
HAL Id: lirmm-01897933
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01897933v1

Submitted on 17 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Sudoku with Consistency: A Visual and
Interactive Approach

Ian Howel, Robert J. Woodward, Berthe Y. Choueiry, Christian Bessiere

To cite this version:
Ian Howel, Robert J. Woodward, Berthe Y. Choueiry, Christian Bessiere. Solving Sudoku with Con-
sistency: A Visual and Interactive Approach. IJCAI: International Joint Conference on Artificial
Intelligence, Jul 2018, Stockholm, Sweden. pp.5829-5831, �10.24963/ijcai.2018/852�. �lirmm-01897933�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01897933v1
https://hal.archives-ouvertes.fr

Solving Sudoku with Consistency: A Visual and Interactive Approach

Ian Howell,1 Robert Woodward,1,2 Berthe Y. Choueiry,1 Christian Bessiere2
1Constraint Systems Laboratory, University of Nebraska-Lincoln, USA

2CNRS, University of Montpellier, France
{ihowell|rwoodwar|choueiry}@cse.unl.edu bessiere@lirmm.fr

Abstract
We describe an online, interactive system with a
graphical interface to illustrate the power and op-
eration of consistency algorithms in a friendly and
popular context, namely, solving Sudoku puzzles.
Our tool implements algorithms for enforcing five
(domain-based) consistency properties on binary
and non-binary constraint models. Our tool is use-
ful for research, education, and outreach. From a
scientific standpoint, we propose a new consistency
property that can solve the hardest known 9×9 Su-
doku instances without search, but leave open the
question of the lowest level of consistency needed
to solve every 9×9 Sudoku puzzle. We have used
the current tool in the classroom to introduce stu-
dents to modeling problems with constraints, ex-
plain consistency properties, and illustrate the op-
erations of constraint propagation and lookahead.
Finally, we have also used this tool during outreach
activities to demystify AI to children and the gen-
eral public and show them how computers ‘think.’

1 Introduction
The popularity of the Sudoku puzzle stems perhaps from the
simplicity of its rules and the wide range of difficulty levels
in which it can found in magazines, books, and on the in-
ternet. This combinatorial decision problem is known to be
NP-complete [Yato, 2003] and lends itself particularly well
to introduce the general public and students of Computer Sci-
ence to the area of Constraint Processing. The current state of
the art in terms of the availability of online solvers (based on
backtrack search or on convoluted patterns and rules defined
by humans) has not changed much since 2007 when our lab
introduced our first constraint-based Sudoku solver [Reeson
et al., 2007]. Two references are worth mentioning: the first
paper on using CP to solve Sudoku [Simonis, 2005] and a file
with 375 instances of the hardest known Sudoku puzzles.1
Similarly to the approach of Simonis [2005] but using ‘stan-
dard’ consistency properties, we investigate the weakest level
of consistency that is needed to solve a given Sudoku instance
without search. In particular, we introduce a new consistency

1http://www.mediafire.com/?9ypndha1zadpwaw

property, and implement its algorithm, that can ‘solve’ the
hardest known Sudoku instances without search (i.e., reduces
to a singleton set the domains of all the variables of a 9×9
Sudoku instance that has exactly one solution).

Our tool is built with the web technologies of HTML, CSS,
and JavaScript.2 It uses a database of Sudoku instances with
meta data such as the number of clues and the weakest level
of consistency needed to solve the instance without search. It
implements algorithms for enforcing five consistency proper-
ties and visualization mechanisms to support explanation.

2 Constraint Models and Consistency
Properties

Constraint Satisfaction Problems (CSPs) are defined as a tu-
ple (X,D,C), where X is a set of variables, D is the set
of domains of the variables with Di representing the do-
main of Xi, and C is a set of constraints, where a constraint
Ci has scope {xi1 , . . . , xik} and a set of acceptable assign-
ments (vi1 , . . . , vik) ∈ Di1 × . . .×Dik resticting the values
assignable to the variables in Ci’s scope. In a binary CSP, a
constraint has two variables in its scope. In non-binary CSPs,
it has more. Solving a CSP requires assigning a value to each
variable such that all constraints are satisfied.

The constraint model of the 9×9 Sudoku puzzle has 81
variables representing the cells of the 9×9 board. The domain
of a variable is the set {1, 2, . . . , 9}. The binary model has
810 binary DIFF constraints defined over every two variables
in the same row, column, or block. The non-binary model has
27 non-binary ALLDIFFERENT constraints defined over the 9
variables appearing in a row, column, or block [Régin, 1994].

Consistency algorithms enforce a given (domain-based)
consistency property by removing, from the domains, val-
ues that cannot appear in a solution to the CSP. Such algo-
rithms are typically used before search and/or as lookahead
during search to reduce the size of the search space. Below,
we distinguish between the consistency properties of the bi-
nary model and those of the non-binary model by including
the letter G for the latter (e.g., AC and GAC) and state the
definitions in a way that is applicable to both models.

Definition 1 Arc Consistency (AC and GAC) [Waltz, 1975]
[Mackworth, 1977]: A constraint network P = (X,D,C) is

2http://sudoku.unl.edu/

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5829

AC iff, for every constraint Ci ∈ C, and ∀xj ∈ scope(Ci),
every value v ∈ D(xj) is consistent with Ci (i.e., appears in
some support of Ci).

Definition 2 Singleton Arc Consistency (SAC and SGAC)
[Debruyne and Bessiere, 1997]: A constraint network P =
(X,D,C) is singleton arc consistent iff ∀xi ∈ X, ∀a ∈
D(xi), the network P |xi=a = (X,D|xi=a, C) obtained by
re-placing D(xi) by the singleton {a} is not arc inconsistent.
If P |xi=a is arc inconsistent, we say that (xi, a) is SAC in-
consistent.

Definition 3 Partition-One Arc Consistency (POAC and
POGAC) [Bennaceur and Affane, 2001]: Given a constraint
network P = (X,D,C), a variable xi is partition-one-AC
iff D(xi) 6= ∅, all values in D(xi) are SAC, and ∀j ∈
{1 . . . n}, j 6= i, ∀vj ∈ D(xj), ∃vi ∈ D(xi) such that
vj ∈ AC(P |si=vi). The constraint network P is POAC iff
all its variables are POAC.

Definition 4 Bidirectional Singleton Arc Consistency
(BiSAC and BiSGAC) [Bessiere and Debruyne, 2008]: A
constraint network P = (X,D,C) is bidirectional singleton
arc consistent iff ∀xi ∈ X, ∀a ∈ Di, AC(Tia) 6= ∅, where
Tia = (X,DT

ia, C), with DT
ia(xj) = {b ∈ D(xj)|(xi, a) ∈

AC(P |xj=b)}.
Definition 5 Double Singleton Arc Consistency (SSAC and
SSGAC): A constraint network P = (X,D,C) is double sin-
gleton arc consistent iff ∀xi ∈ X, ∀a ∈ D(xi) the network
P |xi=a = (X,D|xi=a, C) obtained by replacing D(xi) by
the singleton {a} is not singleton arc inconsistent.

Of the above properties, AC is the weakest and SSGAC is the
strongest. To enforce GAC, SGAC, POGAC, BiSGAC and
SSGAC, we use the specialized algorithm for the ALLDIF-
FERENT global constraint [Régin, 1994]. We also implement
a backtrack search for finding all solutions, in the case the
puzzle entered has more than one solution (i.e., ill formed).

A 9×9 well-formed Sudoku puzzle has a fixed size and, by
definition, a single solution. Thus, the question of the weakest
consistency to solve every instance is legitimate but remains
open. Interestingly, SSGAC solves all 375 hardest known Su-
doku instances. In fact, 276 instances require at least SSGAC,
25 BiSGAC+SSAC, 7 BiSGAC, and 67 SSAC.

3 User Interface
The user interface has two halves: the control panel to the
right (Figure 1) and the Sudoku board to the left (Figure 2).

The control panel has five tabs to access various function-
alities: LOAD (an instance from the database), UPLOAD (a
picture of an instance using OCR methods from Aruco and
CV Javascript libraries), SOLVE (the current instance on the
board), and SUBMIT (a new instance to the database).

The board shows a standard 9×9 Sudoku layout. It is sur-
rounded on the top and left sides by characters designating
columns and rows and on the bottom and right sides by but-
tons to enforces AC (single line) and GAC (multiple lines) on
the variables of the corresponding row or column.

The board reflects the current state of the constraint model.
Clues are displayed as blue characters in bold and are im-
mutable but can be converted to standard assigned values.

Figure 1: Enforcing the sequence AC, GAC, SAC, then GAC in the
SOLVE tab of the control panel

Figure 2: The Sudoku board

From the SOLVE tab, the user can apply AC or GAC on
a block (ENFORCE), enforce one of the 10 consistencies
shown in a Hasse diagram of their relative strength (PROP-
AGATE), maintain partial or realfull lookahead while inter-
actively instantiating variables (FILTER), run search to find
all the solutions of the configuration on the board (FIND). As
the user enforces a consistency property (PROPAGATE), the
board is dynamically updated to reflect the effects of this ac-
tion. The user can step through the iterations of a given con-
sistency algorithm. The board is animated by highlighting
in grey the constraint under consideration, in red values re-
moved at the current iteration, and bolded in black the values
to be removed in future iterations of the same propagation.

Acknowledgments
This research is supported by an NSF Grant No. RI-1619344
and a UNL UCARE grant.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5830

References
[Bennaceur and Affane, 2001] Hachemi Bennaceur and

Mohamed-Salah Affane. Partition-k-AC: An Efficient
Filtering Technique Combining Domain Partition and Arc
Consistency. In Principles and Practice of Constraint
Programming (CP 01), volume 2239 of LNCS, pages
560–564. Springer, 2001.

[Bessiere and Debruyne, 2008] Christian Bessiere and Ro-
muald Debruyne. Theoretical analysis of singleton arc
consistency and its extensions. Artificial Intelligence,
172(1):29–41, 2008.

[Debruyne and Bessiere, 1997] Romuald Debruyne and
Christian Bessiere. Some practicable filtering techniques
for the constraint satisfaction problem. In In Proceedings
of IJCAI’97, pages 412–417, 1997.

[Mackworth, 1977] Alan K. Mackworth. Consistency in
Networks of Relations. Artificial Intelligence, 8:99–118,
1977.

[Reeson et al., 2007] Christopher G. Reeson, Kai-Chen
Huang, Kenneth M. Bayer, and Berthe Y. Choueiry. An
Interactive Constraint-Based Approach to Sudoku. In Pro-
ceedings of AAAI-2007, pages 1976–1977, 2007.

[Régin, 1994] Jean-Charles Régin. A filtering algorithm for
constraints of difference in constraint satisfaction prob-
lems. In Proceedings of AAAI-94, pages 362–437, Seattle,
WA, 1994.

[Simonis, 2005] Helmut Simonis. Sudoku as a constraint
problem. In Proceedings of the Fifth International Work-
shop on Modeling and Reformulating Constraint Satisfac-
tion Problems, pages 13–27, 2005.

[Waltz, 1975] David Waltz. Understanding Line Drawings
of Scenes with Shadows. In P.H. Winston, editor, The Psy-
chology of Computer Vision, pages 19–91. McGraw-Hill,
Inc., 1975.

[Yato, 2003] Takayuki Yato. Complexity and Completeness
of Finding Another Solution and its Application to Puz-
zles. Master’s thesis, University of Tokyo, 2003.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5831

