
HAL Id: lirmm-01896872
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01896872

Submitted on 17 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User’s Constraints in Itemset Mining
Christian Bessiere, Nadjib Lazaar, Mehdi Maamar

To cite this version:
Christian Bessiere, Nadjib Lazaar, Mehdi Maamar. User’s Constraints in Itemset Mining. CP 2018 -
24th International Conference on Principles and Practice of Constraint Programming, Aug 2018, Lille,
France. pp.537-553, �10.1007/978-3-319-98334-9_35�. �lirmm-01896872�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01896872
https://hal.archives-ouvertes.fr

User’s Constraints in Itemset Mining

Christian Bessiere1, Nadjib Lazaar1, Mehdi Maamar2

1 LIRMM, University of Montpellier, CNRS, Montpellier, France
{bessiere,lazaar}@lirmm.fr

2 CRIL-CNRS, University of Artois, Lens, France
maamar@cril.fr

Abstract. Discovering significant itemsets is one of the fundamental tasks in
data mining. It has recently been shown that constraint programming is a flexible
way to tackle data mining tasks. With a constraint programming approach, we can
easily express and efficiently answer queries with user’s constraints on itemsets.
However, in many practical cases queries also involve user’s constraints on the
dataset itself. For instance, in a dataset of purchases, the user may want to know
which itemset is frequent and the day at which it is frequent. This paper presents
a general constraint programming model able to handle any kind of query on the
dataset for itemset mining.

1 Introduction

People have always been interested in analyzing phenomena from data by looking for
significant itemsets. This task became easier and accessible for big datasets thanks to
computers, and thanks to the development of specialized algorithms for finding fre-
quent/closed/... itemsets. Nevertheless, looking for itemsets with additional user’s con-
straints remains a bottleneck nowadays. According to [11], there are three ways to han-
dle user’s constraints in an itemset mining problem. We can use a pre-processing step
that restricts the dataset to transactions that satisfy the constraints. Such a technique
quickly becomes infeasible when there is a large number of sub-datasets satisfying the
user’s constraints. We can integrate the filtering of the user’s constraints into the special-
ized data mining process in order to extract only the itemsets satisfying the constraints.
Such a technique requires the development of a new algorithm for each new itemset
mining problem with user’s constraints. We can sometimes use a post-processing step
to filter out the itemsets violating the user’s constraints. Such a brute-force technique
does not apply to all kinds of constraints and is computationally infeasible when the
problem without the user’s constraints has too many solutions.

In a recent line of work [8,5,6,4,9], constraint programming (CP) has been used as a
declarative way to solve data mining problems. Such an approach has not competed yet
with state of the art data mining algorithms [12,10] for simple queries. Nevertheless,
the advantage of the CP approach is to be able to add extra (user’s) constraints in the
model so as to generate only interesting itemsets at no other implementation cost.

The weakness of the CP approach is that the kind of user’s constraints that can be
expressed has never been clarified. It is easy to post constraints on the kind of itemsets
we are interested in but the user may be interested in mining only in some particular

2 Christian Bessiere1, Nadjib Lazaar1, Mehdi Maamar2

transactions of the dataset. For instance, the user may be interested in itemsets that are
frequent in transactions corresponding to purchases of less than 100¤. None of the cur-
rent CP approaches is able to catch such kind of constraints. Hence, as with specialized
approaches, we need to preprocess the dataset with an ad-hoc algorithm to generate a
sub-dataset containing only transaction of less than 100¤. It becomes more complex
if the user is interested in itemsets that are frequent in transactions corresponding to
purchases of a particular sequence of days (such as ’the week of Christmas’, ’every
Saturday’, etc.). Preprocessing the dataset can lead to the generation of a huge number
of sub-datasets, each corresponding to a potential sequence of days.

Another consequence of the lack of clarification of what the CP approach can or
cannot do is that some CP models can be flawed by the closedness property. As shown
in [1], non-monotone constraints interfere with closedness.1 For instance, if we post the
global constraint for frequent closed itemsets (FCIs) proposed in [6] in a CP model and
if in addition we post the constraint specifying that the user is only interested in itemsets
of size k, then frequent itemsets of size k having a superset of same frequency will be
lost.

In this paper we present a classification of user’s constraints with respect to which
itemsets are extracted and from where in the dataset they are extracted. We then propose
a generic CP model in which we can capture all these types of user’s constraints. The
interaction between constraints and closedness is discussed.

The paper is organized as follows. Section 2 presents the background in data mining
and constraint programming. In Section 3 we propose a taxonomy of the types of user’s
constraints that can be useful in itemset mining. In Section 4, we present a CP model
able to capture all these user’s constraints. Section 5 gives some case studies that can
be expressed using our CP model. Section 6 reports experiments.

2 Background

2.1 Itemset mining

Let I = {1, . . . , n} be a set of n item indices and T = {1, . . . ,m} a set of m transac-
tion indices. An itemset P is a subset of I. The set of itemsets is LI = 2I\∅. A transac-
tional dataset is a set D ⊆ I × T . A sub-dataset is a subset of D obtained by removing
columns (items) and/or rows (transactions). The set of possible sub-datasets is denoted
by LD. The cover of an itemset P in a sub-dataset D, denoted by cover(D,P), is the
set of transactions in D containing P . The frequency of an itemset P in D is the ratio
|cover(D,P)|
|cover(D,∅)| . An itemset P is closed in a sub-dataset D if and only if the set of items
common to all transactions of cover(D,P) is P itself (that is,

⋂
t∈cover(D,P) t = P).

Example 1. Let us consider the dataset D1 involving 8 items and 6 transactions and
displayed in Figure 1.a. The cover cover(D1, BEF) of the itemset BEF in D1 is
equal to {t1, t5, t6}. The frequency of BEF in D1 is thus 50%. The itemset BEF is
closed in D1. The itemset BE is not closed in D1 because F belongs to all transactions
in cover(D1, BE).

1 A constraint c is monotone if any superset of an itemset P satisfying c also satisfies c.

User’s Constraints in Itemset Mining 3

Items
Trans. I1 I2 I3

t1 B C E F G HT1 t2 A D G
t3 A C D HT2
t4 A E F
t5 B E FT3 t6 B E F G

(a) (b)

Fig. 1. (a) A transaction dataset D1. (b) Queries on dataset D.

2.2 Constraint programming (CP)

A constraint program is defined by a set of variables X = {X1, . . . , Xn}, where Di

is the set of values that can be assigned to Xi, and a finite set of constraints C. Each
constraint C(Y) ∈ C expresses a relation over a subset Y of variables X . The task is to
find assignments (Xi = di) with di ∈ Di for i = 1, . . . , n, such that all constraints are
satisfied.

2.3 CP models for itemset mining

In [8,3], De Raedt et al. have proposed CP4IM, a first CP model for itemset min-
ing. They showed how some constraints (e.g., frequency and closedness) can be for-
mulated using CP. This model uses two sets of Boolean variables: (1) item variables
{X1, X2, ..., Xn}, such that (Xi = 1) if and only if the extracted itemset P contains
i; (2) transaction variables {T1, T2, ..., Tm}, such that (Tt = 1) if and only if the ex-
tracted itemset P is in the transaction t. The relationship between P and T is modeled
by m reified n-ary constraints. The minimal frequency constraint and the closedness
constraint are also encoded by n-ary and m-ary reified constraints.

Recently, global constraints have been proposed to model and solve efficiently data
mining problems. The CLOSEDPATTERN global constraint in [6] compactly encodes
both the minimal frequency and the closedness constraints. This global constraint does
not use reified constraints. It is defined only on item variables. The filtering algorithm
ensures domain consistency in a polynomial time and space complexity. The COVER-
SIZE global constraint in [9] uses a reversible sparse bitset data structure to compute the
subset of transactions that cover an itemset. The filtering algorithm computes a lower
and an upper-bound on the frequency.

3 User’s Constraints Taxonomy

For an itemset mining task we aim at extracting all itemsets P of LI satisfying a query
Q(P) that is a conjunction of (user’s) constraints. The set Th(Q) = {P ∈ LI | Q(P)}

4 Christian Bessiere1, Nadjib Lazaar1, Mehdi Maamar2

is called a theory [7]. Common examples of user’s constraints on extracted itemsets are
frequency, closedness, maximality, etc. However, it may be desirable for a user to ask
for itemsets extracted from particular parts of the dataset. In the general case, a query
predicate, denoted by Q(D,P), is expressed both on the itemsets P it returns and on
the sub-datasets D ∈ LD on which it mines. The extracted elements forming a theory
are now pairs:

Th(Q) = {(D,P) | D ∈ LD ∧ P ∈ LI ∧Q(D,P)}.

To make the description of our user’s constraints taxonomy less abstract, we sup-
pose a categorization of items and transactions. Items are products belonging to k cat-
egories (e.g., food, electronics, cleaning, etc), denoted by I = {I1, . . . , Ik}. Transac-
tions are categorized into v categories of customers (e.g., categories based on age/gender
criteria), denoted by T = {T1, . . . , Tv}. It is important to bear in mind that these cat-
egories are just examples provided for illustration purposes. Example 2 presents the
running example (with categories) that will be used to illustrate each of the types of
user’s constraints we present in this section.

Example 2. Let us consider again the dataset D1 displayed in Figure 1.a. For our run-
ning example, items belong to three categories {A,B}, {C,D,E} and {F,G,H}, and
transactions belong to three categories {t1, t2}, {t3, t4} and {t5, t6}.

3.1 User’s constraints on itemsets

When the user comes with constraints only on the nature of the itemsets to extract,
the query, Q1, is equivalent to a standard itemset mining task. We mine on the whole
dataset. Figure 1.b graphically illustrates this. The itemsets that are solution forQ1 (i.e.,
P1, P2 and P3) are extracted from D1 = D.

An example of such a query where user’s constraints are expressed only on itemsets
is the query Q1 asking for FCIs:

Q1(D,P) ≡ frequent(D,P, θ) ∧ closed(D,P)

where frequent(D,P, θ) and closed(D,P) are predicates expressing user’s constraints
on the frequency (with a minimum frequency θ) and the closedness of an itemset P
in D, where D is D in this case. The query Q1 on the dataset D1 of Figure 1.a with a
minimum frequency θ ≥ 50% returns A, BEF , EF and G as FCIs.

As a second example of such a query on itemsets, the user can ask a queryQ′
1 where

the extracted itemsets are FCIs and the items are taken from at least lb and at most ub
categories:

Q′
1(D,P) ≡ Q1(D,P) ∧ atLeast(P, lb) ∧ atMost(P, ub)

where atLeast(P, lb) and atMost(P, ub) are user’s constraints ensuring that the item-
set P overlaps between lb and ub categories of items. The query Q′

1 on the dataset D1

of Figure 1.a with lb = ub = 2 and minimum frequency θ = 50% only returns EF . It
does not return A and G because each of these itemsets belongs to a single category. It
does not return BEF because it belongs to three categories.

User’s Constraints in Itemset Mining 5

3.2 User’s constraints on items

In addition to constraints on itemsets, the user may want to put constraints on the items
themselves. Such constraints are constraints on the dataset. They specify on which
items/columns the mining will occur. In Figure 1.b, constraints on items lead the query,
Q2, to mine on the sub-dataset D2 satisfying constraints on items, from which we ex-
tract the itemset P4 satisfying the constraints on itemsets.

As an example, the user can ask a query Q2, where the extracted itemsets are FCIs
of sub-datasets containing at least lbI categories of items and at most ubI categories:

Q2(D,P) ≡ Q1(D,P) ∧ atLeastI(D, lbI) ∧ atMostI(D,ubI)

where atLeastI(D, lbI) and atMostI(D,ubI) are user’s constraints ensuring that the
dataset D contains between lbI and ubI categories of items. As opposed to Q1 and Q′

1,
Q2 seeks itemsets in sub-datasets satisfying a property on their items. The query Q2 on
the dataset D1 of Figure 1.a with lbI = ubI = 2 and minimum frequency θ = 50%
returns:

– A, BE and E on I1 + I2,
– A, BF , F and G on I1 + I3,
– EF and G on I2 + I3.

3.3 User’s constraints on transactions

The user may also want to put constraints on transactions. Such constraints determine on
which transactions/rows the mining will occur. In Figure 1.b, constraints on transactions
lead the query, Q3, to mine on the subset D3 of transactions from which we extract the
itemsets P5 and P6.

As an example, the user can ask a query Q3, where the extracted itemsets are FCIs
on at least lbT and at most ubT categories:

Q3(D,P) ≡ Q1(D,P) ∧ atLeastT (D, lbT) ∧ atMostT (D,ubT)

where atLeastT (D, lbT) and atMostT (D,ubT) are user’s constraints ensuring that
the dataset D contains between lbT and ubT categories of transactions. The query Q3

on the dataset D1 of Figure 1.a with lbT = ubT = 2 and minimum frequency θ = 50%
returns:

– A, AD, CH , EF and G on T1 + T2,
– BEF , BEFG and G on T1 + T3,
– A, BEF and EF on T2 + T3.

3.4 User’s constraints on items and transactions

Finally, the user may want to put constraints on both items and transactions. In Figure
1.b, such constraints lead the query, Q4, to mine on D4 and D′

4 from which we extract
the itemsets P7 and P8.

6 Christian Bessiere1, Nadjib Lazaar1, Mehdi Maamar2

The user can ask a query Q4, where the extracted itemsets are FCIs of sub-datasets
containing at least lbI and at most ubI categories of items and at least lbT and at most
ubT categories of transactions:

Q4(D,P) ≡ Q2(D,P) ∧Q3(D,P)

The query Q4 on the dataset D1 of Figure 1.a with lbI = ubI = lbT = ubT = 2
and minimum frequency θ = 50% will have to explore nine possible sub-datasets in
which to look for frequent closed itemsets:

I1 + I2 I1 + I3 I2 + I3

T1 + T2 A, AD, C, E A, F , G, H CH , D, EF , G

T1 + T3 BE BF , BFG, G EF , EFG, G

T2 + T3 A, BE, E A, BF , F EF

Q4 is merely a combination of Q1 (user’s constraints on itemsets), Q2 (user’s con-
straints on items), and Q3 (user’s constraints on transactions). We presented it to show
that our model allows any kind of combinations of users constraints.

3.5 A simple illustration: Where Ferrari cars are frequently bought?

Consider a dataset of cars purchases in France, where each transaction/purchase also
contains items representing the city, the department, and the region where the pur-
chase was performed. (City/department/region is the way France is administratively
organized.) The user may be interested in finding where (city, department or region)
more than 10% of the purchases are Ferrari cars. This can be done by the query:

RQ(D,P) ≡frequent(D,P, 10%) ∧ (Ferrari ∈ P)∧
(Reg(D) ∨Dep(D) ∨ City(D))

where Reg(D), Dep(D) and City(D) are user’s constraints ensuring that the dataset
D corresponds to one of the administrative entities of France.

4 A General CP Model for Itemset Mining

We present ITEMSET, a CP model for itemset mining taking into account any type of
user’s constraints presented in Section 3.

4.1 Variables

P , T , H and V are Boolean vectors to encode:

User’s Constraints in Itemset Mining 7

– P = 〈P1, . . . , Pn〉: the itemset we are looking for. For each item i, the Boolean
variable Pi represents whether i is in the extracted itemset.

– T = 〈T1, . . . , Tm〉: the transactions that are covered by the extracted itemset.
– H = 〈H1, . . . ,Hn〉: The items in the sub-dataset where the mining will occur.
Hi = 0 means that the item/column i is ignored.

– V = 〈V1, . . . , Vm〉: The transactions in the sub-dataset where the mining will occur.
Vj = 0 means that the transaction/row j is ignored.

〈H,V 〉 circumscribes the sub-dataset used to extract the itemset. The CP solver
searches in different sub-datasets, backtracking from a sub-dataset and branching on
another. 〈P, T 〉 represents the itemset we are looking for, and its coverage in terms of
transactions.

4.2 Constraints

Our generic CP model consists of three sets of constraints:

ITEMSET(P,H, T, V) =


DATASET(H,V)

CHANNELING(P,H, T, V)

MINING(P,H, T, V)

DATASET(H,V) is the set of constraints that express user’s constraints on items (i.e.,
H) and/or transactions (i.e., V). This set of constraints circumscribes the sub-datasets.

CHANNELING(P,H, T, V) is the set of channeling constraints that express the re-
lationship between the two sets of variables 〈P, T 〉 and 〈H,V 〉:

Hi = 0⇒ Pi = 0

Vj = 0⇒ Tj = 0

These constraints guarantee that if an item (resp. a transaction) is not part of the mining
process, it will not be part of the extracted itemset (resp. the cover set).

MINING(P,H, T, V) is the set of constraints that express the (user’s) constraints on
itemsets such as frequency, closedness, size, and more sophisticated user’s constraints.

5 ITEMSET Model: Cases Studies

In this section, we illustrate our CP model ITEMSET on the queries detailed in Section
3. For each query, user’s constraints can be written in the DATASET and/or MINING
parts of the ITEMSET model. CHANNELING remains unchanged.

Query Q1

For query Q1, we have user’s constraints only on itemsets. That is, the mining process
will occur on the whole set of transactions. For such a case, we have:

DATASET(H,V) =

{
∀i ∈ I : Hi = 1

∀j ∈ T : Vj = 1

8 Christian Bessiere1, Nadjib Lazaar1, Mehdi Maamar2

The user asks for FCIs:

MINING(P,H, T, V) =
∀j ∈ T : Ti = 1⇔

∑
i∈I

Pi(1−Dij) = 0

∀i ∈ I : Pi = 1⇒ 1
|T |

∑
j∈T

TjDij ≥ θ

∀i ∈ I : Pi = 1⇔
∑
j∈T

Tj(1−Dij) = 0

This corresponds to the model presented in [3] and how it can be written in the MINING
part of our ITEMSET model. The first constraint represents the coverage constraint,
the second is the minimum frequency with respect to a given minimum frequency θ,
and the third one expresses the closedness constraint. Note that to obtain an optimal
propagation, this part can be replaced by the global constraint CLOSEDPATTERN [6]:

MINING(P,H, T, V) = CLOSEDPATTERNθ(P, T)

Query Q′
1

For Q′
1, we have k item categories. The user asks for FCIs extracted from the whole

dataset but the items composing the extracted FCI must belong to at least lb categories
and at most ub categories where lb ≤ ub ≤ k. The DATASET part is the same as in the
case of Q1. The MINING part takes into account the new user’s constraint on itemsets:

MINING(P,H, T, V) =


CLOSEDPATTERNθ(P, T)

lb ≤
k∑
j=1

max
i∈Ij

Pi ≤ ub

The first constraint is used to extract FCIs. The second constraint holds if and only if
the items of the extracted itemset belong to lb to ub categories.

Query Q2

For Q2, the user asks for FCIs not from the whole dataset as in Q1 and Q′
1, but from a

part of the dataset with lbI to ubI categories of items. Such user’s constraints on items
are expressed in the DATASET part of our model as:

DATASET(H,V) =lbI ≤
k∑
j=1

min
i∈Ij

Hi =
k∑
j=1

max
i∈Ij

Hi ≤ ubI

∀j ∈ T : Vj = 1

For each category, the first constraint activates all items or none. The number of cate-
gories with their items activated is between lbI to ubI . The second constraint activates
the whole set of transactions. The MINING part is the almost the same as in the case of

User’s Constraints in Itemset Mining 9

Q1. The only difference is that we need an adapted version of the CLOSEDPATTERNθ
where frequent closed itemsets are mined in the sub-dataset circumscribed by the H an
V vectors:

MINING(P,H, T, V) = CLOSEDPATTERNθ(P,H, T, V)

Query Q3

For Q3, we have v transaction categories. With Q3, the user asks for FCIs not from the
whole set of transactions but from at least lbT and at most ubT transaction categories.
These user’s constraints on transactions are written in our model as:

DATASET(H,V) =∀i ∈ I : Hi = 1

lbT ≤
v∑
j=1

min
i∈Tj

Vi =
v∑
j=1

max
i∈Tj

Vi ≤ ubT

The first constraint activates the whole set of items. For each category, the second con-
straint activates all transactions or none. The number of categories with their transac-
tions activated is between lbT and ubT . The user asks for CFIs. That is, the MINING
part is the same as in the case of Q2.

Query Q4

Q4 involves the different types of user’s constraints presented in this paper. We have
k item categories and v transaction categories. The user asks for FCIs on at least lbI
and at most ubI categories of products and at least lbT and at most ubT categories of
customers.

DATASET(H,V) =
lbI ≤

k∑
j=1

min
i∈Ij

Hi =
k∑
j=1

max
i∈Ij

Hi ≤ ubI

lbT ≤
v∑
j=1

min
i∈Tj

Vi =
v∑
j=1

max
i∈Tj

Vi ≤ ubT

The first constraint ensures the sub-dataset satisfies the constraints on items (categories
activated as a whole and between lbI and ubI of them activated). The second constraint
ensures the sub-dataset satisfies the constraints on transactions (categories activated as
a whole and between lbT and ubT of them activated). As we look for FCIs, the MINING
part remains the same as in the case of Q2 and Q3.

Query RQ

We illustrate our model on the query presented in Section 3.5: Where Ferrari cars
are frequently bought?. To make it simple, suppose that transactions are categorized

10 Christian Bessiere1, Nadjib Lazaar1, Mehdi Maamar2

into r regions T = {T1, T2, . . . , Tr}, each region is composed of d departments Ti =
{Ti:1, Ti:2, . . . , Ti:d}, and each department is composed of c cities Ti:j = {Ti:j:1, Ti:j:2, . . . , Ti:j:c}.
(In the real case, the number of cities per department and departments per region can
vary.)

The CHANNELING part of the model is the same as in our generic CP model pre-
sented in Section 4. We need to define the DATASET and the MINING parts for the RQ
query. In the following, f refers to the item representing the fact that the brand of the
car is Ferrari.

DATASET(H,V) =


∀i ∈ I \ {f} : Hi = 0

Pf = 1

(1) ∨ (2) ∨ (3)

where (1), (2), and (3) are the constraints specifying that itemsets are extracted from
a region, a department, or a city. That is, (1), (2), and (3) are constraints that we can
express as in the second line of DATASET(H,V) of query Q3 with lbT = ubT = 1.2

MINING(P,H, T, V) = frequent(P,H, T, V, 10%)

where frequent itemsets are mined in the sub-dataset circumscribed by the H an V
vectors. The V vector characterizes the places where Ferrari cars are frequently bought.
We thus observe that the interesting part of the solutions of this data mining task is more
in the value of the V variables than in the P variables.

An observation on closedness

As pointed out in the introduction and in [1], closedness can interfere with user’s con-
straints when they are not monotone. Existing CP approaches can lead to the loss of
solutions because CP approaches extract closed itemsets that in addition satisfy the
user’s constraints. (Some itemsets may satisfy the user’s constraints whereas not being
closed, and closed itemsets may violate a user’s constraint.) What we usually want is to
extract itemsets that are closed with respect to the user’s constraints. Our model allows
us to specify on which sub-datasets frequency and closedness will be computed. As a
consequence, when these sub-datasets satisfy some non-intersecting properties, we are
able to safely combine closedness with non-monotone constraints.

Take for instance Example 1 with a minimum frequency of 50%. If we want itemsets
not containingA, F , orG, and closed with respect to these constraints, no system is able
to return the only solution BE because it is not closed (BEF has the same frequency).
In our model, if we set HA = HF = HG = 0, BE is returned as a closed itemset
of the sub-dataset D1[BCDE]. Similarly, if we want itemsets of size 2 and closed
with respect to this constraint, all systems will return EF and will miss BE and BF ,

2 A CP expert may object that disjunctions of predicates are not the most efficient way to express
constraints. This operational concern can be addressed by capturing (1)∨(2)∨(3) into a single
global constraint, or by simply adding redundant constraints Vp = 1→ Vr = 1 for every pair
(p, r) of transactions in the same city, and (Vp = 1 ∧ Vq = 1) → Vr = 1 for every triplet
(p, q, r) of transactions in the same region (resp. department) such that p and q are not in the
same department (resp. city).

User’s Constraints in Itemset Mining 11

Table 1. Properties of the used datasets

Dataset |T | |I| |T | ρ domain
Zoo 101 36 16 44% zoo database

Primary 336 31 15 48% tumor descriptions
Vote 435 48 16 33% U.S voting Records
Chess 3196 75 37 49% game steps

Mushroom 8124 119 23 19% specie’s mushrooms
Primary: Primary-tumor

which are not closed because BEF has the same frequency. In our model, if we set∑n
1 Hi = 2 (in addition to

∑n
1 Pi = 2), BE and BF are returned as closed itemsets of

the sub-datasetsD1[BE] andD1[BF] respectively. Observe that none of the constraints
above are monotone. Unfortunately, not all user’s constraints can be combined with
closedness in our model. If we want itemsets of size at most 2 and closed with respect
to this constraint, and if we set

∑n
1 Hi ≤ 2, A, BE, BF , EF , and G are returned, but

also B, E, and F because they are closed for the sub-datasetsD1[B],D1[E] andD1[F]
respectively, whereas they are not closed for the constraint ”itemset of size at most 2”.

6 Experimental Evaluation

We made experiments to evaluate the queries Q1, Q2, Q3 and Q4 on our generic CP
model ITEMSET for itemset mining.

6.1 Benchmark datasets

We selected several real-sized datasets from the FIMI repository3 and the CP4IM repos-
itory4. These datasets have various characteristics representing different application do-
mains. For each dataset, Table 1 reports the number of transactions |T |, the number
of items |I|, the average size of transactions |T |, its density ρ (i.e., |T |/|I|), and its
application domain. The datasets are presented by increasing size.

6.2 Experimental protocol

We implemented the ITEMSET model presented in Section 4. This implementation,
named CP-ITEMSET, is in C++, on top of the Gecode solver (www.gecode.org/). The
frequency and closedness constraints are performed by a new implementation of the
CLOSEDPATTERN global constraint taking into account the variables H , V .5 For LCM,
the state-of-the-art specialized algorithm for CFIs, we used the publicly available ver-
sion (http://research.nii.ac.jp/ uno/codes.htm). All experiments were conducted on an
Intel Xeon E5-2665 @2.40 Ghz and a 48GB RAM with a timeout of 900 seconds.

3 http://fimi.ua.ac.be/data/
4 https://dtai.cs.kuleuven.be/CP4IM/datasets/
5 http://www.lirmm.fr/∼lazaar/cpminer.html

http://www.lirmm.fr/~lazaar/cpminer.html

12 Christian Bessiere1, Nadjib Lazaar1, Mehdi Maamar2

Table 2. LCM and CP-ITEMSET on Q1 queries. (Times are in seconds.)

Instances #FCIs LCM CP-ITEMSET

Zoo 50 5 4 0.01 0.01
Primary 60 6 1 0.01 0.01
Vote 50 2 1 0.01 0.01

Mushroom 50 5 8 0.02 0.10
Chess 80 10 4 0.03 0.29

In all our experiments we selected a minimum support θ and a minimum size of
itemsets k in order to have constrained instances with less than 10 solutions. The rea-
son of this protocol is that a human cannot process millions of solutions. The purpose
of user’s constraints is to allow the user to focus on interesting solutions only. But,
whatever the desired number of solutions, LCM always needs to go through a LCM
+(preprocessing and/or postprocessing) that generates millions of patterns and then fil-
ters out the ’non-interesting’ ones. Even if LCM is very fast to enumerate a huge number
of itemsets, it cannot avoid the combinatorial explosion of all possible sub-datasets.

An instance is defined by the pair frequency/minsize (θ, k). For example, Zoo 50 5

denotes the instance of the Zoo dataset with a minimum support of 50% and solutions of
at least 5 items. Note that the constraint on the size of the itemset is simply added to the
MINING part of our ITEMSET model as follows: minSizek(P) ≡

∑
i∈I Pi ≥ k. Note

also that such a constraint is integrated in LCM without the need to a post-processing to
filter out the undesirable itemsets.

6.3 Query Q1

Our first experiment compares LCM and CP-ITEMSET on queries of type Q1, where we
have only user’s constraints on itemsets. We take the Q1 of the example in Section 3.1,
where the user asks for FCIs. We added the minSize constraint in the MINING part of
the ITEMSET model. Table 2 reports the CPU time, in seconds, for each approach on
each instance. We also report the total number of FCIs (#FCIs≤ 10) for each instance.

The main observation that we can draw from Table 2 is that, as expected, the spe-
cialized algorithm LCM wins on all the instances. However, CP-ITEMSET is quite com-
petitive. LCM is only from 1 to 9 times faster.

6.4 Query Q2

In addition to user’s constraints on itemsets, inQ2 the user is able to express constraints
on items. We take the Q2 of the example in Section 3.2, where items are in categories
and the user asks for FCIs extracted from at least lbI and at most ubI categories. We
again added the minSize constraint.

Table 3 reports the results of the comparison between PP-LCM (LCM with a pre-
processing) and CP-ITEMSET on a set of instances. For each instance, we report the
number of item categories #Ii, the used lbI and ubI , the total number #D of sub-
datasets satisfying the constraints on items, the number of solutions #FCIs, and the

User’s Constraints in Itemset Mining 13

Table 3. PP-LCM and CP-ITEMSET on Q2 queries. (Times are in seconds.)

Instance #Ii (lbI ,ubI) #D #FCIs PP-LCM CP-ITEMSET

Zoo 80 2
6 (2,3) 35 5 0.58 0.02
6 (3,4) 35 10 0.62 0.03

Primary 70 5 3 (2,3) 4 2 0.17 0.02
Vote 50 2 6 (2,3) 35 5 0.53 0.02

Mushroom 50 4 17 (2,2) 136 9 5.32 6.14
Mushroom 50 4 17 (2,3) 816 1 41.31 51.04
Chess 70 10 5 (2,3) 20 1 1.24 2.12
Chess 80 10 5 (2,5) 26 5 1.93 3.32
Chess 70 5 15 (2,2) 105 6 2.78 0.97
Chess 80 6 15 (2,3) 560 2 14.57 7.15

time in seconds. Note that the categories have the same size and for a given #Ii = n′,
and an (lbI , ubI), we have #D =

∑ubI
i=lbI

(
n′

i

)
.

It is important to bear in mind for such a query, PP-LCM acts in two steps: (i) pre-
processing generating all possible sub-datasets with respect to the user’s constraints on
items; (ii) run LCM on each sub-dataset. The first step can be very expensive in terms
of memory consumption because the space complexity of generating all sub-datasets is
in O(n′ × n×m), where n′ is the number of item categories, and n and m the number
of items and transaction.

In Table 3 we observe that CP-ITEMSET outperforms PP-LCM on 6 instances out of
10.

6.5 Query Q3

Let us now present our experiments on queries of type Q3 where we have user’s con-
straints on itemsets and transactions. We take the Q3 of the example in Section 3.3
where transactions are in categories. We added the minSize constraint.

Table 4 reports the results of the comparison between PP-LCM and CP-ITEMSET.
For each instance, we report the number of transaction categories #Ti, the lower and
upper bounds (lbT , ubT) on transaction categories, the number of sub-datasets #D, the
number of extracted solutions #FCIs and the time in seconds. Note that for a number
of categories #Ti = m′ and a given (lbT , ubT), we have #D =

∑ubT
i=lbT

(
m′

i

)
.

For Q3, PP-LCM acts again in two steps. The space complexity of the preprocessing
step is in O(m′ × n×m), with m′ transaction categories, n items and m transactions.

In Table 4 we observe that CP-ITEMSET is faster than PP-LCM on 6 instances out of
10. CP-ITEMSET wins on instances where #D is large. On Vote 80 3 with #Ti = 29
and (lbT , ubT) = (2, 5), PP-LCM reports a timeout whereas CP-ITEMSET solves it in
12 minutes.

6.6 Query Q4

Our last experiment is on queries of type Q4 where the user can put constraints on both
items and transactions in addition to the ones on the itemsets themselves. We take the

14 Christian Bessiere1, Nadjib Lazaar1, Mehdi Maamar2

Table 4. PP-LCM and CP-ITEMSET on Q3 queries. (Times are in seconds.)

Instance #Ti (lbT ,ubT) #D #FCIs PP-LCM CP-ITEMSET

Zoo 70 10 10 (1,10) 1,023 2 7.95 1.12
Zoo 80 5 10 (2,10) 1,013 8 9.05 1.37

Primary 85 4 7 (2,7) 120 1 1.45 0.25
Vote 70 6 29 (2,3) 4,060 3 37.93 17.95
Vote 80 3 29 (2,4) 27,811 4 324.53 135.53
Vote 80 3 29 (2,5) 146,566 4 TO 739.31

Mushroom 70 12
12 (2,2) 66 3 3.13 24.45
12 (3,3) 220 2 12.63 87.65

Chess 90 22 34 (2,2) 561 1 8.43 15.10
Chess 90 26 94 (2,2) 4,371 3 49.73 68.82

TO: timeout

Table 5. LCM and CP-ITEMSET on Q4 queries. (Times are in seconds.)

Instances #Ii #Ti (lbI ,ubI) (lbT ,ubT) #D #FCIs PP-LCM CP-ITEMSET

Zoo 70 6 6 10 (2,3) (2,3) 5,775 8 39.69 1.75
Zoo 50 11 6 10 (3,4) (3,4) 11,550 9 88.66 3.36
Zoo 85 5 6 10 (2,6) (2,10) 57,741 8 521.89 31.86

Primary 82 5 3 12 (2,3) (2,10) 16,280 8 199.58 36.13
Vote 70 6 6 29 (2,3) (2,3) 142,100 2 TO 118.67
Vote 72 5 8 29 (2,3) (2,3) 341,040 2 TO 201.79

Mushroom 80 5 17 12 (2,2) (2,2) 8,976 10 446.42 102.68
Mushroom 82 5 17 12 (2,2) (3,3) 29,920 7 TO 455.19
Chess 90 16 5 34 (2,3) (2,2) 11,220 3 286.42 87.22

TO: timeout

Q4 of the example in Section 3.4 where items and transactions are in categories. We
added the minSize constraint.

Table 5 reports results of the comparison between PP-LCM and CP-ITEMSET acting
on different instances. We report the number of uniform categories of items/transactions,
the used (lbI , ubI) and (lbT , ubT), the number of sub-datasets #D, the number of
solutions #FCIs and the time in seconds. PP-LCM needs to generate all possible sub-
datasets #D =

∑ubT
i=lbT

(
m′

i

)
×
∑ubI
i=lbI

(
n′

i

)
, where n′,m′, n andm are respectively the

number of item categories, transaction categories, items and transactions. CP-ITEMSET
is able to deal with the different queriesQ4 just by changing the parameters k, lbT , ubT ,
lbI , ubI , whereas PP-LCM needs a time/memory consuming preprocessing before each
query.

We see in Table 5 that CP-ITEMSET significantly outperforms PP-LCM. On the in-
stances where PP-LCM does not report a timeout, CP-ITEMSET is from 4 to more than
26 times faster than PP-LCM. The pre-processing step of PP-LCM can reach 90% of the
total time. As #D grows exponentially, it quickly leads to an infeasible preprocessing
step (see the 3 timeout cases of PP-LCM).

User’s Constraints in Itemset Mining 15

7 Related Work

In [8,3], De Raedt et al. proposed CP4IM, a CP model to express constraints in itemset
mining. CP4IM is able to express user’s constraints on the itemset P that is returned.
Hence, CP4IM is able to deal with queries of type Q1, in which user’s constraints are
on itemsets only. However, in CP4IM, the variables T representing transactions are
internal variables only used to get the cover of the itemset P that is returned, that is,
Ti = 1 if and only if the itemset P is covered by transaction i. These T variables
are not decision variables that would allow constraining the transactions. Adding user’s
constraints directly on these variables would generate incorrect models.

MiningZinc is a programming language on top of Minizinc. Several examples of
complex data mining queries using MiningZinc are discussed in [2]. However, in these
examples, when closedness is required, the user’s constraints are monotone, and when
the mining is performed on sub-datasets, these sub-datasets are statically defined. If we
need the mining process to dynamically specify on which sub-datasets the frequency,
closeness, and other properties are computed, we believe that MiningZinc requires to
implement a model similar to the one we propose in this paper.

8 Conclusion

We have presented a taxonomy of the different types of user’s constraints for itemset
mining. Constraints can express properties on the itemsets as well as on the items and
transactions that compose the datasets on which to look. We have introduced a generic
constraint programming model for itemset mining. We showed how our generic CP
model can easily take into account any type of user’s constraints. We empirically eval-
uated our CP model. We have shown that it can handle the different types of constraints
on different datasets. The CP approach can find the itemsets satisfying all users con-
straints in an efficient way compared to the specialized algorithm LCM, which requires
a memory/time consuming preprocessing step.

Acknowledgment Christian Bessiere was partially supported by the ANR project DE-
MOGRAPH (ANR-16-CE40-0028). Nadjib Lazaar is supported by the project I3A
TRACT (CNRS INSMI INS2I - AMIES - 2018). Mehdi Maamar is supported by the
project CPER Data from the region ”Hauts-de-France”. We thank Yahia Lebbah for the
discussions we shared during this work.

References

1. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Proceedings of
the 4th IEEE International Conference on Data Mining (ICDM 2004), 1-4 November 2004,
Brighton, UK. pp. 35–42 (2004)

2. Guns, T., Dries, A., Nijssen, S., Tack, G., Raedt, L.D.: Miningzinc: A declarative framework
for constraint-based mining. Artif. Intell. 244, 6–29 (2017)

16 Christian Bessiere1, Nadjib Lazaar1, Mehdi Maamar2

3. Guns, T., Nijssen, S., Raedt, L.D.: Itemset mining: A constraint programming perspective.
Artif. Intell. 175(12-13), 1951–1983 (2011)

4. Kemmar, A., Lebbah, Y., Loudni, S., Boizumault, P., Charnois, T.: Prefix-projection global
constraint and top-k approach for sequential pattern mining. Constraints 22(2), 265–306
(2017)

5. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-ary pat-
terns. In: Principles and Practice of Constraint Programming - CP 2010 - 16th International
Conference, CP 2010, St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings. pp.
552–567 (2010)

6. Lazaar, N., Lebbah, Y., Loudni, S., Maamar, M., Lemière, V., Bessiere, C., Boizumault, P.: A
global constraint for closed frequent pattern mining. In: Principles and Practice of Constraint
Programming - 22nd International Conference, CP 2016, Toulouse, France, September 5-9,
2016, Proceedings. pp. 333–349 (2016)

7. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery.
Data Min. Knowl. Discov. 1(3), 241–258 (1997)

8. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: Proceed-
ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Las Vegas, Nevada, USA, August 24-27, 2008. pp. 204–212 (2008)

9. Schaus, P., Aoga, J.O.R., Guns, T.: Coversize: A global constraint for frequency-based item-
set mining. In: Principles and Practice of Constraint Programming - 23rd International Con-
ference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings.
pp. 529–546 (2017)

10. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating closed
patterns in transaction databases. In: Discovery Science, 7th International Conference, DS
2004, Padova, Italy, October 2-5, 2004, Proceedings. pp. 16–31 (2004)

11. Wojciechowski, M., Zakrzewicz, M.: Dataset filtering techniques in constraint-based fre-
quent pattern mining. In: Pattern Detection and Discovery, ESF Exploratory Workshop, Lon-
don, UK, September 16-19, 2002, Proceedings. pp. 77–91 (2002)

12. Zaki, M.J., Hsiao, C.: CHARM: an efficient algorithm for closed itemset mining. In: Pro-
ceedings of the Second SIAM International Conference on Data Mining, Arlington, VA,
USA, April 11-13, 2002. pp. 457–473 (2002)

	 User's Constraints in Itemset Mining
	Introduction
	Background
	Itemset mining
	Constraint programming (CP)
	CP models for itemset mining

	User's Constraints Taxonomy
	User's constraints on itemsets
	User's constraints on items
	User's constraints on transactions
	User's constraints on items and transactions
	A simple illustration: Where Ferrari cars are frequently bought?

	A General CP Model for Itemset Mining
	Variables
	Constraints

	ItemSet Model: Cases Studies
	Experimental Evaluation
	Benchmark datasets
	Experimental protocol
	Query Q1
	Query Q2
	Query Q3
	Query Q4

	Related Work
	Conclusion
	Acknowledgment

