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Abstract. Cables are considered perfectly flexible in the classic model-
ing without flexural rigidity and with purely tangential cable forces. In
this paper, a static modeling of cables is presented where flexural rigid-
ity and shear forces are considered. The calculation details are presented
with and without considering the axial extensibility of cables for three
problems where one of the parameters including cable length, end point
positions and forces is determined by knowing the two others. The ef-
fects of considering flexural rigidity and shear forces are then analyzed
on a simple example of a cable-driven parallel robot consisting of a point
mass attached to two cables.
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1 Introduction

In several previous works, e.g. [3, 6, 8, 14], the static analysis of large-dimension
cable-driven parallel robots has been studied using the well-known elastic cate-
nary cable modeling [7] in order to account for the cable mass and elasticity. The
resulting kinetostatic modeling consists of a set of nonlinear equations involving
the cable lengths, the forces applied by the cables on the robot mobile plat-
form, and the mobile platform pose. Due to their nonlinear nature, numerical
methods must be considered to solve the corresponding inverse and direct kine-
tostatic problems [8, 11, 12]. These methods might be relatively slow because
of the involved computations which may be impractical in real-time environ-
ments. Hence, simplifications of this kinetostatic modeling have been considered
in [5, 10, 13] where assumptions on the cable model are made, e.g. considering
that the cable elasticity has a little influence on the cable shape. In fact, the
elastic catenary cable model [7] is also based on some assumptions, one of them
being to consider that the cable has a negligible flexural rigidity.

The contribution of the present paper is thus a formulation of the static
modeling of cables of non-negligible mass, where flexural rigidity and shear forces
are taken into account. Three problems are considered in the modeling where
one of the parameters including cable length, end point positions and forces is
determined by knowing the two others. A simple application to a cable-driven
parallel robot consisting of a point mass attached to two cables is also presented.
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In contrast to other works such as [1, 2, 9], the cable modeling in the present
paper is an extension of the elastic catenary cable modeling [7] and is notably
based on the Euler-Bernoulli bending moment expression for large deformations.
This modeling aims at investigating the effects of considering bending moments
on the accuracy of end point positioning, and on the determination of cable
length and forces, in order to be used for cable-driven parallel robots.

The paper is organized as follows. In Section 2, the static modeling of an
elastic cable with consideration of flexural rigidity and shear forces is presented.
Based on this modeling, Section 3 discusses three problems where the cable
length, end point positions or forces is to be determined when the two others are
known. Finally, in Section 4, an example application of a point mass attached
to two cables is presented.

2 Cable model

The static modeling of an elastic cable with consideration of flexural rigidity and
shear forces is introduced in this section. Figure 1 shows a schematic of a cable
of length L hanged between two points A and B which are not necessarily at the
same level. The forces and moments applied on the cable and on a segment of
the cable of length p are shown in Fig. 1.
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Fig. 1. Schematic of the cable with the different notations.

No moment is considered to be applied on the cable end points which is
generally the case in cable robot applications. The axes x and y are the horizontal
and vertical axes, respectively. The point A is taken as the origin of the x-y frame.
The cable profile is denoted by w (y coordinate). The strained length of the cable
segment between point A and point P is denoted by p while its unstrained length
is denoted by s. The coordinates of point P are (x,w). The relationship between
x, w and p is defined by the following geometric constraint:

dp2 = dx2 + dw2 (1)

The force and moment static equilibrium equations of the cable segment AP
are:
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Tx = HA

Tz = ρgA0s− VA
M = VAx+HAw − ρgA0s (x− xeqs)

(2)

where g is the gravity acceleration, ρ the cable density, A0 the unstrained cable
cross-section area, and HA and VA are the horizontal and vertical cable force
components at point A, respectively. The force components (HB , VB) at point
B can be determined using the first two equations in (2), with s = L, once the
cable length and force components at point A are determined. Thus, only the
force components at point A, HA and VA, are considered in the sequel. Note that
ρgA0s is the weight of the cable segment AP . It is written using the unstrained
length s since the known parameters are generally the unstrained cable length
L and the unstrained cross-section area A0.

As illustrated in Fig. 1, xeqs in (2) is the position along x of the center of
mass of the cable segment [0, s]. xeqs is given by:

xeqs =
1

s

∫ s

0

x ds (3)

Considering axial elasticity, s and p are related by Hooke’s law as follows:

dp

ds
= 1 +

Tα
EA0

(4)

where E is the Young’s modulus and Tα is the tangential component of the cable
force defined as:

Tα = Tx cosα+ Tz sinα = HA cosα+ (ρgAs− VA) sinα (5)

where α is the slope angle of the cable along its length.
The classic sagging cable model (elastic catenary) used in civil engineering

since the 1930s, takes the cable mass and axial elasticity into account. It is
based on the equations presented above and will be referred to as the “classic
model” in the sequel. The mathematical details of this model are presented e.g.
in [7, 8]. The cable in the classic model is assumed to be perfectly flexible, devoid
of flexural rigidity (bending moments are neglected). The action of any part of
the cable upon its neighbor is purely tangential. The static cable profile is then
defined by a set of non-linear equations:x = HA

EA0
s+ HA

ρgA0
ln

√
H2

A+V 2
A+VA√

H2
A+(VA−ρgA0s)2+VA−ρgA0s

w = s
EA0

(
ρgA0s

2 − VA
)

+ 1
ρgA0

(√
H2
A + (VA − ρgA0s)2 −

√
H2
A + V 2

A

) (6)

The modeling presented in this paper does not consider the assumptions of
the classic model and investigates the effects of the bending moments on the
statics of the cable. The Euler-Bernoulli law states that the bending moment
M is proportional to the change in the curvature produced by the action of the
load [4]. The bending moment expression according to this law is:
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M = EI
d2w
dx2(

1 +
(
dw
dx

)2) 3
2

(7)

where I is the second moment of area of the cable cross-section. For simplifica-
tion, the following variable substitution can be made:{

dx = dp cosα
dw = dp sinα

(8)

Considering the new variable α, and substituting (7) and (3) in the third
equation of (2), the governing equation of the cable is obtained as:

EI
dα

dp
= VAx+HAw − ρgA0sx+ ρgA0

∫ s

0

x ds (9)

where the following equation has been used:

dα

dp
=

d2w
dx2(

1 +
(
dw
dx

)2) 3
2

(10)

The differentiation in (9) must be made with respect to the unstrained length
s when the boundary conditions are expressed in s. The relation between dp and
ds is obtained from (4). This relation is dependent of the tangential cable tension
Tα.

The cable force being assumed to be tangent to the cable profile in the classic
model, the right-hand side of (9) can be shown to be zero [7]. Then, according

to (10), d
2w
dx2 = 0 which means that the cable is a straight line and, thus, without

sagging. It does not correspond to the real case since the cable mass is considered
in the modeling. To be rigorous, the bending moment should thus be taken into
account and shear forces must also be considered since the cable force is not
necessarily tangent to the cable profile.

Let us note that the moment expression with small deformations, M =

EI d
2w
dx2 in (7), cannot be used in the case of inclined cables since the cable slope

dw
dx cannot be neglected. One solution for taut cables is to use an inclined orthog-
onal frame (x′, y′) where x′ is parallel to the line AB. In this case, the governing
equation obtained from the equilibrium is simplified with the small deformation
expression and can be solved using Fourier series. This solution is not shown in
this paper since the more general case with large deformation expression of the
moment is treated.

3 Modeling problems and solutions

Generally, in cable robot applications, the position of the end point A is assumed
to be known, and the main parameters to be calculated are the cable unstrained
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length L, the position of the cable end point B, and the force components at
the cable end points. Three main problems can then be defined. In the first one,
the length and forces are known and the end point position must be determined.
In the second one, the length and end point position are known and the forces
have to be calculated. In the third one, the end point position and forces are
known and the unknown is the cable length. With the cable modeling introduced
in Section 2, a solution method is presented for each of these problems in the
following subsections.

3.1 First problem: Knowing length and forces and searching for
position

The differential equation in (9) governs the static behavior of the cable. Because
of the nonlinearity of the equation, explicit expressions for x and w cannot be
obtained, contrary to the case of the classic model.

Hence, an ODE must be considered and the first, second, and third problems
defined above are boundary value problems that can be solved using numerical
methods. The solvers ’bvp4c’ or ’bvp5c’, which are finite difference codes avail-
able in Matlab, have been used. Accordingly, a system of differential equations
of the first order must be written and the number of boundary conditions must
be equal to the number of equations in this system.

In order to solve the first problem, the ODE (9) is differentiated with respect
to s and written as a system of five first order differential equations (y ′ =
f1(s,y)) with five variables (y = [x,w, α, dαds ,

∫ s
0
xds]). When the axial elasticity

(extensibility) is not considered, the system of first order differential equations
is simplified by considering that s and p are equal and ds/dp is equal to 1.
Five boundary conditions are introduced in order to solve the problem, which
are related to the position of the cable end point A (x(0) = 0, w(0) = 0), to
the value of

∫ s
0
x ds at A (

∫ s
0
x ds(0) = 0), and to the moments at A and B

(M(0) = M(L) = 0).

3.2 Second problem: Knowing length and position and searching
for forces

When searching for the forces in the case of the second problem, the force com-
ponents HA and VA are unknown in the governing ODE (9) while two additional
boundary conditions related to the position of the cable end point B are added.

The solvers ’bvp4c’ and ’bvp5c’ allow solving ODE with additional unknown
parameters by adding more boundary conditions. Taking advantage of this pos-
sibility, using the same system of first order differential equations defined for the
first problem, the second problem can be solved by considering HA and VA as un-
knowns. Seven boundary conditions are introduced in this case in order to solve
the problem. These conditions are related to the position of the cable end points
A (x(0) = 0, w(0) = 0) and B (x(L) = xB , w(L) = yB), to the value of

∫ s
0
x ds

at A (
∫ s
0
x ds(0) = 0), and to the moments at A and B (M(0) = M(L) = 0).
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3.3 Third problem: Knowing position and forces and searching for
length

In the case of the third problem, the length is unknown which requires to change
the differentiation variable in the governing ODE. In the first two cases, differ-
entiation with respect to s is possible since the bounds on s (s ∈ [0, L]) are well
defined, which is not the case in the third problem.

The other possible differentiation variables are x and w. Differentiation with
respect to x is considered since x is a monotonic function of the cable length
s or p, which is not the case for w. Therefore, another variable substitution is
made as follows: {

dx = dp ·
√

1− u2
dw = dp · u (11)

where u is defined by (11), the latter being consistent with (1).
Considering the new variable substitution with u, the ODE in (9) becomes:

EI
du

dx
= VAx+HAw − ρgA0

∫ s

0

s dx (12)

Differentiating with respect to x one time, the following ODE is obtained:

d2u

dx2
= VA +

HA

EI

u√
1− u2

− ρgA0

EI
s (13)

For a given position of B, note that the cable tension components HA and VA
are dependent on each other. Consequently, only one force component HA or VA
can be defined. This is obvious in the case of the inextensible cable model since
the differentiation of (13) with respect to x eliminates VA so that the problem
can be solved without considering it.

Moreover, considering that the cable tension TA =
√
H2
A + V 2

A can be mea-
sured using a force sensor, it is considered that TA is known in the third problem.

Besides, knowing that HA is always positive, it can be replaced by HA =√
T 2
A − V 2

A in the equations. The governing ODE (13) becomes:

d2u

dx2
= VA +

√
T 2
A − V 2

A

EI

u√
1− u2

− ρgA0

EI
s (14)

Thereby, the system of first order equations defining the third problem (y ′ =
f2(x,y)) has five variables (y = [w, s,

∫ x
0
sdx, u, dudx ]), one unknown VA and six

boundary conditions. These conditions are related to the position of the cable
end points A (w(0) = 0, s(0) = 0) and B (w(L) = 0), to the value of

∫ x
0
s dx at

A (
∫ x
0
s dx(0) = 0), and to the moments at A and B (M(0) = M(L) = 0).

4 Application: Two cables attached to a point mass

In this section, the extensible and inextensible cable models introduced in the
previous sections (referred to as the new models in the sequel) are compared
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Fig. 2. Schematic of two cables attached to a point mass B.
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Fig. 3. Trajectories obtained with the different models for a weight P=0.5kN (a) and
P=10KN (b).

with the classic cable model (elastic catenary). To this end, as a simple example
of a cable-driven parallel robot, the trajectory of a point mass attached to two
cables is considered (Fig. 2). Changing the length of one cable, the trajectory of
the point mass is calculated with the new and classic models as well as with a
linear model where no sagging is considered.

The cables have a radius of 1 cm, density 8050 kg/m3 and Young’s modulus
170 GPa. The coordinates of A1 and A2 are defined as (0; 0)m and (10; 2)m,
respectively. The unstrained length L2 of the second cable is fixed at 7m while
the length L1 of the first cable is varied between 4m and 5m. Figure 3 shows the
trajectory obtained with the different models and with two weights P = 0.5kN
and P = 10kN of the point mass.

The trajectory calculated with the linear model is independent of the weight
P . Figure 3 shows that the trajectory with the new extensible model is close to
the linear model for a moderate weight P . The rationale of this rather surprising
result requires further investigation. In addition, for a moderate weight P , the
trajectories obtained with the new inextensible model and with the classic model
are farther away. Besides, we notice that the trajectories get closer to the linear
model when the weight is increased. This can be expected since the effect of the
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cable sagging is lower for higher tensions. In effect, the trajectories for a heavy
weight become much closer to each other.

Besides, as shown in the zoom in Fig. 3.b, the trajectory of the new inexten-
sible model becomes much closer to the trajectory of the linear model. However,
the trajectories of the new extensible model and classic model are much closer
to each other at a lower level along the vertical y axis which is due to the effect
of the axial elongation of the cables.

Note that the calculation of the trajectory with the new models is not pos-
sible using directly ’bvp4c’ or ’bvp5c’ solvers since the governing equations of
the two cables are coupled by the static equilibrium of the point mass and
these solvers do not solve multi-region boundary value problems. The trajec-
tories shown in Fig. 3 were calculated at each point of a discretization of the
trajectory by sweeping the unknown parameters so as to satisfy the equilibrium
equations. The corresponding calculations are time consuming. One future work
on the modeling presented in this paper is thus to reduce this computation time,
which is required if a cable-driven parallel robot driven by six or more cables
is considered. It should be possible either by using previously calculated data
in online calculations or by finding an algorithm to solve directly the coupled
multi-region boundary value problem.

5 Conclusion

A static modeling of cables was presented in this paper. It takes into account the
cable flexural rigidity which is not considered in the usual elastic catenary model.
The shear forces are thereby not neglected and the cable force is not necessarily
tangent to the sagging cable profile. The calculation details were presented with
and without considering extensibility for three main problems where one of the
parameters among cable length, end point positions and forces is determined by
knowing the two others. A comparison with the elastic catenary cable model was
made in a simple application of a cable-driven parallel robot consisting of a point
mass attached to two cables. Future works include comparisons to experimental
data and computation efficiency improvements in the case of an application to
cable-driven parallel robots.
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