
HAL Id: lirmm-01897928
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01897928v1

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-Bounded Query Generator for Constraint
Acquisition

Hajar Ait Addi, Christian Bessiere, Redouane Ezzahir, Nadjib Lazaar

To cite this version:
Hajar Ait Addi, Christian Bessiere, Redouane Ezzahir, Nadjib Lazaar. Time-Bounded Query Gen-
erator for Constraint Acquisition. CPAIOR: Integration of Constraint Programming, Artificial Intel-
ligence, and Operations Research, Jun 2018, Delft, Netherlands. pp.1-17, �10.1007/978-3-319-93031-
2_1�. �lirmm-01897928�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01897928v1
https://hal.archives-ouvertes.fr

Time-bounded Query Generator for Constraint
Acquisition?

Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1, and Nadjib Lazaar2

1 LISTI/ENSA, University of Ibn Zohr, Morocco
2 University of Montpellier, CNRS, France

{hajar.aitaddi,r.ezzahir}@uiz.ac.ma, {bessiere,lazaar}@lirmm.fr

Abstract. QUACQ is a constraint acquisition algorithm that assists a non-expert
user to model her problem as a constraint network. QUACQ generates queries as
examples to be classified as positive or negative. One of the drawbacks of QUACQ

is that generating queries can be time-consuming. In this paper we present TQ-GEN,
a time-bounded query generator. TQ-GEN is able to generate a query in a bounded
amount of time. We rewrite QUACQ to incorporate the TQ-GEN generator. This
leads to a new algorithm called T-QUACQ. We propose several strategies to make
T-QUACQ efficient. Our experimental analysis shows that thanks to the use of
TQ-GEN, T-QUACQ dramatically improves the basic QUACQ in terms of time
consumption, and sometimes also in terms of number of queries.

1 Introduction

Constraint programming (CP) has made considerable progress over the last forty years,
becoming a powerful paradigm for modeling and solving combinatorial problems. How-
ever, modeling a problem as a constraint network still remains a challenging task that
requires some expertise in the field. Several constraint acquisition systems have been
introduced to support the uptake of constraint technology by non-experts. Freuder and
Wallace proposed the matchmaker agent [7]. This agent interacts with the user while
solving her problem. The user explains why she considers a proposed solution as a
wrong one. Lallouet et al. proposed a system based on inductive logic programming
with the use of the structure of the problem as a background knowledge [10]. Beldiceanu
and Simonis have proposed MODELSEEKER, a system devoted to problems with reg-
ular structures and based on the global constraint catalog [2]. Bessiere et al. proposed
CONACQ, which generates membership queries (i.e., complete examples) to be classi-
fied by the user [4, 6]. Shchekotykhin and Friedrich have extended CONACQ to allow
the user to provide arguments as constraints to speed-up the convergence [12].

Bessiere et al. proposed QUACQ (for Quick Acquisition), an active learning system
that is able to ask the user to classify partial queries [3,5]. QUACQ iteratively computes
membership queries. If the user says yes, QUACQ reduces the search space by discard-
ing all constraints violated by the positive example. When the answer is no, QUACQ
finds the scope of one of the violated constraints of the target network in a number of
? This work was supported by Scholarship No.7587 of the EU METALIC non redundant pro-

gram.

2 Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1, and Nadjib Lazaar2

queries logarithmic in the size of the example. This key component of QUACQ allows
it to always converge on the target set of constraints in a polynomial number of queries.
Arcangioli et al. have proposed the MULTIACQ system as an attempt to make QUACQ
more efficient in practice in terms of number of queries [1]. Instead of finding the scope
of one constraint, MULTIACQ reports all the scopes of constraints of the target network
violated by the negative example. Despite the good theoretical bound of QUACQ-like
approaches in terms of number of queries, generating a membership query is NP-hard.
It can then be too time-consuming when interacting with a human user. For instance,
QUACQ can take more than 20 minutes to generate a query during the acquisition pro-
cess of the sudoku constraint network.

In this paper, we introduce TQ-GEN, a time-bounded query generator. TQ-GEN gen-
erates queries in an amount of time not exceeding a waiting time upper bound. We
incorporate the TQ-GEN generator into the QUACQ algorithm to reduce the time com-
plexity of generating queries. This leads to a new version called T-QUACQ. Our theo-
retical and experimental analyses show that the bounded waiting time between queries
in T-QUACQ is at the risk of reaching a premature convergence state and asking more
queries. We then propose strategies to make T-QUACQ efficient. We experimentally
evaluate the benefit of these strategies on several benchmark problems. The results show
that T-QUACQ combined with a good strategy dramatically improves QUACQ not only
in terms of time needed to generate queries but also in number of queries, while achiev-
ing the convergence state in most cases.

The rest of this paper is organized as follows. Section 2 presents the necessary
background on constraint acquisition. Section 3 presents the algorithm TQ-GEN for
time-bounded query generation. Section 4 describes how we use TQ-GEN in QUACQ
to get the T-QUACQ algorithm. Section 5 analyzes the correctness of the algorithm. Ex-
perimental results and strategies to make T-QUACQ efficient are reported in Section 6.
Section 7 concludes the paper

2 Background

The constraint acquisition process can be seen as an interplay between the user and
the learner. User and learner need to share a vocabulary to communicate. We sup-
pose this vocabulary is a set of n variables X = {x1, . . . ,xn} and a domain D =
{D(x1), . . . , D(xn)}, where D(xi) ⊂ Z is the finite set of values for xi. A constraint
cY is defined by a sequence Y of variables of X , called the constraint scope, and the
relation c over D of arity |Y |. An assignment eY on a set of variables Y ⊆ X violates
a constraint cZ (or eY is rejected by cZ) if Z ⊆ Y and the projection eZ of eY on the
variables in Z is not in c. A constraint network is a set C of constraints on the vocab-
ulary (X,D). An assignment on X is a solution of C if and only if it does not violate
any constraint in C. sol(C) represents the set of solutions of C.

In addition to the vocabulary, the learner owns a language Γ of relations, from
which it can build constraints on specified sets of variables. Adapting terms from ma-
chine learning, the constraint bias, denoted by B, is a set of constraints built from
the constraint language Γ on the vocabulary (X,D), from which the learner builds
the constraint network. We denote by B[Y] the set of all constraints cZ in B, where

Time-bounded Query Generator for Constraint Acquisition 3

Z ⊆ Y . The target network is a network CT such that for any example e ∈ DX =
Πxi∈XD(xi), e is a solution of CT if and only if e is a solution of the problem that the
user has in mind.

A membership query ASK(e) is a classification question asked to the user, where e is
a complete assignment in DX . The answer to ASK(e) is yes if and only if e ∈ sol(CT).
A partial query ASK(eY), with Y ⊆ X , is a classification question asked to the user,
where eY is a partial assignment in DY = Πxi∈YD(xi). The answer to ASK(eY) is
yes if and only if eY does not violate any constraint in CT . A classified assignment eY
is called a positive or negative example depending on whether ASK(eY) is yes or no.
For any assignment eY on Y , κB(eY) denotes the set of all constraints in B rejecting
eY .

We now define convergence, which is the constraint acquisition problem we are
interested in. We are given a set E of (complete/partial) examples labeled by the user
as positive or negative. We say that a constraint network C agrees with E if examples
labeled as positive in E do not violate any constraint in C, and examples labeled as
negative violate at least one constraint in C. The learning process has converged on the
learned network CL ⊆ B if:

1. CL agrees with E,
2. For any other network C ′ ⊆ B agreeing with E, we have sol(C ′) = sol(CL).

We say that the learning process reached a premature convergence if only (1) is
guaranteed. If there does not exist any CL ⊆ B such that CL agrees with E, we say
that we have collapsed. This can happen when CT 6⊆ B.

We finally define the class of biases that are good for a given time limit, that is,
those biases on which bounding the query generation time does not hurt.

Definition 1 (τ -good). Given a bias B on a vocabulary (X,D), given the maximum
arity k of a constraint in B, and given τ a time limit, B is τ -good on (X,D) if and only
if ∀Y ⊂ X such that |Y | = k, ∀Ci,Cj ⊂ B[Y], finding an assignment e on Y such that
e ∈ sol(Ci) \ sol(Cj), or proving that none exists, takes less than τ .

3 Time-bounded Query Generation

To be able to exhibit its nice complexity in number of queries, QUACQ must be able
to generate non redundant queries. A query is non redundant if, whatever the user’s
answer, it allows us to reduce the learner’s version space (i.e., the subset of 2B cur-
rently agreeing with all already classified examples). In the context of QUACQ, a query
ASK(e) is non redundant if e does not violate any constraint in the currently learned
network CL, and it violates at least one constraint of the current bias B in which we
look for the missing constraints (i.e., κB(e) 6= ∅), We denote such an example e by
e |= (CL∧¬B). QUACQ has to solve an NP-hard problem to generate a non redundant
query. Therefore, the user can be asked to wait a long time from a query to another.

We propose TQ-GEN, a query generator able to generate a query in a bounded
amount of time (time bound). We will see later that this bounded time is at the risk
of reaching premature convergence and/or asking more queries than necessary. The

4 Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1, and Nadjib Lazaar2

Algorithm 1: TQ-GEN

1 In α, τ, time bound: parameters;
2 InOut `: parameter; B: bias; CL: learned network;
3 time← 0 ;
4 while B 6= ∅ and time < time bound do
5 τ ← min(τ, time bound− time) ;
6 `← max(`, minArity(B)) ;
7 choose Y ⊆ X s.t. |Y | = ` ∧B[Y] 6= ∅ ;
8 eY ← solve(CL[Y] ∧ ¬B[Y]) in t < τ ;
9 if eY 6= nil then return eY ;

10 else
11 if t < τ then
12 CL ← CL ∪B[Y] ; B ← B \B[Y] ;
13 else `← bα · `c ;
14 time← time+ t ;
15 return nil ;

idea behind TQ-GEN is that instead of looking for an assignment e on X such that
e |= (CL∧¬B), we look for a partial assignment eY such that eY |= (CL[Y]∧¬B[Y]),
for some set Y ⊆ X .

3.1 Description of TQ-GEN

The algorithm TQ-GEN (see Algorithm 1) takes as input the set of variablesX , a reduc-
tion factor α ∈]0,1[, a solving timeout τ , a time limit to generate a query time bound,
an expected query size `, a current bias of constraints B, and a current learned network
CL. We start by initializing the counter time of the time TQ-GEN has already con-
sumed in its main loop. In line 5, we set τ so that the next execution of the main loop
cannot exceed time bound. In line 7, we choose a subset Y of size `. To be able to gen-
erate a non redundant query on Y , it is required that B[Y] is not empty. To guarantee
that such an Y exists, we need ` to never be smaller than the smallest arity inB (line 6).
In line 8, TQ-GEN tries to generate a query on Y of size ` in a time less than τ . If such a
query is found in less than τ , we return it in line 9. Otherwise, either CL[Y]∧¬B[Y] is
unsatisfiable and τ is sufficient to prove it, or CL[Y] ∧ ¬B[Y] is too hard to be solved
in τ . If CL[Y] ∧ ¬B[Y] is unsatisfiable, the constraints in B[Y] are redundant to CL
and they can be removed from B (line 12). These constraints have to be put in CL to
avoid generating later a query violating one of these redundant constraints, but they are
useless in terms of the set of solutions represented by CL. They can safely be removed
from CL at the end of the learning process. If CL[Y] ∧ ¬B[Y] is too hard, we reduce
the expected query size ` with a factor α (line 13). In line 14, the time spent to try to
generate a query is recorded in order to ensure that TQ-GEN will never exceed the al-
located time time bound (see line 4). The last attempt shall not exceed the remaining
time (i.e., time bound− time) (line 5).

Time-bounded Query Generator for Constraint Acquisition 5

Algorithm 2: T-QUACQ

1 CL ← ∅ ;
2 initialize(α, τ, time bound, `) ;
3 while true do
4 e← TQ-GEN (α,τ,time bound,`,B,CL) ;
5 if e = nil then
6 if B = ∅ then return “convergence on CL” ;
7 return “premature convergence on CL” ;
8 if Ask(e) = yes then
9 B ← B \ κB(e) ;

10 adjust(`, yes) ;
11 else
12 c← FindC(e,FindScope(e,∅,X,false)) ;
13 if c 6= nil then CL ← CL ∪ {c} ;
14 else return “collapse” ;
15 adjust(`, no);

4 Using the TQ-GEN Algorithm in QUACQ

In this section, we present T-QUACQ (Algorithm 2), an integration of TQ-GEN into
QUACQ. T-QUACQ differs from the basic version presented in [3] at the shaded lines
(i.e., lines 2, 4, 7, 10 and 15).1

T-QUACQ initializes the constraint network CL to the empty set (line 1). In line 2,
the parameters of TQ-GEN are initialized such thatα ∈]0..1[and ` ∈ [minArity(B), |X|].
In line 4, we call TQ-GEN to generate a query in bounded time. If no query exists (i.e.,
B = ∅), then the algorithm reaches a convergence state (line 6). If a query exists and
TQ-GEN is not able to return it in the allocated time, T-QUACQ reaches a premature con-
vergence (line 7). Otherwise, we propose the example e to the user, who will answer by
yes or no (line 8). If the answer is yes, we can remove from B the set κB(e) of all con-
straints in B that reject e (line 9). We can also adjust the expected size of the next query
following a given strategy (line 10). This function is discussed later in section 6.3. If
the answer is no, we are sure that e violates at least one constraint of the target network
CT . We then act exactly as QUACQ by calling the function FindScope to discover the
scope of one of these violated constraints and FindC to select which constraint with
the given scope is violated by e (line 12). If a constraint c is returned, we know that it
belongs to the target network CT , we then add it to the learned network CL (line 13).
If no constraint is returned (line 14), this is a condition for collapsing as we could not
find in B a constraint rejecting one of the negative examples. Functions FindScope

and FindC are used exactly as they appear in [3]. When the answer is no, we can also
adjust the expected size of the next query following a given strategy (line 15).

1 QUACQ also contains a line for returning ”collapse” when detecting an inconsistent learned
network. This line has been dropped from T-QUACQ because we allow it to learn a target
network without solutions.

6 Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1, and Nadjib Lazaar2

5 Theoretical Analysis

In this section we analyze the correctness of TQ-GEN and T-QUACQ. The role of TQ-GEN
is to return a query that is non redundant with all queries already asked to the user.

Proposition 1 (Soundness). TQ-GEN is sound.

Proof. The only place where TQ-GEN returns a query is line 9. By construction, eY is
an assignment which is solution of CL[Y] and that violates at least one constraint from
B[Y] (line 8). Thus, κB(eY) 6= ∅, and by definition eY is a non redundant query.

Proposition 2 (Termination). Given a biasB on the vocabulary (X,D), if time bound <
∞ or if B is τ -good on (X,D), then TQ-GEN terminates.

Proof. If time bound < ∞, it is trivial. Suppose now that B is τ -good on (X,D),
time bound = ∞, and TQ-GEN never goes through line 9 (which would terminate
TQ-GEN). At each execution of its main loop, TQ-GEN executes either line 12 or line
13. ` decreases strictly at each execution of line 13. Hence, after a finite number of
times, ` will be less than or equal to the maximum arity in B. As B is τ -good, the
cutoff τ will no longer be reached in line 8, and the next executions of the loop will
all go through line 12. Thanks to line 6, ` cannot be less than the smallest arity in B.
Thus, the set Y chosen in line 7 is guaranteed to have a non empty B[Y]. As a result, B
strictly decreases in size at each execution of line 12, B will eventually be empty, and
TQ-GEN will terminate.

We now show that under some conditions TQ-GEN cannot miss a non redundant
query, if one exists.

Proposition 3 (Completeness). If the bias B is τ -good, and time bound > (|B| +
dlogα(kn)e) · τ , with n = |X| and k the maximum arity in B, then TQ-GEN is complete.

Proof. TQ-GEN finishes by either returning a query in line 9 or nil in line 15. If a
query is returned, we are done as TQ-GEN is sound (Proposition 1). Suppose nil is
returned in line 15. According to the assumption on time bound and the fact that each
execution of the main loop of TQ-GEN takes at most τ seconds, we know that TQ-GEN
has enough time to execute |B| + dlogα(kn)e times its main loop before returning nil
in line 15. In each of these executions, line 12 or line 13 is executed. Each time line
13 is executed, ` is reduced by multiplying it by the factor α ∈]0..1[. As ` cannot be
greater than n when entering TQ-GEN, after dlogα(kn)e executions, we are guaranteed
that ` ≤ n · αdlogα(kn)e ≤ n · kn = k. As B is τ -good, TQ-GEN will be able to solve
the formula CL[Y] ∧ ¬B[Y] in less than τ seconds for all Y , as |Y | = ` ≤ k. As
a result, TQ-GEN has enough time for |B| executions of the loop before reaching the
time bound limit. Thanks to line 7, we know that the set Y has a non empty B[Y].
Thus, line 12 removes at least one constraint from B, and B will be emptied before the
time limit. Therefore, we have converged, and there does not exist any non redundant
query.

Time-bounded Query Generator for Constraint Acquisition 7

Theorem 1. If CT ⊆ B, T-QUACQ is guaranteed to reach (premature) convergence. If
in addition B is τ -good and time bound > (|B| + dlogα(kn)e) · τ , with n = |X| and
k the maximum arity in B, then T-QUACQ converges.

Proof. (Sketch.) We first prove premature convergence. LetE be the set of all examples
generated during the execution of T-QUACQ and CL be the returned network. If CL
does not agree with E this means that there exists eY ∈ E such that eY is positive and
eY 6|= CL, or eY is negative and eY |= CL. As FindScope and FindC are sound,
we only consider examples classified in line 8 of T-QUACQ. Suppose first that in line 8,
eY is positive (e+Y). By construction, eY has been generated by satisfying CL[Y] (line
4), that is, 6 ∃cZ ∈ CL[Y] | eY 6|= cZ at the time of generating eY . As line 9 removes
from B all constraints rejecting eY , we are guaranteed that CL agrees with {e+Y } at the
end of T-QUACQ. Suppose now that eY is negative (e−Y). As CT ⊆ B, FindC returns
a constraint c rejecting eY (line 12) and c is added to CL in line 13. Thus, CL agrees
with {e−Y } at the end.

We now prove that T-QUACQ converges when B is τ -good and time bound >
(|B|+ dlogα(kn)e) · τ . By Proposition 3 we know that under this assumption, TQ-GEN
always returns a non redundant query if one exists. As a result, TQ-GEN returns nil
only when B has been emptied of all its redundant constraints in line 9, which means
that T-QUACQ has converged on CL.

6 Experiments

In this section, we experimentally analyze our new algorithms. We first describe the
benchmark instances. Second, we evaluate the validity of the time-bounded query gen-
eration by comparing a baseline version of T-QUACQ to the QUACQ algorithm. This
baseline version allows us to observe the fundamental characteristics of the approach.
Based on these observations, we discuss possible strategies and parameter settings that
may make our approach more efficient. The only parameter we will keep fixed in all our
experiments is time bound, that we set to 1 seconds, as we consider it as an acceptable
waiting time for a human user [9]. All tests were performed using the Choco solver2

version 4.0.4 with a simulation run time cutoff of 3 hours, 2 Gb of Java VM allowed
memory on an Intel(R) Xeon(R) @ 3.40GHz.

6.1 Benchmarks

We used four benchmarks from the original QUACQ paper [3] (Random, Sudoku,
Golomb ruler, and Zebra), and two additional ones (Latin square, Graceful graphs).
Random. We generated binary random target networks with 50 variables, domains of
size 10, andm binary constraints. The binary constraints are selected from the language
Γ = {=, 6=,6 , >, <,>}. We have launched our experiments with m = 12, and
m = 122.
Sudoku. The sudoku logic puzzle with 9 × 9 grid must be filled with numbers from 1
to 9 in such a way that all the rows, all the columns, and the 9 non overlapping 3 × 3

2 www.choco-solver.org

8 Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1, and Nadjib Lazaar2

squares contain the numbers 1 to 9. The target network has 81 variables with domains
of size 9, and 810 binary 6= constraints on rows, columns and squares. We use a bias of
19,440 binary constraints taken from the language Γ = {=, 6=6 , >, <,>}.
Golomb ruler. (prob006 in [8]) The problem is to find a ruler where the distance be-
tween any two marks is different from that between any other two marks. Golomb
ruler is encoded as a target network with n variables corresponding to the n marks. For
our experiments, we selected the 8, 12, 16 and 20 marks ruler instances with bias of
660, 3,698, 12,552, and 32,150 constraints, respectively, generated using the language
Γ = {=0, 6=0,6,>, < , >, qztxy , /ztxy} where =0 and 6=0 respectively denote the unary
constraints ”equal zero” and ”not equal zero”, and qztxy and /ztxy respectively denote the
distance constraints |x− y| = |z − t| and |x− y| 6= |z − t|.
Latin square. A Latin square is an n × n array filled with n different Latin letters,
each occurring exactly once in each row and exactly once in each column. We have
taken n = 10 and the target network is built with 900 binary 6= constraints on rows and
columns. We use a bias of 29,700 constraints built from the language Γ = {=, 6=,6,
>, <,>}.
Zebra. Lewis Carroll’s zebra problem has a single solution. The target network has
25 variables of domain size 5 with 5 cliques of ” 6=” constraints and 14 additional con-
straints given in the description of the problem. We use a bias of 3,250 unary and binary
constraints taken from a language with 20 basic arithmetic and distance constraint.
Graceful graphs. (prob053 in [8]) A labeling f of the n nodes of a graph with q edges
is graceful if f assigns each node a unique label from 0,1, . . . ,q and when each edge
(x, y) is labeled with |f(x)−f(y)|, the edge labels are all different. The target network
has node-variables x1, x2, . . . xn, each with domain {0,1, . . . ,q}, and edge-variables
e1, e2, . . . eq , with domain {1, 2, . . . , q}. The constraints are: xi 6= xj for all pairs of
nodes, ei 6= ej for all pairs of edges, and ek = |xi − xj | if edge ek joins nodes i and j.
The constraints of B were built from the language Γ = {6= , =, qzxy , /zxy} where qzxy
and /zxy denote respectively the distance constraints z = |x − y| and z 6= |x − y|. We
used three instances that accept a graceful labeling [11]:GG(K4×P2),GG(K5×P2),
and GG(K4 × P3), whose number of variables is 24, 35, and 38 respectively, and bias
size is 12,696, 40,460, and 52,022 respectively.

For all our benchmarks, the bias contains all the constraints that can be generated
from the relations in the given language. That is, for a commutative relation c (resp.
non-commutative relation c′) of arity r, the bias contains all possible constraints cY
(resp. c′Y), where Y is a subset (resp. an ordered subset) of X of size r.

6.2 Baseline version of T-QUACQ

The purpose of our first experiment is to validate the approach of time-bounded query
generation and to understand the basics of its behavior. We defined a baseline version of
T-QUACQ, called T-QUACQ.0, that we compare with QUACQ. T-QUACQ, presented in
Algorithm 2, is parameterized with time bound,α, τ and ` used by function initialize,
and what function adjust does.

Once time bound has been fixed, as said above, to 1 seconds, there remains to
specify the other parameters and function adjust. In T-QUACQ.0, to remain as close as
possible to the original QUACQ, we set ` to |X| and the function adjust at lines 10 and

Time-bounded Query Generator for Constraint Acquisition 9

Table 1: T-QUACQ.0 versus QUACQ (time bound = 1s)
CSP Algorithm (α, τ (in ms)) #q totT (in seconds) #Conv %Conv

sudoku 9× 9

QUACQ - 9,053 2,810 - 100%

T-QUACQ.0

(0.5, 0.001) 12 14 0 1%
(0.5, 0.024) 9,132 37 10 100%

(0.5, 5) 9,612 62 10 100%
(0.5, 900) 9,557 41 5 94%

GG(K5 × P2)

QUACQ - 4,898 3,144 - 100%

T-QUACQ.0

(0.5, 0.001) 11 62 0 1%
(0.5, 0.024) 7,495 56 0 93%

(0.5, 5) 5,610 43 10 100%
(0.5, 900) 1,888 40 0 41%

15 of Algorithm 2 simply resets ` to |X|. The impact of the parameters α and τ will be
discussed later. For this first comparison between T-QUACQ.0 and QUACQ, we use two
CSP instances: sudoku and GG(K5 × P2). They are good candidates for this analysis
because QUACQ can be very time-consuming to generate queries on them.

Table 1 reports the comparison of QUACQ and our baseline version T-QUACQ.0 on
the sudoku and GG(K5 × P2) instances. The performance of T-QUACQ.0 is averaged
over ten runs on each instance. In this first experiment, we have arbitrarily set α to
0.5. #q denotes the total number of asked queries, totT denotes the total time of the
learning process, #Conv denotes the number of runs of T-QUACQ.0 in which it reached
convergence, and %Conv denotes the average of the convergence rate over the ten runs.
We estimated the convergence rate by the formula 100. |CT |−#missingto(CL)|CT | , where
#missingto(CL) is the number of constraints that have to be added to the learned
network CL to make it equivalent to the target network CT .

From Table 1, we observe that when τ = 5ms, for both instances, T-QUACQ.0 is
able to converge on the target network, as QUACQ (obviously) does. The interesting
information is that T-QUACQ.0 does this in a total cpu time for generating all queries
that is significantly lower than the time needed by QUACQ. QUACQ needs 46 minutes
to converge on the instance of sudoku and 52 minutes to converge on the instance of
graceful graphs, whereas T-QUACQ.0 converges in 1 minute or less on both instances.

Let us focus a bit more on how the two algorithms spend their time. Figure 1 reports
the waiting time from one query to another needed by QUACQ and T-QUACQ.0 to learn
GG(K5 × P2). We selected a fragment of 100 queries near to the end of the learning
process for each algorithm. On the one hand, we see that T-QUACQ.0 never exceeds
the bound of time bound = 1 second between two queries, thanks to its TQ-GEN
time bounded generator. On the other hand, we observe that in these 100 queries close
to convergence, generating a query in QUACQ is time consuming because it requires
solving a hard CSP. There are three negative queries (that is, queries followed by small
queries of FindScope and FindC) requiring from 20 to 50 seconds to be generated, and
many positive queries (that is, not followed by small queries) requiring from 20 to 200
seconds to be generated.

10 Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1, and Nadjib Lazaar2

 0. 0001

 0. 001

 0. 01

 0. 1

 1

 10

 100

 1000

xx+0 xx+50 xx+100

tim
e

(s
ec

)

100 queries near the last

QUACQ T-QUACQ.0

negative queries

positive queries

Fig. 1: Time to generate queries on GG(K5 × P2) (T-QUACQ.0 versus QUACQ).

Once the approach has been validated by this first experiment, we tried to under-
stand the behavior of T-QUACQ.0 when pushing τ to the limits of the range 0..time bound.
We instantiated τ to a very small value: 0.001ms, and a very large value, close to
time bound: 900ms. Results are reported in Table 1.

When τ takes the large value of 900ms, T-QUACQ.0 fails to converge (the conver-
gence rate is 94% in sudoku, and 41% in GG(K5 × P2)). The explanation is that τ is
so close to time bound that if TQ-GEN fails to produce a query of size |X| in 900ms,
there remains only 100ms to produce a query of size α · |X|. In case TQ-GEN cannot
make it, T-QUACQ.0 returns premature convergence because the time limit has been
reached.

When τ takes its small value 0.001ms, T-QUACQ.0 fails to converge (the conver-
gence rate is 1% on both instances). The explanation in this case is that τ is so small
that the bias is not τ -good. That is, the solver at line 8 of TQ-GEN fails to terminate even
for the smallest sub-problems of two variables. Thus, TQ-GEN will spend time looping
through lines 8, 13, and 6 until reaching time bound.

After having tried these extreme values for τ , let us now use Theorem 1 to theoreti-
cally determine the values of τ that guarantee convergence. (Remember that α is set to
0.5.) According to Theorem 1, τ must be less than 1/(19440+log0.5(2/81)) = 0.05ms
on sudoku and less than 1/(40, 460+log0.5(3/35)) = 0.0247ms onGG(K5×P2). We
launched an experiment with τ = 0.024ms, which meets the theoretical bound for both
sudoku and GG(K5 × P2). The results are reported in Table 1. T-QUACQ.0 converges
on sudoku but returns premature convergence onGG(K5×P2) with a convergence rate
equal to 93%. On sudoku, the bias is τ -good when τ = 0.024ms, so the two conditions
for convergence of Theorem 1 are met. On GG(K5 × P2), τ = 0.024ms is too small
for ensuring τ -goodness because the bias contains ternary constraints. Thus, the first
condition for convergence of Theorem 1 is violated and T-QUACQ.0 fails to converge.

Our last observation on Table 1 is related to the number of queries. We consider
only the cases where the learning process has converged, that is, sudoku with (α,τ) =
(0.5,0.024) and (α,τ) = (0.5,5), and GG(K5×P2) with (α,τ) = (0.5,5). We observe
that T-QUACQ.0 respectively asks 1%, 4%, and 14% more queries than QUACQ.

Time-bounded Query Generator for Constraint Acquisition 11

 0

 5

 10

 15

 20

 25

 30

 400 410 420 430 440 450

Q
ue

ry
 s

iz
e

#Iterations

α=0.2 α=0.5 α=0.8

Fig. 2: Size of queries generated by TQ-GEN on GG(K5 × P2) with τ = 5ms.

To understand why T-QUACQ.0 asks more queries than QUACQ on GG(K5 × P2),
we launched T-QUACQ.0 with different values of α. (τ is kept fixed to 5ms.) Inter-
estingly, we observed that the number of queries varies significantly with α. For α
taking values 0.2, 0.5, and 0.8, T-QUACQ.0 requires respectively, 6,654, 5,610, and
5000 queries to converge. We then measured the size of queries in T-QUACQ.0 with
these three values of α. Figure 2 reports the size of queries asked by T-QUACQ.0 to
learn GG(K5 × P2) with α equal to 0.2, 0.5, and 0.8. We make a zoom on the 400th
to 450th iterations of T-QUACQ.0. We observe that the larger α, the greater the size
of the query returned by TQ-GEN and the smaller the number of queries. When α is
small, this often leads to queries of very small size. For α = 0.2, all queries have size
bα · 35c = 7 (because GG(K5 × P2) has 35 variables). For α = 0.5, a few queries
have size bα · 35c = 17 but almost all have size bα2 · 35c = 8. Generating queries
of small size can be beneficial at the beginning of the learning process, when queries
are often negative, because function FindScope will quickly find the right scope of the
missing constraint inside a small subset Y . But at the end of the learning process, when
most queries are positive, a short query leads to very few constraints removed from B
in line 9 of Algorithm 2. Hence, convergence is slow in terms of number of queries.
This is what happened in Table 1 on GG(K5 × P2) with α = 0.5 and τ = 5ms. These
observations led us to propose more flexible ways to adjust the query size during the
learning process.

6.3 Strategies and Settings

Following our first observations on our baseline version T-QUACQ.0, we expect that
there is room for improvement by making the use of the query size ` less brute-force
(reset to |X| after each query generation in T-QUACQ.0). We propose here to adjust it
in a more smooth way, to let T-QUACQ concentrate on the size of query that is the most
beneficial at a given point of the learning process.

We propose the following adjust function (see Algorithm 3). Given a query gen-
erated by TQ-GEN, if the answer is yes, adjust increases ` by a factor α, and if the
answer is no, adjust decreases ` by a factor α. The intuition behind such adaptation

12 Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1, and Nadjib Lazaar2

Algorithm 3: adjust function of T-QUACQ.1
1 In `, answer, InOut `
2 if answer = yes then
3 `← min(d `

α
e, |X|);

4 else
5 `← bα · `c
6 return `

of the query size is that when we are in a zone of many no answers (early learning
stage), short negative queries lead to less queries needed by FindScope to find where
the culprit constraint is, whereas in a zone of yes answers (late learning stage), larger
positive queries lead to the removal of more constraints from B, and thus faster conver-
gence. T-QUACQ using this version of the function adjust is called T-QUACQ.1 in the
following.

We expect that the efficiency of T-QUACQ.1 will depend on the initialization of
the parameters α and τ in function initialize (line 2 of Algorithm 2). Concerning the
parameter `, we observed that its initial value has negligible impact as it is used only
once at the start of the learning process. We thus set function initialize to always
initialize ` to |X|.

Concerning α and τ , to find the most promising values of these parameters, we made
an experiment on graceful graphs. On these problems, our base version T-QUACQ.0
performed worse than QUACQ. The results of T-QUACQ.1 are shown in sub-figures (a),
(b), and (c) of Figure 3. The x-axis and the y-axis are respectively labeled by α ranging
from 0.1 to 0.9, and log10(τ) in µs (that is, each value of y corresponds to 10yµs)
ranging from 10µs to 1s. Darker color indicates higher number of queries. The number
in each cell indicates the convergence rate %Conv.

Let us first analyze the convergence rate of T-QUACQ.1. We observe the same results
as already seen with our baseline version, that is, premature convergence when τ is too
small (10µs) or very large (1s), When τ does not take extreme values, we observe
convergence in many cases. The range of values of τ that lead to frequent convergence
(in fact convergence for all values of α except 0.9) goes from [1ms, 100ms] on the
small instance to [10ms, 100ms] on the larger. Concerning α, we observe that its value
does not have any impact on convergence except the very large value 0.9, which leads
T-QUACQ.1 to return premature convergence on the harder instances even for values of
τ that give convergence with all other values of α. (See α = 0.9 in sub-figures (b) and
(c) of Figure 3.) This is explained by the fact that with such a large α, finding the right
size ` of the query to generate can require too many tries (when τ is reached) and lead
to exhaust the time bound

Let us now study the impact of τ andα on the number of queries asked by T-QUACQ.1.
We restrict our analysis to the cases where T-QUACQ.1 has converged. We observe that
when T-QUACQ.1 converges, the larger τ , the lower number of query (see sub-figures
(a), (b), and (c) of Figure 3). Concerning the impact of α on the number of queries,
we observe that, the greater α (except 0.9 which leads to premature convergence), the
lower the number of queries. The reason is that a large α leads to a smooth adjust-

Time-bounded Query Generator for Constraint Acquisition 13

(a)GG(K4 × P2) (b)GG(K5 × P2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

lo
g 1

0(
)(

s)
90 90 90 90 90 90 90 90 90

90 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100

99 97 98 96 97 99 99 100 100 1000

2000

3000

4000

5000

6000

of queries

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

lo
g 1

0(
)(

s)

1 1 1 1 1 1 1 1 1

97 100 100 100 100 100 100 100 71

100 100 100 100 100 100 100 100 63

100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 84

97 84 98 99 98 99 99 99 99 2500

5000

7500

10000

12500

15000

17500

of queries

(c)GG(K4 × P3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

lo
g 1

0(
)(

s)

1 1 1 1 1 1 1 1 1

99 100 100 100 100 100 100 96 1

99 100 100 100 100 100 100 98 1

100 100 100 100 100 100 100 100 36

100 100 100 100 100 100 100 100 50

98 95 98 99 98 99 99 99 99 2000

4000

6000

8000

10000

12000

14000

16000

18000

of queries

Fig. 3: Number of queries and convergence rate performed by T-QUACQ.1 on graceful graphs.
Darker color in color bar indicates higher number of queries, and the number in each cell of the
map indicates the convergence rate.

ment of the size of the queries, depending on the computing time allowed by τ and
the positive/negative classification of previous examples. This especially has the effect
that T-QUACQ.1 generates large queries at the end of the learning process, which lead
to faster convergence, as seen with T-QUACQ.0. In the following we choose 0.8 as a
default value for α.

To validate the observations made on graceful graphs, and in order to select the
most promising value of τ , we extended our experimentation to Golomb rulers. Golomb
rulers have the nice property that the basic model does not only contain binary con-
straints. It also contains ternary and quaternary constraints, which makes query gener-
ation more difficult. We used four instances of Golomb rulers of size n = 8, 12, 16,
and 20. We set α to 0.8, and vary τ from 10µs to 1s. We added the value τ = 50ms
(that is, log10(50ms) = 4.7) inside the interval [10ms, 100ms] as these values were
looking the most promising for convergence in our previous experiment. The results of
T-QUACQ.1 on those problems are shown in Figure 4, where the x-axis and the y-axis
are respectively labeled by log10(τ) in µs, and the problem size n.

We first analyze the impact of τ on the convergence rate. The results in Figure 4
show us that the larger the problem size, the greater the value of τ for convergence. We
observe that T-QUACQ.1 converges for no instance at τ = 10µs, 1 instance at 100µs,
2 instances at 1ms, and 3 instances from 50ms to 1s. For n = 20, convergence is
never reached, but τ = 10ms and τ = 50ms give the best results. If we combine
these results with those obtained on graceful graphs, it leads us to the conclusion that
the best value for τ is 50ms. Let us now analyze the impact of τ on the number of

14 Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1, and Nadjib Lazaar2

1 2 3 4 4.7 5 6
log10() (s)

8

12

16

20

n

9

3

3

1

100

24

16

1

100

100

21

7

100

100

43

29

100

100

100

29

100

100

100

27

100

100

100

27 250

500

750

1000

1250

1500

1750

2000

of queries

Fig. 4: Number of queries and convergence rate performed by T-QUACQ.1 on Golomb rulers.

queries when T-QUACQ.1 converges. We observe that for all the instances, the number
of queries required for convergence is almost the same regardless of the value of τ . In
the following we set τ to 50ms.

We finally validate this optimized version of T-QUACQ.1 on other benchmark prob-
lems. Table 2 reports the results of QUACQ and of T-QUACQ.1 with the parameters
α = 0.8 and τ = 50ms. totT is the total time of the learning process, MT (q) the
maximum waiting time between two queries, and #q the total number of asked queries.

The first important observation is that T-QUACQ.1 has converged for all instances
presented in Table 2. Second, what we saw with the baseline version T-QUACQ.0 re-
mains true with T-QUACQ.1: Time to generate queries is short, almost always orders of
magnitude shorter than with QUACQ. Finally, the good surprise comes from the num-
ber of queries. Compared to T-QUACQ.0, the number of queries in T-QUACQ.1 drops
significantly thanks to the smooth adjustment of the size of the queries. The number
of queries in T-QUACQ.1 is even smaller than the number of queries in QUACQ on all
but two instances, despite QUACQ is free to use as much time as it needs to generate a
query.

7 Conclusion

We have proposed TQ-GEN, a query generator that is able to generate a query in a
bounded amount of time, and then to satisfy users tolerable waiting time. TQ-GEN is
able to adjust the size of the query to generate so that the query can be generated within
the time bound. We have also described T-QUACQ, a QUACQ-like algorithm that uses
TQ-GEN to generate queries. Our theoretical analysis shows that the bounded wait-
ing time between queries is at the risk of reaching a premature convergence. We have
then proposed strategies to better adapt query size. Our experiments have shown that
T-QUACQ combined with a good strategy dramatically improves QUACQ in terms of
time needed to generate queries and also in number of queries, while still reaching
convergence.

References

1. Arcangioli, R., Bessiere, C., Lazaar, N.: Multiple constraint acquisition. In: Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016. pp.

Time-bounded Query Generator for Constraint Acquisition 15

Table 2: T-QUACQ.1 versus QUACQ, α = 0.8, τ = 50ms

Benchmark Algorithm totT MT (q) #q

(|X|, |D|, |C|) (in seconds) (in seconds)

Zebra
(25, 5, 64)

QUACQ 1.29 0.13 706

T-QUACQ.1 1.34 0.11 547

rand-50-10-12
(50, 10, 12)

QUACQ 204 5.01 253

T-QUACQ.1 13 0.36 325

rand-50-10-122
(50, 10, 122)

QUACQ 88 1.68 1,217

T-QUACQ.1 21 0.22 1,222

GG(K4 × P2)

(24, 16, 164)
QUACQ 976 13 1,989

T-QUACQ.1 47 0.39 1,273

GG(K5 × P2)

(35, 25, 370)
QUACQ 3,144 512 4,898

T-QUACQ.1 110 0.65 2,317

GG(K4 × P3)

(38, 26, 417)
QUACQ 7,206 367 5,796

T-QUACQ.1 150 0.89 2,883

Sudoku 9× 9
(81, 9, 810)

QUACQ 2,810 1,355 9,053

T-QUACQ.1 69 0.33 6,873

Latin-Square
(100, 10, 900)

QUACQ 7,200 1,234 12,204

T-QUACQ.1 120 0.56 7,711

Golomb-ruler-12
(12, 110, 2,270)

QUACQ 11,972 2,808 2,445

T-QUACQ.1 1,184 0.94 916

16 Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1, and Nadjib Lazaar2

698–704. New York, NY (2016)
2. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models from pos-

itive examples. In: Proceedings of the 18th International Conference on Principles and Prac-
tice of Constraint Programming, CP 2012. Lecture Notes in Computer Science, vol. 7514,
pp. 141–157. Springer, Québec City, QC, Canada (2012)

3. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper,
C., Walsh, T.: Constraint acquisition via partial queries. In: Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2013. pp. 475–481. Beijing, China
(2013)

4. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M.: Query-driven constraint acquisition.
In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI
2007. pp. 50–55. Hyderabad, India (2007)

5. Bessiere, C., Daoudi, A., Hebrard, E., Katsirelos, G., Lazaar, N., Mechqrane, Y., Narodytska,
N., Quimper, C., Walsh, T.: New approaches to constraint acquisition. In: Data Mining and
Constraint Programming - Foundations of a Cross-Disciplinary Approach, Lecture Notes in
Computer Science, vol. 10101, pp. 51–76. Springer (2016)

6. Bessiere, C., Lazaar, N., Koriche, F., O’Sullivan, B.: Constraint acquisition. Artificial Intel-
ligence p. In Press (2017)

7. Freuder, E.C., Wallace, R.J.: Suggestion strategies for constraint-based matchmaker agents.
International Journal on Artificial Intelligence Tools 11(1), 3–18 (2002)

8. Jefferson, C., Akgun, O.: CSPLib: A problem library for constraints. http://www.
csplib.org (1999)

9. Lallemand, C., Gronier, G.: Enhancing user experience during waiting time in hci: Contri-
butions of cognitive psychology. In: Proceedings of the Designing Interactive Systems Con-
ference. pp. 751–760. DIS ’12, ACM, New York, NY, USA (2012), http://doi.acm.
org/10.1145/2317956.2318069

10. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In: Proceed-
ings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI
2010. pp. 45–52. Arras, France (2010)

11. Petrie, K.E., Smith, B.M.: Symmetry breaking in graceful graphs. In: Proceedings of the 9th
International Conference Principles and Practice of Constraint Programming, CP 2003. Lec-
ture Notes in Computer Science, vol. 2833, pp. 930–934. Springer, Kinsale, Ireland (2003)

12. Shchekotykhin, K.M., Friedrich, G.: Argumentation based constraint acquisition. In: Pro-
ceedings of the Ninth IEEE International Conference on Data Mining, ICDM 2009. pp.
476–482. Miami, FL (2009)

