
HAL Id: lirmm-01895114
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01895114v2

Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compliant Robot Motion Regulated via Proprioceptive
Sensor Based Contact Observer

Anastasia Bolotnikova, Sébastien Courtois, Abderrahmane Kheddar

To cite this version:
Anastasia Bolotnikova, Sébastien Courtois, Abderrahmane Kheddar. Compliant Robot Motion Reg-
ulated via Proprioceptive Sensor Based Contact Observer. Humanoids 2018 - 18th IEEE-RAS In-
ternational Conference on Humanoid Robots, Nov 2018, Beijing, China. pp.854-859, �10.1109/HU-
MANOIDS.2018.8624946�. �lirmm-01895114v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01895114v2
https://hal.archives-ouvertes.fr

Compliant Robot Motion Regulated via Proprioceptive Sensor Based

Contact Observer

Anastasia Bolotnikova1,2, Sébastien Courtois1, Abderrahmane Kheddar2

Abstract— In this paper, we present developments of a real-
time compliant motion control for a personal humanoid robot.
Our approach allows to interpret and react to human guidance
through touch using only joint encoders measurements to
monitor contact direction and intensity on both static and
moving links. This novel method is developed with consideration
of minimal sensor requirement of the hardware platform to
meet high affordability criteria. We demonstrate performances
in experiments with a humanoid robot Pepper.

I. INTRODUCTION

In various fields, such as manufacturing or health care, an

efficient automation may require work tasks to be performed

by a robot in close-contact with a human. To achieve safe and

efficient collaboration, it is important that agents understand

each other’s intentions and react to them appropriately. In

this work, we focus on physical human robot interaction

(pHRI) and, foremost, on the interpretation and correct online

reaction of a humanoid robot to human touch.

The human-robot collaboration must ideally be safe, effi-

cient and optimal in terms of cost. Thus, a minimal sensor

set-up is preferable in order to reduce robot manufacturing

and maintenance costs. As a result, we focus on more cost-

efficient, but in practice more challenging way of contact

sensing by using minimum of proprioceptive sensors. That

is to say, we use only robot’s joint encoders.

Recent developments in the area of proprioceptive sensor

based contact monitoring have shown promising results for

serial manipulators [1], humanoids [2] and also a special case

of affordable personal robots, such as Pepper, used in this

work, with high motor-joint backlash and friction [3]. In our

previous work [4], we proposed a contact observer method

that uses data-driven machine learning techniques to detect

a colliding link and monitor contact direction and intensity.

This method was developed to fit well into minimal sensor

set-up, as only joint encoder measurements are exploited for

contact detection for both moving and static links.

In this paper, we describe the modifications made to our

initial method [4] in order to increase its accuracy and

generalization properties in the case of multi-joint motions;

we demonstrate its experimental performances in real-time

feedback compliant motions regulation on the arm of a

humanoid robot Pepper.

II. BACKGROUND

In order to achieve active compliant motion of a robot,

it is necessary to sense or estimate the external forces

1SoftBank Robotics Europe, Paris, France
2University of Montpellier–CNRS LIRMM, Interactive Digital Humans,

Montpellier, France

applied (anywhere) on the robot’s links. A sophisticated

yet expensive solution would require to cover the entire

robot structure with a haptic skin. Such an approach, how-

ever, is not appropriate due to the cost of adaptation of

additional sensors (even with cheap components) and their

maintenance; the introduction of additional weight to the

robot structure; additional power consumption... see eg. [5].

Thus, researches have directed their efforts towards achieving

contact sensing by using must-be proprioceptive sensors only

(i.e. those usually available on a robot platform), such as joint

encoders, motors’ electric current or torque sensors, etc.

A thorough overview of such contact sensing methods is

presented in [1]. Methods, which were initially developed

for serial manipulators, have been further developed to be

applied on humanoid robots, e.g. [2], [6], [7]. In [6] a

proprioceptive sensor based external force reconstruction was

used as a feedback in the control loop to regulate robot

interaction forces with the environment –under assumption

of static conditions for external force reconstruction, whereas

we aim at developing a method that works equally well for

static and dynamic motions. Compliant reaction to human

touch using proprioceptive sensors has been demonstrated

in [3] in the experiment with a Romeo humanoid robot

arm. However, this method could not be adapted for the

current version of the Pepper platform. This is due to the

inability to measure motor-link backlash and to measure or

accurately estimate motor torque, which in turn prohibits to

estimate external torque by means of the momentum observer

method [8]. The latter method was used in robot control to

achieve safe reaction to external collisions in pHRI context,

see examples in [8], [9], [10], [11].

In order to address a more challenging task of contact

sensing without using cover haptics, joint torque or even

motors’ electric current sensors; we developed a position

tracking error based contact observer in [4]. This method is

based on monitoring the discrepancy between the measured

position tracking error and the expected one for a given de-

sired free motion trajectory. First, a machine learning model

is trained on a sample dataset with appropriate set of desired

trajectory related features to predict the expected position

tracking error value for collision-free joint motion. Then, for

every iteration (of the control loop) the trained model is used

to predict the expected position tracking error, assuming no

contact has occurred. The contact is detected whenever there

is significant discrepancies between measured and predicted

(and therefore expected) error values. In our previous work,

this method has shown promising results in contact detection

experiments, and in monitoring both the contact intensity

and direction. Now, we exploit our contact observer in real-

time control for regulating compliant motion of Pepper. The

motivation behind this goal is to enable efficient physical

interaction between human and a robot. In this work, we

demonstrate that enhanced version of our contact observer

can be exploited for the online interpretation of the human

touch and regulation of compliant motion.

The use of disturbance observers for the regulation of

robot compliant motion has been explored is several works.

In [12] whole-body compliant motion in human-humanoid

interaction settings was proposed for maintaining balance

of the torque-controlled bipedal humanoid platform in the

presence of unknown external forces. A momentum based

disturbance observer was applied to the floating-base model

of a humanoid robot in [13] to detect external forces and

integrate them into a whole-body control for kinesthetic

teaching and simultaneous compliant balancing. These meth-

ods, however, require a measurement of the joint torques,

which may not be available and may also be challenging

to estimate in case of highly geared and flexible joints

encountered on many humanoid platforms.

In [14] disturbance observer based compliant humanoid

motion control scheme, that can compensate for high joint

elasticity, was proposed including the modeling of flexible

joints that was performed using the measurement of motor-

joint backlash angle. On the current position-controlled Pep-

per platform, access to the motor side encoder measurements

is not available through robot’s centralized memory, prohibit-

ing to handle motor-joint backlash and joint flexibility. There

are also no motor torque sensors on the platform. Further-

more, estimation of the motor torque from electric current

measurements is not feasible, due to the measurements being

passed to the centralized memory in absolute and down-

sampled form. Nevertheless, in our work we try to overcome

those constraints by exploiting the machine learning data-

driven approach for disturbance observer.

We describe modifications of the contact observer w.r.t

our previous work, with details about machine learning

prediction model training process (Sec. III), and present the

compliance control scheme and controller implementation

details (Sec. IV). We demonstrate compliant motion results

achieved with Pepper in pHRI experiments (Sec. V).

III. CONTACT OBSERVER FOR MULTI-JOINT MOTIONS

First we review the idea behind our methodology in [4];

then we present the details of the updated framework we

propose in order to enhance both robustness and performance

of our initial method for the case of multi-joint motions.

A. Review of the Contact Observer

In our settings, a robot is controlled in a task-space closed-

loop by an acceleration resolved quadratic programming

controller (QP) [15]. As for now, state feedback is not used

to compute desired trajectories –assuming that no contact

has occurred, because when contact occurs, resultant force

estimation is not yet integrated in the QP model. Moreover,

at the test time, when external collisions are introduced,

the QP control without state feedback computes the desired

trajectories that in its nature match those trajectories that

were present in the collision-free training set. At each control

loop iteration desired joint accelerations q̈d are computed as

an output of QP. We obtain values of desired velocity q̇d and

position qd through numerical integration of q̈d, and compute

desired torques τd from inverse dynamics. Note, that τd can

also be obtained as an output of QP controller, by keeping

torques as decision variables (not necessary in this context).

We define an expected position tracking error ǫexp to be the

kind of tracking error that occurs when joint moves freely

and no external forces are applied to any of the robot links

(i.e. external joint torques are zero, τexp = 0). Our goal is

to predict the value of ǫexp given the information about the

desired trajectory of the robot joints.

We have demonstrated in [4] that –under some conditions,

ǫexp can be computed for a joint, actuated by a DC motor

with PD control, as a linear combination of q̈d, q̇d, τd and

ǫ̇exp (assuming no motor-link backlash). However, due to

modeling errors and the lack of possibility to model some

critical non-linear effects, such as a large motor-link backlash

–which in practice cannot be ignored, we use a non-linear

model, such as binary tree, to learn the relationship between

the appropriate set of available features (q̈d, q̇d, τd) and the

value of position tracking error, ǫ, from a sample free-motion

data. As a result, we obtain: ǫiexp = binary tree(q̈i
d
, q̇i

d
, τ i

d
)

for every joint i1. The contact observer signal is defined as

r = ǫ − ǫexp, where ǫ = qd − q, with q being a vector of

measured joint positions (joint encoder readings).

When a contact occurs at a link in the chain after joint

i, the value of ri exceeds a predefined threshold ±δ. The

magnitude and the sign of ri signal encode the intensity and

the direction of the external force respectively.

Interested reader may refer to original work in [4] for a

more detailed explanation of the contact observer method.

B. Robustification of the Contact Observer

The use of r signal for contact monitoring has been

demonstrated in several experiments with Pepper left and

right arm joints, with one joint moving at a time, i.e. 1 degree

of freedom (DoF) case [4]. Occasionally false positive (FP)

and false negative (FN) contact detections occurred during

the experiments. Furthermore, when the system was tested

on more complex motions, e.g. with all arm joints moving

simultaneously with arbitrary speed to random set-points, it

turned out to be not general enough to adapt to such motions.

The reason for that is mainly the fact that sudden motions

of one joint can have significant influence on the tracking

error value of some other joints, especially in the presence

of a significant motor-link backlash.

Such false detection cases have to be eliminated or

minimized in order to use r as a feedback signal in the

active compliance control. We identified the main reasons for

undesired false detection cases. First, due to the insufficient

prediction accuracy of the binary tree prediction model for

1xi being the ith element of vector x.

some new data (not used for the model training), r value can

exceed threshold ±δ even though external collision is not

present, meaning that prediction model fails to generalize to

“unseen” data and predict value of ǫexp correctly in those

cases. Secondly, in some circumstances (e.g. singularity or

near joint limits configurations), external contact force does

not cause r to exceed ±δ, thus the contact remains unnoticed.

Similarly, in case of light contacts, r does not exceed ±δ,

which can be addressed by lowering the value of δ (which

was set to 2.5◦ in previous work). However, to do that the

overall prediction accuracy has to be improved, for both seen

and unseen data, which may not be achievable due to the

accuracy-generalization trade-off. And, finally, as mentioned

previously, the prediction of expected tracking error of a joint

depends on the motion of other joints. Therefore, relevant

variables related to other joints’ desired trajectories must be

identified and included in the prediction feature vector.

The aim is to ensure that the trained models generalize

well to a wide range of complex motions, while encountering

fewest possible false positive contact detections. On the other

hand, it is equally important that prediction is computed

within the control time constraint for all joints. Therefore,

prohibiting the use of very complex models and potentially

sacrificing the maximum achievable prediction accuracy. The

trade-off between model complexity and feature vector size

and model accuracy must be properly handled.

In several application areas of machine learning, so called,

ensemble based techniques have often shown to perform bet-

ter in practice compared to single classification or regression

models [16]. In particular, boosting is a machine learning

technique for ensemble model training that is suitable for

our goal to battle false positive contact detection cases [17].

According to the boosting methodology, a cascade of

several models is trained successively; every new model

k = 2, . . . , N (N being the total number of models in the en-

semble) is trained taking into consideration the performance

of the previously trained models 1, . . . , k− 1. At every new

iteration k, previously known inaccurate predictions of ǫexp

are given more weight before training of kth model takes

place. As a result, every new model in the ensemble is

trained to make a better prediction, especially in those cases

where previous models performed poorly. This results in

minimization of the maximum prediction error, and thus less

false positives in the r signal. We chose a cascade of boosted

decision trees as our prediction model; we use XGBoost

library implementation of this technique [18].

To achieve the best possible prediction model accuracy and

generalization, while minimizing the required computation

time, we make several important choices about model hy-

perparameters. The following developments are presented for

LShoulderRoll joint, also referred to as joint nr. 6 or LSRoll

for short. Analysis for other joints is performed similarly.

1) Feature Vector Components: First of all, on a sample

recording of 45 minutes of collision-free data (with time

step of 12 ms, i.e 225000 samples in total) we analyze the

importance of different variables for ǫ6exp prediction to select

the most relevant variables for the feature vector. We train a

boosted ensemble of decision trees with a feature vector that

includes the desired motion related variables for all the main

left arm joints. The results of relative variable importance

computed from the trained model are summarized in Fig. 1.

0

10

20

30

40

q⋅ d
6

τd
6

q⋅ d
5

qd
5

τd
5

qd
6

τd
8

τd
7

q⋅ d
7

q⋅ d
8

qd
7

qd
8⋅⋅ q⋅⋅ q⋅⋅ q⋅⋅

V
a
ri

a
b
le

 i
m

p
o
rt

a
n
c
e
 (

%
)

Fig. 1: Variable importance for ǫ6exp prediction.

As can be seen from the plot, the most important variables

for ǫ6exp prediction are desired speed and torque of the target

joint, which confirms our previous findings [4]. However,

desired speed, acceleration and torque of the nearby joint,

LShoulderPitch (joint nr. 5), also have significant weight for

prediction of ǫ6exp, which even overweight importance of q̈6
d
.

The variables after the orange dashed line on the plot are

considered of medium-importance and variables after red

dashed line are considered as non-important.

To make a more informed decision on the final size of

the feature vector, we perform k-fold cross-validation with

k = 4 (75% samples for training and 25% for validation)

and analyze how the root-mean-square error (RMSE) and

maximum absolute prediction error (MAX) on validation

sets are affected as we incrementally include more of most

important variables into prediction feature vector. The mean

RMSE evaluated over 4 cross-validation folds only improves

significantly if 3 to 4 most important variables are used (see

Fig. 2). The mean MAX improves significantly until 6 most

important variables are used and stops improving and even

deteriorates after this point. Thus, we chose to include 6 most

important variables in the final feature vector.

MAX

RMSE
0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12

Feature vector size

P
re

d
ic

ti
o
n
 e

rr
o
r

(d
e
g
)

Fig. 2: Prediction error with various feature vector sizes.

2) Ensemble Size and Learning rate: Now that the best

components of the feature vector have been set, we identify

an optimal value for the ensemble size N , and a learning rate

η of the model. Since we intend to use the trained model in

the real-time application, we must select the model with the

smallest possible ensemble size. Selecting a higher learning

rate for the training allows to achieve good performance

with fewer number of sub-models in the ensemble. However,

higher learning rate may result in lower model accuracy, as in

this case the training process is only allowed to make “big

steps” towards an optimal solution. We analyze the mean

cross-validation RMSE for various sizes of ensemble and

for different values of the learning rate. The Fig. 3 illustrates

the performance of models of various sizes trained with three

different learning rates.

0.2

0.3

0.4

1 100 200 300 400

Ensemble size

V
a
lid

a
ti
o
n
 R

M
S

E
 (

d
e
g
)

η = 0.05

η = 0.1

η = 0.3

Fig. 3: Mean validation RMSE for various ensemble sizes

and learning rates.

We see that lower η values do not result in significant

improvement of performance in terms of the mean RMSE

over k cross-validation folds as the size of the ensemble

increases. The difference in performance between the best

and worst performing models is < 0.02◦. Therefore, we

choose to use η = 0.3 with model size N = 50 as our

optimal choice, since it provides a good performance while

keeping ensemble size N relatively low.

3) Individual Decision Tree Maximum Depth: Now that

other model hyperparameters are selected, we identify an

optimal size of the individual decision trees. We train several

models with N = 50 and η = 0.3 and analyze mean RMSE

and MAX computed for training and validation folds. We

also compute the rate of false positive detections as a total

amount of absolute validation prediction errors exceeding the

threshold ±δ divided by the total number of the validation

samples. The results are shown in Fig. 4.

The result is such that with maximum tree depth of 7 the

false positive rate decreases to < 0.1%. The values of RMSE

for both the validation and the training data are acceptably

low, always below soft and hard thresholds indicated as

orange and red dashed lines on the plot respectively. The

maximum absolute prediction error decreases for both seen

and unseen data until maximum tree depth reaches 8, after

#FP<0.1%

min(MAX test)

MAX test

MAX train

RMSE test

RMSE train

0.0

0.5

1.0

1.5

0.0

2.5

5.0

7.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Maximum tree depth

F
a

ls
e

 p
o

s
it
iv

e
 r

a
te

 (
%

)
P

re
d

ic
ti
o

n
 e

rr
o

r
(d

e
g

)
Fig. 4: Optimal max individual tree depth selection from false

positive rate (top) analysis and training/test error (bottom).

this point, trained model becomes too complex and overfits

the training data (training error decreases, while validation

error remains the same or increases). Adapting regularization

strategies did not help to improve the performance of the

model on validation data. The final value for the maximum

tree depth is, therefore, set to 8.

With this final decision on hyperparameters, we are able

to achieve the performance of the contact observer that is

acceptable for the use of r as a feedback in a real-time

control for active compliance. The next section presents the

compliant motion control implementation details.

IV. COMPLIANT MOTION REGULATED VIA MONITORING

OF JOINT POSITION DISCREPANCIES

Here we describe the QP controller design that enables

compliant motion using the contact observer signal as a

feedback on collisions. The overview of the entire process

is presented by pseudocode in Algorithm 1. For simplicity,

consider a QP controller with one posture task in the ob-

jective function, and typical kinematics constraints, such as

self-collision avoidance and joint limits. The posture task

specifies a target posture, qtarget
2. The output, q̈d, of the QP

controller generates a whole-body motion that brings the

robot joints closer to qtarget while satisfying the kinematics

constraints. The rate of convergence of the joints to qtarget is

regulated via the QP posture task stiffness gain.

Before the QP controller starts, we read the initial robot

sensor values, qinit. For the first iteration of the controller

execution, timestamp t = 0, we assume that no collision with

the environment occurred, i.e. r(0) = 0. At this point, the

posture task target position is equal to the values of the initial

2Note that qtarget is the final target robot posture, whereas qd is interme-
diate desired joints position command which iteratively and incrementally
brings a robot from its initial state to qtarget.

sensor reading (qtarget = qinit). The QP controller computes

q̈d, that is integrated twice to have qd that is sent to the

low-level PD servo and brings progressively the robot joints

closer to qtarget. In the first iteration, since qtarget = qinit the

robot does not move, i.e. q̈d ≈ 0.

Using known robot model and QP output, the desired

torque τd is computed. Now the ǫexp can be computed

using the trained prediction models described in the previous

section. At the same time, the measured position tracking

error is computed as ǫ = qd − qinit. Finally, the contact

observer signal, r = ǫ − ǫexp, is computed and passed to

the next QP iteration along with the new sensor readings.

Starting from the second iteration, if |r| < δ the posture

task remains unchanged. Otherwise, if a discrepancy between

ǫ and ǫexp has occurred (i.e. |r| ≥ δ), before the QP controller

is inferred, the posture task has to be readjusted to comply in

the direction of estimated disturbance. The compliant motion

of every joint is expressed as follows:

qtarget(t) = qd(t− 1)−Kcr +Kv q̇d(t− 1) (1)

where Kc and Kv are compliance and velocity gains respec-

tively, which are tuned for every joint. The posture task is

updated in the QP objective function with new qtarget, and

the entire process repeats until the controller is stopped.

The compliance gain, Kc, regulates how much influence

contact observer signal r has on updated target posture.

Lower values of Kc allow the target posture to be updated

only slightly, which means that QP will not compute high q̈d
and robot will comply stiffly (little amount with lower speed).

On the contrary, a high Kc causes the qtarget of the posture

task to change significantly resulting in high compliance and

faster motion, as the q̈d is proportional to the QP task error.

The velocity gain, Kv , regulates the proportional contribution

of joint desired speed to facilitate compliance of moving

joints (those that started to comply in the previous iterations).

Note that this basic strategy can be augmented with any

other QP tasks (e.g. set point, visual servoing, force tasks,

etc.), by adding them to the QP objective function via higher

level planning algorithm either along with compliant posture

task or within periods when |r| < δ. In such case, a proper

tuning of QP tasks’ weight and stiffness values can influence

greatly the overall performance of the complex QP controller.

V. EXPERIMENTAL RESULTS

We use our contact observer methodology in two pHRI

experimental setups. The threshold for contact detection δ is

set to 2.5◦ for all joints in all experiments.

In the first scenario, a robot is making a motion that

initiates the process of assisting a human to stand up from a

sitting position. The robot moves its arm towards the human

back and stops moving further if it detects a contact (i.e.

Kc and Kv gains of Eq. 1 are set to zero). If no contact

is detected the robot continues to move its arm until joint

limits. The motion is repeated several times with varying

values of the target LShoulderPitch (LSPitch for short) joint

position, allowing to take contact lower or higher on the

back of a human. The values of the desired joint positions

Algorithm 1: The pseudocode of algorithm for the QP

controller regulating joint compliance via r signal

q ← ROBOT.GET SENSORS()
r ← 0

CNTRL ← INITIALIZE CONTROLLER()
POSTURE TASK ← INITIALIZE POSTURE(q)
CNTRL ← INSERT TASK(POSTURE TASK)
CNTRL.RUN()
while CNTRL.RUNNING() do

if |r| ≥ δ then
qtarget(t)← COMPLY JOINTS(r, qd(t− 1), q̇d(t− 1))
CNTRL.POSTURE TASK ← UPDATE TASK(qtarget(t))

end if
q̈d ← SOLVE QP(POSTURE TASK)
q̇d ← INTEGRATE(q̈d) qd ← INTEGRATE(q̇d)
ROBOT.SETJOINTANGLES(qd)
τd ← INV. DYNAMICS(q̈d, q̇d, qd, ROBOT MODEL)
ǫexp ← PREDICT(q̈d, q̇d, qd, τd)
ǫ = qd − q
r = ǫ− ǫexp

q ← ROBOT.GET SENSORS()
end while

and the contact observer of the LSRoll are shown in Fig. 5.

When the contact observer signal exceeds the threshold, the

commanded position for the LSRoll joint is altered such that

robot stops instead of continuing to move forward.

In the second experimental scenario, the robot moves 4

joints of the left arm randomly. When the contact is detected,

Eq. 1 with positive Kc and Kv gains, is used to guide the

robot motions through human touch and comply the joints of

the arm. The values for Kc and Kv gains are set manually

for every joint; exact values used in the experiments are

presented in Tab. I.

LShoulderPitch LShoulderRoll LElbowYaw LElbowRoll

Kc 17 5 5 17
Kv 0.08 0.02 0.02 0.02

TABLE I: Gain values for main left arm joints.

The plot segment of desired position of the shoulder roll

joint and corresponding contact observer signals are shown

in Fig. 6. Due to the random set-points being commanded to

the robot during the free motion –to show that the method can

be applied for movement of arbitrary position and speed, the

compliance of the joints may not be obvious from the plot.

However, looking closely one sees that at the moments of

contacts (indicated with dashed blue lines) the desired joint

position is being altered taking into account the direction in

which the contact is applied.

No special handling of the contact/no-contact transition

was done in aforementioned experiments, although the con-

trol method would benefit from meticulous handling of

such transition, which is left for the future work. Extended

presentation of the results of both experiments is included in

the video accompanying this paper.

LSPitch_d

LSRoll_d

�25

0

25

50

75

�10

�5

0

5

0 30 60 90

0 30 60 90

Time (s)

D
e
s
ir
e
d
 j
o
in

t
p
o
s
it
io

n
 (

d
e
g
)

C
o
n
ta

c
t
o
b
s
e
rv

e
r

(L
S

R
o
ll)

Fig. 5: Robot stops moving when in contact. The dotted blue

lines show start of the contacts, red dashed lines show ±δ.

VI. CONCLUSION

We have presented the integration of a joint position

tracking discrepancy based contact observer as a feedback

signal into the compliant motion controller. The theoretical

and implementation details of contact observer robustifica-

tion and compliance controller design have been described.

Finally, we demonstrated the performance of the proposed

method in pHRI experiments with humanoid robot Pepper.

Future work will focus on enhancing the overall contact

observer and compliance behaviors to the entire robot body

including also an omnidirectional mobile base or a floating

base of a humanoid and provide it as an additional function-

ality to the commercial package of Pepper.

REFERENCES

[1] S. Haddadin, A. D. Luca, and A. Albu-Schäffer, “Robot collisions: A
survey on detection, isolation, and identification,” IEEE Transactions

on Robotics, vol. 33, no. 6, pp. 1292–1312, 2017.
[2] F. Flacco, A. Paolillo, and A. Kheddar, “Residual-based contacts esti-

mation for humanoid robots,” in IEEE-RAS International Conference

on Humanoid Robots, pp. 409–415, 2016.
[3] F. Flacco and A. Kheddar, “Contact detection and physical interaction

for low cost personal robots,” in IEEE International Conference on

Robot and Human Interactive Communication, pp. 495–501, 2017.
[4] A. Bolotnikova, S. Courtois, and A. Kheddar, “Contact observer for

humanoid robot pepper based on tracking joint position discrepancies,”
in IEEE International Conference on Robot and Human Interactive

Communication, pp. 29–34, 2018.
[5] A. Kheddar and A. Billard, “A tactile matrix for whole-body humanoid

haptic sensing and safe interaction,” in IEEE International Conference

on Robotics and Biomimetics, (Phuket, Thailand), pp. 1433–1438, 7-
11 December 2011.

[6] T. Mattioli and M. Vendittelli, “Interaction force reconstruction for
humanoid robots,” IEEE Robotics and Automation Letters, vol. 2,
no. 1, pp. 282–289, 2017.

LSRoll_d

0

25

50

75

�5

0

5

10

0 25 50 75 100

0 25 50 75 100

Time (s)

D
e
s
ir
e
d
 j
o
in

t
p
o
s
it
io

n
 (

d
e
g
)

C
o
n
ta

c
t
o
b
s
e
rv

e
r

(L
S

R
o
ll)

Fig. 6: Robot moves joints to random set-points. When

contact is detected, joint position is set according to Eq. 1.

[7] J. Vorndamme, M. Schappler, and S. Haddadin, “Collision detection,
isolation and identification for humanoids,” in IEEE International

Conference on Robotics and Automation, pp. 4754–4761, 2017.
[8] A. D. Luca and R. Mattone, “Sensorless robot collision detection and

hybrid force/motion control,” in IEEE International Conference on

Robotics and Automation, pp. 999–1004, 2005.
[9] S. Haddadin, A. Albu-Schaffer, A. D. Luca, and G. Hirzinger, “Col-

lision detection and reaction: A contribution to safe physical human-
robot interaction,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 3356–3363, 2008.
[10] A. D. Luca and L. Ferrajoli, “Exploiting robot redundancy in collision

detection and reaction,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 3299–3305, 2008.
[11] S. Parusel, S. Haddadin, and A. Albu-Schäffer, “Modular state-based

behavior control for safe human-robot interaction: A lightweight
control architecture for a lightweight robot,” in IEEE International

Conference on Robotics and Automation, pp. 4298–4305, 2011.
[12] S.-H. Hyon, J. G. Hale, and G. Cheng, “Full-body compliant human–

humanoid interaction: balancing in the presence of unknown external
forces,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 884–898,
2007.

[13] C. Ott, B. Henze, and D. Lee, “Kinesthetic teaching of humanoid
motion based on whole-body compliance control with interaction-
aware balancing,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 4615–4621, 2013.
[14] M. Kim, J. H. Kim, S. Kim, J. Sim, , and J. Park, “Disturbance

observer based linear feedback controller for compliant motion of
humanoid robot,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 403–410, 2018.
[15] K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Multi-

robot and task-space force control with quadratic programming,” IEEE

Transactions on Robotics, “to appear”.
[16] T. G. Dietterich, “Ensemble methods in machine learning,” in Inter-

national Workshop on Multiple Classifier Systems, pp. 1–15, 2000.
[17] H. Drucker and C. Cortes, “Boosting decision trees,” in Advances in

neural information processing systems, pp. 479–485, 1996.
[18] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”

in International conference on knowledge discovery and data mining,
pp. 785–794, 2016.

