmark and show how the structure of the
benchmark corresponds to the various tools criteria. Finally, in Section 5, we run a set
of available tools on the benchmark and discuss the results.

2 Background Notions

Language. We consider1 a first order language Ł composed of formulas built with
the usual quantifiers (∃,∀) and the connectors: implication (→,⇒,) and conjunction
(∧). An atom is of the form p(t1, · · · , tk) and its complement is of the form¬p(t1, · · · , tk),
where p is a predicate and ti are variables or constants 2. >,⊥ are also allowed and
considered themselves atoms. A rule r is a formula of the form ∀X ,Y

(
B(X ,Y)V

∃Z H (X ,Z)
)

such that V∈ {→,⇒, }, where X ,Y are tuples of variables, Z is a
tuple of existential variables, and B, H are finite non-empty conjunctions of atoms
respectively called body and head of r and denoted Body(r) and Head(r). A rule r can
be of three types: (1) strict rules (→) express undeniable implications i.e. if Body(r)
then definitely Head(r); (2) defeasible rules (⇒) express a weaker implication i.e. if
Body(r) then generally Head(r) and (3) defeater rule () are used to prevent the com-
plement of a conclusion from being drawn i.e. if Body(r) then the complement of any
atom in Head(r) should not be concluded. It does not imply that Head(r) is concluded.

A defeasible knowledge base is a tuple K = (F ,R,�) where F is a set of ‘fact’
rules of the form >→B(a) or >⇒B(a), R is a finite set of rules (strict rules are
denoted by R→, defeasible rules by R⇒, and defeater rules by R), and� is an acyclic
superiority relation over rules. A rule r1 is said to be superior to another rule r2 iff
r1 � r2 and r2 � r1 (r2 is said to be inferior to r1). This expresses that r1 may override
r2. Since defeasible reasoning is mostly concerned by whether a conclusion is entailed
or not, we only consider boolean queries. A boolean query is an existentially closed
conjunction of atoms of the form Q = ∃XΦ(X ,a)? (where Φ is a conjunction of atoms,
X is a set of existential variables, and a is a set of constants). A ground boolean query
is a conjunction of ground atoms of the form Q = Φ(a)?.

Inference Mechanisms. Reasoning can be achieved using inference mechanisms that
fall under two main approaches. Forward chaining (also called chase) is the exhaustive
application of the set of rules over the set of facts. Backward chaining consists in using
the rules to rewrite the query. Reasoning with existential rules is not always guaranteed
to stop. Decidable abstract classes of rules have been defined [6]: (1.) Finite Expan-
sion Set (FES) where forward chaining is guaranteed to stop, (2.) Finite Unification Set
(FUS) where backward chaining is guaranteed to stop, and (3.) Bounded Treewidth Set
(BTS) which ensures decidability although no algorithm is currently available for this
class. Greedy BTS (GBTS) is an expressive subclass of BTS that is provided with a
forward-chaining-like algorithm. Concrete classes that may specialize one or several of
the above abstract classes are recognizable by syntactic properties (e.g. transitive rules
for FES class) [5], online tools such as KIABORA3 can output if the knowledge base
is decidable (i.e FES, FUS, GBTS or their combination). Cyclicity on rules poses addi-
tional decidability problems [5]. The Graph of Rule Dependencies (GRD) is a directed
graph that encodes the interactions between rules: nodes represent rules and there is an

1 The minimal superset of the languages used in first order logic defeasible reasoning.
2 Variables are denoted by uppercase letters X ,Y,Z,etc., constants by lowercase letters

a,b,c,etc., and unknown constants (nulls) by null1,null2,etc.
3 http://graphik-team.github.io/graal/kiabora

edge from r1 to r2 iff an application of the rule r1 may create a new application of the
rule r2. A GRD is acyclic when it has no circuit.

Reasoning. To reason defeasibly about a conclusion, all chains of rule applications
reaching that conclusion must be evaluated along with any conflict that arises from
other chains of rules. This can be achieved using two kinds of approaches: First, using
the idea of extensions, where reasoning chains (arguments) are built then evaluated
at a later stage; this encapsulates argumentation-based techniques such as grounded
semantics [12] and dialectical trees [13]. Other approaches are based on the evaluation
of arguments during their construction, such as defeasible logics [22, 9].

3 Defeasible Reasoning Features

Let us concretely discuss the various features concerning semantics, expressiveness
and performance based on the different intuitions behind defeasible reasoning [17, 20,
23, 1]. Please note that we do not discuss what intuitions are better to adopt, as these
often conflict. Our aim is to facilitate the task of selecting what defeasible reasoning
tool to use based on the reasoning requirements and the data at hand.

Semantics. Different intuitions impact what conclusions are accepted or rejected in a
defeasible reasoning setting:

1. Ambiguity Handling: As illustrated in Example 1 information derived from an am-
biguous (i.e. contested) claim should be used to contest another claim [25].

Example 1 The defeasible knowledge base K describes that evidence “a” sug-
gests that the defendant ‘jack’ is responsible of the crime while evidence “b” in-
dicates that he is not. According to the underlying legal system, a defendant is
presumed not guilty unless responsibility has been proven. K = (F ,R,∅):

– F = {> ⇒ evid(a, incriminating, jack), >⇒ evid(b,absolving, jack), >⇒
de f endant(jack)}.

– R = {∀X ,de f endant(X) ⇒ ¬guilty(X), ∀X ,Y,evid(X , incriminating,Y) ⇒
responsible(Y), ∀X ,Y,evid(X ,absolving,Y)⇒¬responsible(Y),
∀X ,responsible(X)⇒ guilty(X)}.

Is jack not guilty? Given both evidence “a” and “b”, the fact “responsible(jack)”
is ambiguous and it is used to derive “guilty(jack)”. The question is “Should
guilty(jack) be used to contest ¬guilty(jack) and make it ambiguous?”. In an
ambiguity blocking setting, the ambiguity of “responsible(jack)” blocks (forbids)
any ambiguity derived from it. Therefore “¬(guilty(jack))” is uncontested and the
answer to the query Q = ¬guilty(jack)? is ‘true’. On the other hand, in an am-
biguity propagating setting, the ambiguity of “responsible(jack)” is propagated
to “¬guilty(jack)” because its complement “guilty(jack)” can be derived, hence,
the answer to the query Q is ‘false’.

Ambiguity propagation results in fewer conclusions (since more ambiguities are al-
lowed), which might make it preferable when the cost of an incorrect conclusion is
high, whereas ambiguity blocking might be more intuitive in situations where con-
tested claims cannot be used to contest other claims (e.g. in the legal domain) [17].

2. Team Defeat (Direct Reinstatement): The absence of team defeat means that a rule
r1 implying an atom f attacked by another rule r2 implying ¬ f can only be de-
fended by r1 itself (meaning that for r1 to ‘survive’ it has to be superior to r2 i.e.
r1 � r2 and r2 � r1). However, if we allow team defeat, r1 can be successfully de-
fended by another rule r3 for f that is superior to r2 (even if r1 is inferior to r2), as
illustrated in Example 2.

Example 2 Generally, animals do not fly unless they are birds. Also, penguins do
not fly except magical ones. “Tweety” is an animal, a bird, and a magical penguin.
K = (F ,R,�):

– F = {>⇒ animal(tweety)∧bird(tweety)∧ penguin(tweety)∧magical(tweety)}.
– R = {r1 : ∀X , animal(X)⇒¬ f ly(X), r2 : ∀X , bird(X)⇒ f ly(X),

r3 :∀X , penguin(X)⇒¬ f ly(X), r4 :∀X , magical(X)∧ penguin(X)⇒ f ly(X)}.
– (r2 � r1), (r4 � r3).

The query is Q = f ly(tweety) (i.e. can “Tweety” fly?). In the absence of team de-
feat, the answer to Q is ‘false’ because there is no chain of reasoning for “ f ly(tweety)”
that can defend itself from all attacks: even if r2 defends itself from r1 (because
r2 � r1), it does not defend against r3 (since r2 � r3), and the same applies for r4:
it defends against r3 but fails against r1 because r4 � r1. If team defeat is allowed
then the answer to Q is ‘true’ (“Tweety” can fly) because all attacks are defeated:
r1 is defeated by r2 (r2 � r1) and r3 is defeated by r4 (r4 � r3).

3. Floating Conclusions: Sometimes two conflicting and equally strong arguments
might lead to the same conclusion down the line. These conclusions are called
‘floating conclusions’ [20].

Example 3 A first witness says that “Jack” killed “John” by stabbing him while
a second witness says that he shot him. Both testimonies are of equal strength
and both imply that “Jack” killed “John”, however they are conflicting. K =
(F ,R, /0):

– F = {>⇒ stabbed(jack, john)∧ shot(jack, john).
– R = {r1 : ∀X ,Y, stabbed(X ,Y)⇒¬shot(X ,Y),

r2 :∀X ,Y shot(X ,Y)⇒¬stabbed(X ,Y), r3 :∀X ,Y stabbed(X ,Y)⇒ killed(X ,Y),
r4 : ∀X ,Y shot(X ,Y)⇒ killed(X ,Y)}.

The query is Q= killed(jack, john) (i.e. did “Jack” kill “John”?). “killed(jack, john)”
is a floating conclusion. One might argue that regardless if the witnesses disagree
on the details, the conclusion is the same and therefore the answer to Q is ‘true’
(i.e. floating conclusions should be accepted). However, one can also argue that the
two witnesses undermine each other’s credibility, and therefore the answer to the
query Q should be false (i.e. floating conclusions should be rejected).

4. Handling of Strict Rules: In some defeasible reasoning tools, such as the ones based
on Defeasible Logics, facts that are not in direct conflict, and that are defeasibly
derived from non ambiguous ones, are accepted (even if the application of strict
rules and facts generates conflict). Other formalisms reject any fact that leads to
conflict when strict rules and facts are applied.

Example 4 (Consistent Answers) Consider the following K = (F ,R, /0):

– F = {>⇒ incrim(e1,alice), >⇒ absolv(e2,alice)}
– R = {r1 : ∀X ,Y incrim(X ,Y)→ resp(Y), r2 : ∀X ,Y absolv(X ,Y)→¬resp(X)}
The facts incrim(e1,alice) and absolv(e2,alice) are entailed in some formalisms
because there is no direct attack on them, however other formalisms consider that
these facts are not entailed because they lead to a conflict if strict rules are applied.

Expressiveness. Reasoning tools can be classified w.r.t. the expressiveness of their un-
derlying language:

1. Rules with Existential Variables: They are logical fragments useful in applications
such as Ontology Based Data Access (OBDA) [18] and Semantic Web [11]. De-
tecting support for existential rules is tricky since most defeasible reasoning tools
omit quantifiers which might lead to unwanted results. Variables appearing in the
head of rules are sometimes considered existential variables, for example the rule
p(X)→ q(X ,Y) can be either interpreted as ∀X p(X)→∃Y q(X ,Y) or ∀X ,Y p(X)→
q(X ,Y). Example 5 shows how this affects reasoning.

Example 5 Consider the following situation where “jack” is a murderer and “john”
is a victim. A murderer is a person who killed someone. This situation is described
in K = (F ,R, /0) with F = {> ⇒ murderer(jack)∧ victim(john)} and R =
{murderer(X)→ killed(X ,Y)}. If we run the query Q = killed(jack, john)? (did
jack kill john?) using a tool that does not take into account existential variables the
answer would be “true” because it assumes that all known constants (persons) are
killed by all murderers (i.e. ∀X ,Y murderer(X)∧>(Y)→ killed(X ,Y)). In fact, it
will also consider that killed(jack, jack) is “true”.
However if we run the query Q using a tool that supports existential variables,
the answer would be “false” since it is not possible to make the link between the
generated null and the constant “john”.

2. Rules with cycles: We consider two types of cycles: Support cycles (when the Graph
of Rule Dependency is cyclic) and Attack cycles. In presence of a cyclic GRD some
inference mechanisms (such as SLD resolution [4]) might loop infinitely as it might
lead to an infinite cycle of evaluating the conclusion then the premise then the con-
clusion and so on as shown in the following example.

Example 6 (Support Cycle) Consider the following knowledge base K =(F ,R, /0)
for representing legal contracts. A person is generally an individual and an individ-
ual is a person. “bob” is a person. Is “bob” an individual Q = individual(bob)?

– F = {>→ person(bob)}
– R = {r1 :∀X person(X)⇒ individual(X), r2 :∀X individual(X)⇒ person(X)}

Evaluating Q would require evaluating the application of r1 generating individual(bob),
which would require evaluating person(bob), this in turn might require evaluating
individual(bob) given r2 and continue on and on.

Cyclic conflict happens when two chains of reasoning attack each other at different
levels as shown in Example 7. Some logics (such as Defeasible Logics) would loop
infinitely in such situations.

Example 7 (Attack Cycle) Let K = (F ,R,�):
– F = {>⇒ p(a),>⇒ q(a)}.
– R = {∀X p(X)⇒¬q(X), ∀X q(X)⇒¬p(X)}

Evaluating the query Q = ¬p(a) would result in an infinite cycle if the arguments
are evaluated on construction. Otherwise the answer to Q is ‘false’.

3. Rule Application Block: Some situations require that rules are prevented from being
applied, to express that a conclusion should not be derived and at the same time its
complement is not necessarily derived either. This solves some non-intuitive results
of certain logics [23]. Blocking rule applications can be achieved either by giving
rules labels and considering them as atoms, or by using defeater rules.

Example 8 Birds generally fly. We cannot say that birds with broken wings can fly
or not. Let K = (F ,R, /0):

– F = {>⇒ bird(tweety)∧brokenWings(tweety)}.
– R = {r1 : ∀X bird(X)⇒ f ly(X), r2 : ∀X brokenWings(X) ¬ f ly(X)}.

Or, if we use rule labels:
– F = {>⇒ bird(tweety)∧brokenWings(tweety)}.
– R = {r1 : ∀X bird(X)⇒ f ly(X), r2 : ∀X brokenWings(X)⇒¬r1}.

The answer to the query Q = f ly(tweety) is “false”.

4. Priority Relation: used to resolve ambiguities, can be variously expressed (cardinal,
ordinal or implicitly - such as generalized specificity [13]).

5. Type of Queries: All defeasible tools support at least boolean ground queries, some
allow for boolean existentially closed (non ground) queries.

4 Benchmark Description

The benchmark provides indications on how defeasible reasoning tools are handling the
previously described features (their support and subsequent scaling up).
Benchmarking Methodology. We build upon the propositional defeasible logic perfor-
mance oriented benchmark from [19] that generates various parameterized knowledge
bases (also known as theories). We adapt existing theories for the first order language
and extend them with twelve additional theories to account for features listed in the
previous section. These theories serve two purposes: first, to test the tools’ ability to
handle the features (especially when these features are not explicitly stated in the com-
panion paper of the tools). Second, to test their performance when faced with gradually
complex situations requiring these features. For example: does the tool allow for team
defeat? How does it perform when there are larger and larger instances requiring team
defeat? Before defining the benchmark, two key notions must be kept in mind:

1. To test the support for a semantics feature, this feature must be “isolated”, meaning
that the result of the query must only depend on the feature and no other external
factor. That is why most theories use only defeasible rules (to avoid the disruptive
effect of handling strict rules) and no preferences.

2. While negative results (i.e. situations where tools are not able to give the results
required by a certain feature) are definitive, positive results (i.e. situations where
tools do provide the intended results of a feature) on the other hand do not prove
the feature is fully supported.

Benchmark Theories. Figures 1 and 2 give a representation of the benchmark theories,
dashed lines represent conflict,⇒ and are defeasible and defeater rules respectively.

– Ambiguity: (denoted ambiguity(n)) contains a chain of n rules si−1(a)⇒ si(a), and
two chains of 2n rules qi−1(a)⇒ qi(a) and pi−1(a)⇒ pi(a), plus the rules sn(a)⇒
¬qn(a) and q2n(a)⇒¬p2n(a), and the defeasible facts s0(a), q0(a), p0(a). The query
Q = p2n(a)? is not entailed (false) in ambiguity propagating, but is entailed (true) in
ambiguity blocking. The parameter n allows the scaling of the theory to longer and
longer chains where conflicts appear further down the line.

– Team Defeat: (denoted team(n)) each conclusion is supported by a team of two
defeasible rules and attacked by another team of two defeasible rules. Preferences
ensure that each attacking rule is inferior to one of the supporting rules. The an-
tecedents of these rules are in turn supported and attacked by cascades (n levels) of
teams of rules. The query Q = p0(a)? is entailed if team defeat is allowed.

– Floating Conclusions: (denoted f loating(n)) contains n couples of conflicting rules
> ⇒ pi(a) and > ⇒ ¬pi(a), and n rules pi(a) ⇒ q(a). The query Q = q(a)? is
entailed if floating conclusions are allowed.

– Consistent Derivation: (denoted consistent(n)) contains two defeasible facts p0(a),
q0(a) and two chains of n strict rules of the form pi−1(a)→ pi(a) and qi−1(a)→
qi(a) that lead to a conflict down the line because of the rules pn(a)→ pn+1(a) and
qn(a)→¬pn+1(a). The query Q= p0(a) is not entailed if atoms need to be consistent
w.r.t. strict rules (indirectly consistent derivation), otherwise it is entailed.

Fig. 1: Representation of semantics theories

– Existential Rules: (denoted exist(n)) composed of n rules >⇒ p(ai), and the rule
without quantifiers p(X)⇒ q(X ,Y). Q = q(a0,an)? is not entailed if existential rules
are supported.

– FES: (denoted transitive(n)) contains the rule >⇒ p0(a,b)∧ p0(b,c), and a chain
of n transitive rules of the form ∀X ,Y,Z, pi−1(X ,Y)∧ pi−1(Y,Z) ⇒ pi−1(X ,Z)∧
pi(X ,Y)∧ pi(Y,Z). Evaluating Q = pn(a,c)? would result in an infinite loop if FES
rules are not supported.

– FUS: (denoted chainAtomB(n)) contains the rule > ⇒ p0(a,b), and a chain of n
atomic body rules of the form ∀X ,Y, pi−1(X ,Y) ⇒ ∃Z, pi−1(X ,Z)∧ pi−1(Z,Y)∧
pi(X ,Y). The query Q = pn(a,b)? would result in an infinite loop if FUS existen-
tial rules are not supported.

– GBTS: (denoted chainFrG(n)) contains the rule>⇒ p0(a,b)∧ p0(b,c), and a chain
of n frontier-guarded rules of the form ∀X ,Y,Z, pi−1(X ,Y)∧ pi−1(Y,Z)⇒∃W, pi−1(X ,W)∧
pi−1(W,Y)∧ pi(X ,Y)∧ pi(Y,W). Evaluating the query Q = pn(a,b)? would result in
an infinite loop if GBTS existential rules are not supported.

– Cyclic GRD: (denoted cyclic(n)) contains the rule >⇒ p1(a) and a cyclic chain of
n defeasible rules as pi(X) pi mod n(X). Evaluating Q = p0(a)? results in a loop.

– Circular Reasoning: (denoted circular(n)) consists of a defeasible fact ¬p0(a) and
a cycle of rules of the form pi(a)⇒ pi mod n(a). Evaluating the query Q = ¬p0(a)
might result in an infinite loop due to circular reasoning.

– Cyclic Conflict: (denoted cyclicCon f (n)) composed of n cyclic conflict of the form
pi(a)⇒¬qi(a) and qi(a)⇒¬pi(a). Evaluating Q = pn+1(a)? might loop infinitely.

– Rule Block: (denoted ruleBlock(n)) contains n rules >⇒ pi(a) and pi(a)⇒ q(a),
and a single defeater rule > ¬q(a) that blocks all other rules. The queries Q =
q(a)? is not entailed. The parameter n determines how many rules have to be blocked.
This theory tests performance with regards to handling rule applications blocking.

– Priority: (denoted levels(n)) is a cascade of n disputed conclusions pi(a). For each
i, there are rules ri :>⇒ pi(a) and r′i : pi+1⇒¬pi(a). For each odd i≥ 1 a priority
asserts that r′i � ri. A final rule >⇒ pn+1(a) gives uncontested support for pn+1(a).
Q = p0(a)? is entailed if priorities are respected.

– Queries: (denoted query(n)) composed of n rules>⇒ p(ai), and the rule ∀X , p(X)⇒
q(X). The query Q= ∃Xq(X)? is entailed if existentially closed queries are supported
(as there are n atoms of the form q(ai)).

Fig. 2: Representation of some expressiveness theories

– Chain Theory (denoted chain(n)) contains the rule >⇒ p0(a) and a chain of n de-
feasible rules of the form pi−1(X)⇒ pi(X). Evaluating the query Q = pn(a)? would
test performance when faced with a long chain of rules.

– Tree Theory (denoted tree(n,k)) is a k-branching tree of depth n in which every atom
occurs once and p0(a) is its root. The query Q= p0(a)? would test performance w.r.t.
a large number of short arguments.

– Directed Acyclic Graph Theory (denoted dag(n,k)) is a k-branching tree of depth n
in which every literal occurs k times. The query Q = p0(a)? would test performance
when faced with many arguments for the same atom.

The generated knowledge bases have to be adapted to the format of each tool. For
example, rules can be transformed into an equivalent set of rules with atomic head, pri-
ority relation can be transformed into a number based priority, negation can be repre-
sented with negative constraints, etc. We conclude this section by an important remark.
Benchmark support for abstract classes of existential rules such as FES, FUS and GBTS
is achieved via concrete decidable classes. Not satisfying a concrete class (e.g. transitive
rules) implies not satisfying the corresponding abstract class (e.g. FES rules). However,
please note that the inverse is not necessarily true. More generally, while negative re-
sults (i.e. situations where tools are not able to give the results required by a certain
feature) are definitive, positive results on the other hand (i.e. situations where tools do
provide the intended results of a feature) do not prove the feature is fully supported.

5 Running the Benchmark on Tools

Let us start by presenting the main defeasible reasoning implementations we used in
this paper to illustrate how the proposed benchmark can be used for tool profiling (that
are, to the best of our knowledge, the only still functioning, publicly available tools
for first order defeasible reasoning as of the time of writing of this paper). ASPIC+
[24] is a framework for specifying systems in structured argumentation used for de-
feasible reasoning thanks to its grounded semantics (equivalent to defeasible reasoning
with ambiguity propagation [15]). We use a prototype implementation available online4

(denoted here by ASPIC∗). Other implementations use a propositional language only.
DEFT5 [16] is a first-order defeasible reasoning tool for existential rules that uses the
Datalog± language. It relies on a dialectical tree mechanism (that can correspond to am-
biguity propagation [13]). DeLP [13] (Defeasible Logic Programming) is a formalism
that relies on dialectical trees to allow for defeasible reasoning with ambiguity propaga-
tion. We use the implementation in Tweety1.7 libraries [26] (denoted here by DeLP∗).
An online tool called DeLP client6 is also available. Flora-2 [28, 27] is a rule-based
knowledge base system designed for a variety of automated tasks on the Semantic Web,
ranging from meta-data management to intelligent agents. It has a commercial version
called Ergo with additional functionalities.

4 http://aspic.cossac.org
5 https://github.com/hamhec/DEFT
6 http://lidia.cs.uns.edu.ar/delp_client

A key notion to keep in mind is that we are not comparing the formalisms them-
selves, we are comparing the tools based on those formalisms. A formalism might allow
for more than what the tool presents. That is one of the reasons that justify having a
dedicated benchmark to better analyze and understand the implementation of the tools.
Furthermore, some of the tools considered are prototypes, therefore they might not have
been developed with performance in mind. All experiments presented in this section
were performed on an Intel core i7 2.60GHz quad core Linux machine with 8GB of
RAM and a Java heap of 2GB. To avoid random performance fluctuations each test is
performed five times for each tool and we record the average in-CPU execution time.
The experiments are reproducible7.
Tools Benchmark Results. Table 1 presents the time (in CPU seconds) required for
each tool to answer the query according to the size and type of the query (the execution
time includes the time needed for parsing the knowledge base and answering the query).
∞ denotes a stack overflow, T.O. denotes a timeout (set to 5 minutes), and N.A. indicates
that a test theory is not applicable for that tool.

Theory ASPIC∗ DeLP∗ SPINdle Flora-2 DEFT

ambiguity(n)
n = 50 0.44 (false) 148.17 (false) 0.11 (false) | 0.09 (true) 1.06 (true) 0.11 (false)

n = 1800 ∞ T.O. ∞ 17.237 (true) 12.503 (false)
n = 2000 ∞ T.O. ∞ 18.942 (true) ∞

team(n)
n = 4 0.227 (false) 301.19 (true) 0.289 (true) 4.358 (true) 0.287 (true)
n = 7 T.O. T.O. 109.46 (true) T.O. 201.917(true)

f loating(n)
n = 100 0.270 (false) 209.45 (false) 0.332 (false) 2.143 (false) 1.345 (false)
n = 5000 198.861 (false) T.O. 150.144 (false) T.O. 203.18 (false)

consistent(n)
n = 1000 0.193 (true) 269.984 (false) 0.703 (true) 5.292 (true) 2.969 (false)
n = 8000 8.321 (true) T.O. 8.854 (true) 36.821 (true) 239.504(f alse)

exist(n) n = 100 0.09 (true) 0.93 284.39 (true) 1.28 (true) 0.01 (false)
transitive(n) n = 100 N.A. N.A. N.A. N.A. 253.62 (true)

chainAtomB(n) n = 1 N.A. N.A. N.A. N.A. T.O.

chainFrG(n) n = 1 N.A. N.A. N.A. N.A. T.O.

cyclicSupp(n)
n = 1000 ∞ 291.37 (true) 0.35 (true) 5.712 (true) 0.44 (true)

n = 10000 ∞ T.O. 26.61 (true) 51.72 (true) 288.71 (true)
circular(n) n = 1000 ∞ 284.90 (true) 0.31 (true) 4.38 (true) 0.04 (true)

cyclicCon f (n)
n = 5 0.627 (true) 55.89 (true) 0.903 (true) 0.922 (true) 0.106 (true)

n = 1000 T.O. T.O. T.O. T.O. 79.525 (true)
ruleBlock(n) n = 500 19.23 (true) N.A. 1.41 (true) 12.99 (true) N.A.

levels(n) n = 100 0.20 (true) 4.61 (true) 0.33 (true) 5.17 (true) 0.81 (true)
query(n) n = 100 N.A. N.A. N.A. 1.25 (true) N.A.

chain(n)
n = 600 108.05 (true) 99.46 (true) 0.24 (true) 2.35 (true) 0.33 (true)

n = 10000 ∞ T.O. 16.04 (true) 45.44 (true) 288.71 (true)

tree(n,5)
n = 2 0.04 (true) 193.64 (true) 0.03 (true) 0.83 (true) 0.022 (true)
n = 7 ∞ T.O. ∞ 211.94 (true) 182.83 (true)

dag(n,10)
n = 1 ∞ 239.75 (true) 7.51 (true) 18.41 (true) 19.53 (true)

n = 10 ∞ T.O. 60.82 (true) 113.53 (true) 73.05 (true)

Table 1: Execution time in seconds (selected results). ‘true’ and ‘false’ indicate query entailment
and are used to check support of the feature (the best time is shown in bold)

7 https://github.com/anoConf/Benchmark

Results discussion. The main objective of the proposed benchmark is to help with
the tools profiling according to the defeasible knowledge base and reasoning they can
handle. To this end, from the results in Table 1, we can draw the following conclusions
(summarised in Table 2):

Feature ASPIC∗ DeLP∗ SPINdle Flora-2 DEFT

Ambiguity
Prop. X X X - X

Block. - - X X -

Team Defeat
TD - X X X X

noTD X - - - -

Floating FC - - - - -

Conclusions noFC X X X X X

Consistent Direct - X - - X

Derivation Indirect X - X X -

Existential Rules

S-FES - - - - X

FUS - - - - -

GBTS - - - - -

Cycles
Support - X X X X

Attack X X X X X

Rule Block X - X X -

Preference
� - X X X X

R X - - - -

Non-gound Queries - - - X -
Table 2: Classification results (Xindicates the tool supports the feature).

Fig. 3: Response time for ambiguity(n) Fig. 4: Response time for team(n)

– Semantics: The underlying theoretical and practical choices affect the semantics
the tools can handle: Ambiguity Handling: ASPIC∗, DEFT and DeLP∗ cannot ex-
press ambiguity blocking and correspond to ambiguity propagation due to the un-
derlying formalisms. Flora corresponds only to ambiguity blocking while SPINdle

is the only tool that can handle both blocking and propagating. Performance wise
(Figure 3), DeLP∗ has a timeout at n = 10, ASPIC∗ stops at n = 300, SPINdle at
n = 1400, and DEFT n = 1800 due to stack overflow. Flora-2, DEFT, and SPINdle
can scale to longer chain of rules for ambiguous facts with significantly low response
time. Team Defeat: Most tools allow only for team defeat except ASPIC∗ that does
not allow for it. While Defeasible Logics can represent the presence and absence
of team defeat, SPINdle and Flora-2 only implement the presence of team defeat.
SPINdle has the best performance, followed by DEFT, ASPIC∗, Flora-2, then DeLP∗.
Floating Conclusions: None of the considered tools support floating conclusions due
to their underlying formalisms. Handling Strict Rules: DEFT and DeLP∗ use indi-
rectly consistent derivations while ASPIC∗, Flora and SPINdle do not. This directly
impacts performance results (as seen in Figure 6).

Fig. 5: Response time for f loating(n) Fig. 6: Response time for consistent(n)

– Expressiveness: The choice of the inference mechanism affects the expressiveness
the tool can handle: Existential rules: ASPIC∗, DeLP∗, SPINdle, and Flora were not
designed to account for existential rules. As supported by the results of the Existential
theory, FES, FUS and GBTS are not applicable in their context. DEFT can handle ex-
istential rules in general, and SkolemFES rules in particular (due to its use of forward
chaining), however it loops infinitely in FUS and GBTS fragments. Cycles: DEFT,
DeLP∗, and Flora can handle cyclic GRDs and circular reasoning (support cycle) con-
trary to ASPIC+. This is due to the fact that ASPIC∗ relies on SLD resolution (which
loops infinitely in presence of cycles in the GRD), while DEFT uses a chase mecha-
nism (which is guaranteed to stop when no existential rule is used). DeLP∗, SPINdle
and Flora rely on resolution with a grounding phase and cycle checks. All considered
tools can handle cyclic conflicts (attack cycles). However, the attack cycle checks are
not needed for DEFT since arguments are evaluated after construction, that is why it
outperforms other tools (e.g. n = 1000 in Figure 8). Rule Application Block: ASPIC∗

uses negated labels of rules to block their application, SPINdle uses defeater rules,
while Flora uses the predicate ‘\cancel(label)’. DEFT and DeLP∗ have no support
for such feature. As seen in Table 1, SPINdle has the best performance followed
by Flora-2 and ASPIC∗. Preference between rules: ASPIC∗ uses decimal values to
express priority on rules (this priority relation is total and might lead to unwanted be-

havior as it is hard to express incomparability between rules). DeLP∗, SPINdle, Flora,
and DEFT use a partial priority relation based on labeled rules. Non-ground queries:
Only Flora supports non ground queries.

Fig. 7: Response time for cyclicSupp(n) Fig. 8: Response time for cyclicCon f (n)

– Performance: In case of a tie in expressiveness or semantics, one can use perfor-
mance to make an informed choice on the tool to be used. From Table 1 we can see
that each tool makes trade-offs between performance and expressiveness. In general,
SPINdle has the best performance compared to other tools, followed by DEFT and
Flora-2. ASPIC∗ is as fast as SPINdle on small knowledge bases but it does not scale
well. DEFT has the best performance when there are attack cycles. These differ-
ences in performance are due to three main factors. First, grounding phase is costly.
DEFT, for instance, achieves its performance results thanks to its forward chaining
algorithms that ground rules on the fly, contrary to the other tools. Second, handling
cycles is costly. ASPIC∗ is faster than DeLP∗ for example because the latter relies on
cycle checks to avoid infinite loops. DEFT does not need to check loops contrary to
all other tools. Third, expressiveness is costly, DEFT and DeLP∗ has to perform con-
sistency checks using strict rule. Flora also provides very powerful syntactic features
(dynamic rule labels, higher order syntax, etc.) which might affect its performance.

Tool profiling. let us show how a data engineer could make practical use of our bench-
mark in order to chose the appropriate defeasible reasoning tool.

Example 9 Consider the following decision scenario of an emergency response team
that wants to determine if a person victim of an accident is an organ donor. A person
being hurt in an accident is considered a victim. Legally any victim is assumed not to
be an organ donor. A person that gives her consent is considered an organ donor. A
person in a critical condition generally cannot give her consent. The legal tutor of a
person can give his consent for her being an organ donor. The following KB describes
this use case. K = (F ,R, /0) where:

– F = {>⇒ hurt(john)}.
– R = {r1 : ∀X hurt(X)⇒ victim(X), r2 : ∀X , victim(X)⇒¬OrganDonor(X),

r3 :∀X , consentFor(X ,X)⇒ organDonor(X), r4 :∀X , critical(X)⇒¬ConsentFor(X ,X)
r5 : ∀X ,Y, legalTutor(X ,Y)∧ consentFor(X ,Y)⇒ organDonor(Y), }.

This knowledge base does not use existential rules and is acyclic. Therefore, given
the results of the benchmark, all considered tools can be applied. If the data engineer
wants to use ambiguity blocking with team defeat then she can either use SPINdle or
Flora-2 (SPINdle is in this case recommended given the performance results), if she
does not want to allow for team defeat then no tool can be used. If on the other hand
the data engineer wants to use ambiguity propagation then she can either use DeLP∗

or DEFT if she needs team defeat (DEFT is in this case recommended given the perfor-
mance results) or ASPIC∗ if she does not. Let us add the rule that a victim is probably
someone who is hurt (∀X , victim(X)⇒ hurt(X)). In this case the knowledge base be-
comes cyclic. Therefore ASPIC∗ cannot be used (cf. Table 2). Let us now add a new
existential rule stating that if someone is an organ donor then somebody gave his con-
sent (the person or her tutor i.e. ∀X organDonor(X)→ ∃Y consentFor(Y,X)). In this
case, according to the Table 2 results, only DEFT can be used.

6 Discussion
We proposed an informative benchmark allowing to shed light on the capabilities of
existing tools for defeasible reasoning. This paper presents an exhaustive list of opera-
tional first order defeasible reasoning tools; other implementations such as DR-Device
[7] and DR-Prolog [8] are not maintained and propositional defeasible reasoning tools
of [10] are not available. Our study provides insights about current gaps in the state of
the art. For instance, we can observe in Table 2 that some features such as floating con-
clusions are not supported by any tool, or that support for some desirable combinations
of features (such as ambiguity propagating with team defeat) is lacking.

The list of features does not consider (1) expressing conflicting literals using nega-
tive constraint, (2) implicit priority relations, and (3) negation-as-failure. The former is
due to the fact that conflicts can easily be translated between the two representations [1],
e.g. ¬p(X) is transformed into np(X) and the negative constraint p(X)∧ np(X)→⊥
is added to the rules). Regarding implicit priorities, they sometimes can be represented
using explicit ones [23]. Negation-as-failure can treated by theory rewriting [2].

References

1. G. Antoniou. Defeasible reasoning: A discussion of some intuitions. International Journal
of Intelligent Systems, 21(6):545–558, 2006.

2. G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Representation results for
defeasible logic. ACM Transactions on Computational Logic (TOCL), 2(2):255–287, 2001.

3. G. Antoniou, D. Billington, and M. J. Maher. On the analysis of regulations using defea-
sible rules. In Systems Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual Hawaii
International Conference on, pages 7–23. IEEE, 1999.

4. K. R. Apt and M. H. Van Emden. Contributions to the theory of logic programming. Journal
of the ACM (JACM), 29(3):841–862, 1982.

5. J.-F. Baget, F. Garreau, M.-L. Mugnier, and S. Rocher. Extending Acyclicity Notions for
Existential Rules. In ECAI, pages 39–44, 2014.

6. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential variables:
Walking the decidability line. Artificial Intelligence, 175(9-10):1620–1654, 2011.

7. N. Bassiliades, G. Antoniou, and I. Vlahavas. A defeasible logic reasoner for the semantic
web. International Journal on Semantic Web and Information Systems (IJSWIS), 2(1):1–41,
2006.

8. A. Bikakis and G. Antoniou. DR-Prolog: a system for reasoning with rules and ontologies
on the semantic web. In AAAI, volume 5, pages 1594–1595, 2005.

9. D. Billington. Defeasible Logic is Stable. Journal of logic and computation, 3(4):379–400,
1993.

10. D. Bryant and P. Krause. A review of current defeasible reasoning implementations. The
Knowledge Engineering Review, 23(03):227–260, 2008.

11. A. Cali, G. Gottlob, and A. Pieris. Advanced processing for ontological queries. Proceedings
of the VLDB Endowment, 3(1-2):554–565, 2010.

12. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial intelligence, 77(2):321–357,
1995.

13. A. J. Garcı́a and G. R. Simari. Defeasible logic programming: An argumentative approach.
Theory and practice of logic programming, 4(1+ 2):95–138, 2004.

14. D. R. Garcia, A. J. Garcia, and G. R. Simari. Planning and defeasible reasoning. In Proceed-
ings of the 6th international joint conference on Autonomous agents and multiagent systems,
pages 856—-858. ACM, 2007.

15. G. Governatori, M. J. Maher, G. Antoniou, and D. Billington. Argumentation Semantics for
Defeasible Logic. Journal of Logic and Computation, 14(5):675–702, 2004.

16. A. Hecham, M. Croitoru, and P. Bisquert. Argumentation-Based Defeasible Reasoning For
Existential Rules. In Proceedings of the 16th Conference on Autonomous Agents and Multi-
Agent Systems, pages 1568—-1569, 2017.

17. J. F. Horty, D. S. Touretzky, and R. H. Thomason. A clash of intuitions: the current state of
nonmonotonic multiple inheritance systems. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, pages 476–482, 1987.

18. M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
233–246. ACM, 2002.

19. M. J. Maher, A. Rock, G. Antoniou, D. Billington, and T. Miller. Efficient defeasible reason-
ing systems. International Journal on Artificial Intelligence Tools, 10(04):483–501, 2001.

20. D. Makinson and K. Schlechta. Floating conclusions and zombie paths: two deep difficulties
in the “directly skeptical” approach to defeasible inheritance nets. Artificial intelligence,
48(2):199–209, 1991.

21. L. Morgenstern. Artificial Intelligence Inheritance comes of age : applying nonmonotonic
techniques to problems in industry. Artificial Intelligence, 103:237–271, 1998.

22. D. Nute. Defeasible reasoning: a philosophical analysis in prolog. Springer, 1988.
23. H. Prakken. Intuitions and the modelling of defeasible reasoning: some case studies. In

Ninth Int Workshop on Nonmonotonic Reasoning, pages 91–99, Toulouse, 2002.
24. H. Prakken. An abstract framework for argumentation with structured arguments. Argument

and Computation, 1(2):93–124, 2010.
25. L. A. Stein. Resolving ambiguity in nonmonotonic inheritance hierarchies. Artificial Intelli-

gence, 55(2-3):259–310, 1992.
26. M. Thimm. Tweety - A Comprehensive Collection of Java Libraries for Logical Aspects

of Artificial Intelligence and Knowledge Representation. In Proceedings of the 14th Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR’14),
2014.

27. H. Wan, M. Kifer, and B. N. Grosof. Defeasibility in answer set programs with defaults and
argumentation rules. Semantic Web, 6(1):81–98, 2015.

28. G. Yang, M. Kifer, and C. Zhao. Flora-2: A Rule-Based Knowledge Representation and
Inference Infrastructure for the Semantic Web. On The Move to Meaningful Internet Systems
2003: CoopIS, DOA, and ODBASE, pages 671–688, 2003.

