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Geometric Optimization of a Large Scale CDPR Operating on a
Building Facade

Hussein Hussein 1, João Cavalcanti Santos 1 and Marc Gouttefarde 1

Abstract— This paper deals with the optimization of the
geometry of a Cable-Driven Parallel Robot (CDPR) dedicated
to large-scale construction applications. Since the maximum
cable tension is a critical parameter in the design of the
CDPR components, the geometry of the CDPR is optimized by
minimizing the lowest maximum cable tension that ensures the
validity of wrench-feasibility constraints. The geometric design
procedure used in this paper consists of two phases, the CDPR
cable connections is selected in the first phase followed by a
second phase where the geometric parameters are optimized.
The result of this procedure is an original fully-constrained
CDPR geometry.

I. INTRODUCTION

Cable-driven parallel robots (CDPRs) are a special kind
of robot in which a mobile platform is connected to winches
by the use of cables. Since long cables can be wound on
winch drums, CDPRs can have a wide workspace. Several
applications taking advantage of this characteristic were
proposed. The NIST RoboCrane and the CoGiRo [1], [2]
are suspended CDPRs able to displace heavy objects across
a large workspace. Thompson and Blackstone introduced in
[3] the SkyCam, a movable camera system actuated by cables
is meant for the broadcasting of sport events.

Two types of CDPR configurations can be distinguished.
On the one hand, a suspended CDPR has all its cable drawing
points located above its workspace, similarly to a crane. The
cables remain tensed thanks to the weight of the platform.
On the other hand, a fully-constrained CDPR can be obtained
by positioning some of the cable drawing points in the lower
part of the workspace and the others in the upper part. For the
CDPR mobile platform to be fully-constrained by the cables,
the cables must be arranged to as to obtain wrench-closure
[4], [5].

Examples of fully-constrained CDPRs are the FALCON
[4] and the IPAnema family [6], [7]. Lafourcade, Llibre
and Reboulet proposed in [8] a similar machine to be used
in wind tunnels. In [9], a storage retrieval machine based
on a fully-constrained CDPR is presented while the one
studied in [10] is designed with the purpose of painting and
sandblasting large parts.

The context of this work is the development of new
strategies for automation and the incorporation of robotic
technologies in the construction sector [11]. In this context,
this paper discusses the optimization of the geometry of
a CDPR intended to the construction and maintenance of
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building facades. Tasks such as the installation of curtain
walls and the facade cleaning may have their efficiency
improved with the use of a mobile platform able to move
in front of the building. Obviously, a wide workspace is
necessary in order to work on the whole building facade
and heavy payload capabilities are required. Furthermore,
since the CDPR may be subjected to substantial disturbances,
such as wind and possible interactions with the building,
superior stiffness is fundamental. These prerequisites justify
the consideration of a fully-constrained CDPR.

The optimization of the geometry of a CDPR is composed
of several steps. The first choice to be made is the number of
cables. Considering the intended mobility of the platform and
for symmetry reasons, the studied CDPR mobile platform
is driven by 8 cables. Several studies [2], [6], [8] showed
that large 6-DOF CDPRs driven by 8 cables have interest-
ing performances. Once the number of cables driving the
platform is chosen, the geometry design problem consists in
determining (i) the positions of the cable drawing points at
the base frame, (ii) the cable attachment points on the mobile
platform, and (iii) the cable connections (or arrangement)
between these two sets of points. The present paper focuses
on these three problems. To this end, the two-phase geometry
design methodology in [2] is used. Inspired by [12], the first
phase of this methodology consists in testing a very large
number of possible cable connections between various base
and platform preselected geometries. The second phase aims
at refining the result of the first phase using an optimization
algorithm.

Studies on the geometry optimization of CDPRs started
relatively recently in [12] where several concepts related to
the subject were introduced: Cable collisions, the combina-
torial problem of cable connections, and workspace analysis.
Similarly to this work, most of the following studies on
CDPR design were based on a workspace analysis [2], [6],
[13]–[20]. Typically, a global performance index is optimized
considering the required workspace [2], [13], [14], [16]. The
performance measure used in [2] is the maximum accept-
able distance between the mobile platform geometric center
and its center of mass. A global conditioning index (GCI)
is proposed in [13]. In [19], the largest circle delimiting
singular-free area is calculated for several positions of the
end-effector (considering a gait rehabilitation trajectory).
Using this procedure, geometric parameters are optimized
in order to enlarge the wrench-closure workspace. Guay et.
al introduced in [21] a kinetostatic index which measures
the closeness to instability and presented an example of
application to CDPRs. Stiffness [22] may also be used as



a performance measure. Recently, the simultaneous use of
stiffness and dexterity was discussed in [23]. In addition,
Zanotto et. al present several performance indexes in [24].
These studies present local indexes. During the geometry
optimization, the CDPR performances should be evaluated
for a (finite) number of platform poses. A global index can
be obtained from this set of platform poses. Alternatively, in-
dexes which are intrinsically global may be proposed. Taking
the required workspace as constraint, the space occupied by
the CDPR (volume of the basis structure) is minimized in
[10], [20]. Besides, Rosati et. al [17] showed that adaptive
CDPRs may decouple (totally or partially) the dependency of
these local indexes on the CDPR mobile platform pose. As a
result, a uniform performance index value may be obtained
over the robot workspace.

Alternatively, geometry optimization may be based on
a specific trajectory (or on a set of trajectories) [25]–[28]
instead of on a workspace analysis. The CDPR which
performs the trajectory in the shortest time is chosen in
[25], [28]. Bryson, Jin and Agrawal propose in [27] the
minimization of the cable tensions required to complete a
particular motion. As aforementioned, a critical parameter
during the mechanical design of a CDPR is the maximum
cable tension. The final cost of the robot is closely related
to this parameter. Hence, the approach of minimizing the
cable tensions is an appealing choice. Nevertheless, a CDPR
is generally expected to present good performances across
its workspace and not only on specific trajectories.

This paper deals with the geometry optimization of a large
fully-constrained CDPR. More specifically, the geometry
optimization presented in this paper aims at reducing the
required maximum cable tension over the CDPR workspace.
Based on a quasi-static analysis and on purposely defined
wrench-feasibility constraints, an original explicit formula-
tion of the lowest possible maximum cable tension permitting
to satisfy these wrench-feasibility constraints is introduced.
This explicit formulation is the first main contribution of
this paper. It is used as the objective function of the CDPR
geometry optimization problem. Applying this geometry
optimization to the case of a large CDPR intended to work
on a building facade, an original fully-constrained CDPR
geometry is obtained, which is the second main contribution
of this paper.

The basic CDPR modeling used in this paper is presented
in Section II. The formulation of the lowest maximum cable
tensions allowing to satisfy wrench-feasibility constraints is
introduced in Section IV. This formulation is based on the
wrench-feasibility conditions presented in Section III and IV.
The workspace definition and studied CDPR base and plat-
form geometries are presented in Section V. The design
criteria are discussed in Section VI. Finally, Section VII
presents the two-phase geometry design procedure and dis-
cusses the obtained result which consists of an original fully-
constrained CDPR geometry.
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Fig. 1. Schematic representation of the general kinematic parameters of a
CDPR.

II. CABLE ROBOT BASIC MODELING

A basic CDPR modeling is presented in this section
including the notations and the static equilibrium. The dy-
namics is neglected in the geometry optimization proce-
dure, since the CDPR is expected to work in a quasi-
static manner because, for safety purposes, velocities and
acceleration should be limited in construction applications.
The cable mass, and thus cable sagging, is also neglected.
This assumption is reasonable for the design, where a very
accurate model is not required contrary to the case of control
and calibration.

Figure 1 shows a schematic representation of a CDPR with
the notations used in the modeling. The CDPR has six DOFs
and its number of cables is denoted by n.

The cables are attached to the mobile platform at points
Bi, referred to as the attachment points, and exit from the
base at points Ai, referred to as the drawing points, where
i = 1, 2, ..., n. Vector ai is the position vector of point Ai in
K0(O, x, y, z), where K0 is a fixed reference frame. Vector
bi is the position vector of point Bi in Kp(P, x, y, z), where
Kp is frame attached to the CDPR mobile platform, and P is
the reference point of the platform which is not necessarily
coincident with its center of mass. The position vector of
point P in K0 is denoted by p. The rotation matrix Q defines
the orientation of Kp with respect to K0, i.e., the orientation
of the CDPR mobile platform. Vector p and matrix Q define
the pose of the mobile platform.

The cable length vector
−−−→
BiAi expressed in the frame K0

is denoted by li. Referring to Fig. 1, it is given by li =
ai−p−Qbi . The unit vector di along li is equal to di = li/li,
where li denotes the length of the straight line segment BiAi.

The wrench matrix W provides the relationship between
the cable tensions t and the wrench f (forces and moments)
applied by the cables on the CDPR mobile platform at point
P [14]:

Wt = f (1)



The 6× n wrench matrix W is given by:

W =

[
d1 d2 ... dn

Qb1 × d1 Qb2 × d2 ... Qbn × dn

]
(2)

where × denotes the cross product. W depends on the
cable robot geometry (points Ai and Bi) and on the mobile
platform pose (Q and p). In static equilibrium, f + fe = 0
where fe is the external wrench applied on the CDPR mobile
platform.

III. WRENCH FEASIBILITY ANALYSIS

A mobile platform pose is said to be wrench-feasible [29],
[30], when a required wrench set RW is entirely contained
within the set of wrenches AW that the cables can apply on
the mobile platform:

RW ⊆ AW (3)

where AW is called the available wrench set.
The RW is the set of wrenches f that the cables must

generate at the mobile platform reference point P and its
exact definition depends on the task(s) to be accomplished by
the CDPR. The RW can be defined as the set of wrenches that
permits to balance the total weight of the mobile platform
and the payload, possibly for a set of payload masses and
center of mass (CoM) positions [2].

The AW is generally defined from admissible minimum
and maximum cable tension values:

tmin ≤ t ≤ tmax (4)

where tmin ≥ 0 is the vector of minimum tensions and tmax
is the vector of maximum tensions. The components tmin
of tmin must be non-negative since the cables cannot push
on the mobile platform. A maximum tension tmax is defined
to account for the capabilities and limitations of the cables,
motors, supports, etc. In this paper, the maximum cable
tension tmax is taken as the parameter to be optimized in
the geometry optimization procedure. Note that the minimum
and maximum cable tensions may be defined differently for
each cable.

The bounds on the cable tensions in (4) forms an hy-
percube in the cable tension space. Being the image of this
hypercube under the linear map represented by matrix W, the
AW is a convex polytope which can be represented as the
solution set of a system of linear inequalities in the following
form [31]:

AW = {f | Cf ≤ d} (5)

where matrix C and vector d can be obtained by means of
the hyperplane shifting method introduced in [30].

An advantage of the formulation in (5) is that the wrench-
feasibility condition (3) can be tested by verifying if all
wrenches in the RW satisfy all the linear inequalities defined
in (5). For simple definitions of the RW , the corresponding
calculations are generally straightforward. In the next sec-
tion, the representation of the AW in (5) is used to obtain
an expression of the maximum cable tension tmax.

According to [30], each combination of five linearly inde-
pendent columns wi1 , wi2 , wi3 , wi4 , and wi5 , of W provides
two rows of C, say ck and cl. The row vectors ck and cl
span the nullspace of matrix MI = [wi1 ,wi2 ,wi3 ,wi4 ,wi5 ]T
and are opposite (ck = −cl = null(MI)), where I denotes
the index set {i1, ..., i5} ⊂ {1, ..., n}. The element dj of d
corresponding to the row cj of C is given by:

dj =
∑
i∈I+j

tmaxcjwi +
∑
i∈I−j

tmincjwi (6)

where I+j and I−j are the subsets of {1, ..., n} defined as
I+j = {i | cjwi > 0} and I−j = {i | cjwi < 0}.

IV. MAXIMUM TENSION CALCULATION

First, let us consider that all cables have the same max-
imum cable tension tmax (and the same tmin). Let us also
consider a given pose of the mobile platform (i.e. a given
wrench matrix W) and a given wrench f. Substituting the
expression (6) of dj in the system of linear inequalities
Cf ≤ d of (5) and considering the jth row of this system,
the following inequality is obtained:

tmax ≥
cjf− tmin

∑
i∈I−j

cjwi∑
i∈I+j

cjwi
(7)

In the particular case I+j = ∅, the denominator in (7) is
equal to zero, tmax is not involved in the jth row of Cf ≤ d,
and the following condition on tmin must be satisfied:

cjf ≤ tmin
n∑
i=1

cjwi (8)

The maximum cable tension tmax must verify (7) for all
inequalities in Cf ≤ d, i.e.:

tmax ≥ max
j

cjf− tmin
∑
i∈I−j

cjwi∑
i∈I+j

cjwi
(9)

For a given pose of the mobile platform and a given tmin,
the right-hand side of (9) gives the lowest value of tmax such
that a given wrench f is feasible, i.e., can be generated at the
mobile platform with cable tensions t verifying (4).

In order to determine the lowest value of tmax such a RW
is feasible, i.e. such that (3) is verified, a particular definition
of RW should be considered.

In this paper, the CDPR is intended to work on the
facade of a building, operating in a quasi-static manner while
carrying heavy payloads. Consequently, a first definition of
interest for the RW is the one presented in [2]. This RW
is defined as the set of wrenches f = [fx, fy, fz, τx, τy, τz]

T

allowing to balance a total (platform and payload) mass m,
mmin ≤ m ≤ mmax, where the projection of the CoM on
the horizontal plane containing the platform reference point
P can be located anywhere in a disc of radius r centered at
P :



RWcircular =


f | fx = fy = τz = 0,
mming ≤ fz ≤ mmaxg,√

τ2x + τ2y ≤ fzr

 (10)

where g is the gravity acceleration.
Another definition of interest for the RW is similar to the

previous one but with the projection of the CoM located in a
square horizontal zone of dimensions 2s× 2s (s denotes the
half-side length of the square) along the x and y directions
(z being the vertical axis as shown in Fig. 1) :

RWsquare =

 f | fx = fy = τz = 0,
mming ≤ fz ≤ mmaxg,
|τx| ≤ fzs, |τy| ≤ fzs

 (11)

In this second definition of the RW , the CoM can be shifted
to the extrema along x and y simultaneously. The square and
circular zones where the CoM can be located are illustrated
in Fig. 2.
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Fig. 2. Circular and square horizontal CoM allowable zones.

In order to determine the lowest value of tmax such that
RWcircular is feasible, note that for each row cj of C, the
wrench f ∈ RWcircular which maximizes cjf is given by:

fx = fy = τz = 0,

fz =

 mmaxg if cjfz ≥ −r
√
c2jτx + c2jτy

mming if cjfz < −r
√
c2jτx + c2jτy

τx = fzr
cjτx√

c2jτx+c
2
jτy

, τy = fzr
cjτy√

c2jτx+c
2
jτy

(12)

where cj = [cjfx, cjfy, cjfz, cjτx, cjτy, cjτz].
In the case of the square horizontal CoM allowable zone,

the wrench f ∈ RWsquare which maximizes cjf is given by:

fx = fy = τz = 0,

fz =

{
mmaxg if cjfz ≥ −s(| cjτx | + | cjτy |)
mming if cjfz < −s(| cjτx | + | cjτy |)

τx = fzs · sgn(cjτx), τy = fzs · sgn(cjτy)
(13)

where the sign function is defined as sgn(x) = 1 if x ≥ 0
and sgn(x) = −1 if x < 0.

Let fj be the wrench defined by (12) in the case of
RWcircular and by (13) in the case of RWsquare. Then, ac-
cording to (9), the lowest value of tmax such that RWcircular

or RWsquare is feasible is equal to:

tmax = max
j

cjfj − tmin
∑
i∈I−j

cjwi∑
i∈I+j

cjwi
(14)

The advantage of (14) is to give an explicit expression of
the lowest value of tmax such that RWcircular or RWsquare

is feasible. Otherwise, i.e. without the formulation in (14),
a sweeping of the wrenches over the RW is necessary to
determine the lowest value of tmax.

In (14), the maximum cable tensions are assumed to be
the same for all the cables. However, one specificity of fully-
constrained cable robots operating on a building facade is
that the cables connected to the roof supports must withstand
the totality of the payload in addition to the load due to the
bottom cable tensions. In practice, the cable tensions are thus
larger in the top (upper) cables than in the bottom (lower)
cables.

Hence, a further refinement of the maximum cable tension
evaluation is to consider different values of the maximum
cable tensions between lower and upper cables (tmaxl and
tmaxh, respectively), while conserving the same value of
tmax obtained previously in (14) for the top cables (tmaxh =
tmax).

The value of tmaxl is calculated from the wrench feasibil-
ity condition (Cf ≤ d) by separating the components of tmax
in two sets, one related to the lower cables and the other one
to the upper cables. The lowest value of tmaxl is then equal
to:

tmaxl = max
j

cjfj − tmin
∑
i∈I−j

cjwi − tmaxh
∑
i∈I+jh

cjwi∑
i∈I+jl

cjwi
(15)

where I+jh and I+jl are the subsets of I+j corresponding to the
upper and lower cable indices, respectively. Note that, if I+jl
is empty, the corresponding condition on tmaxl is neglected.

The expressions of the lowest maximum cable tensions
obtained in (14) and (15) have been derived for a given
pose of the CDPR mobile platform (i.e., for a given wrench
matrix W). Hence, the expressions in (14) and (15) must be
calculated over the prescribed workspace of the CDPR. The
maximum value obtained in these calculations is the lowest
maximum cable tension such that (3) is verified across the
CDPR workspace.

V. WORKSPACE AND BASE AND PLATFORM GEOMETRIES

Input variables to the geometry optimization problem are
discussed in the present section. First of all, the workspace
is defined in Section V-A. In this paper, the geometry opti-
mization is based on the consideration of a finite number of
platform poses distributed across the prescribed workspace.
These poses are defined in this section. Moreover, the
parametrization of the possible platform and base geometries
are presented in Section V-B.
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A. Workspace definition

The studied CDPR is meant to be used during the con-
struction or maintenance of building facades. The platform
should be able to move in front of the whole facade of the
building. Therefore, the workspace over xz is the surface of
the facade where the x and z axes are shown in Fig. 3. For
the considered example building, this surface is a rectangle
of height 10.2 m and width 8.5 m. The depth along the y
axis has also to be defined. The platform should be able to
move close enough to the facade. The minimum distance
between the border of the platform and the building facade
is set to 40 cm in the example dealt with in this paper.
Moreover, a safe distance of 1 m along the y axis is required
during the movement of the platform in front of the building.
It should be highlighted that these dimensions were defined
taking into account the border of the platform. Consequently,
the positions of the platform reference point P with respect
to the building depends on the platform dimensions.

The performance of the CDPR will be evaluated at a finite
number of positions in the workspace described above. Both
the building and the CDPR are considered to be symmetric
with respect to the yz plane. Consequently, the analysis of
half of the workspace is sufficient. In the x direction, the
positions are distributed as shown in Fig. 3: Three at the
middle of the building, three on its edge, and three others at
the middle between them. In the y direction, the positions are
placed at the minimal distance with respect to the building
facade (40 cm) and at the safe moving distance (1 m).
Moreover, small platform orientation angles about the z axis,
distributed between −2◦ and 2◦, are considered at each
position defined above. These angle limitations are small
because they are only set to handle possible construction
deviations along the building facade.

B. CDPR base and platform geometries

The geometric design of a CDPR includes the determi-
nation of the positions of the cable drawing points at the
base, of the attachment points on the platform, and of cable
connections between these two sets of points. Considering
the shape of the workspace discussed in the previous section,
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Fig. 4. Base geometry with 8 cables (same configuration shown from two
different angles).

8 cables turns out to be an appropriate choice for the fully-
constrained CDPR considered in this paper. The attachment
points on the CDPR platform are defined as the 8 points of
a rectangular parallelepiped. Besides, four cables drawing
points are positioned at the top of the building and the
remaining four are positioned at the ground level (points 1,
2, 7 and 8). These base and platform geometries are depicted
in Fig. 4 and Fig. 5, respectively. Considering symmetry
with respect to the middle yz plane, the drawing points
numbered n, n − 1, ..., 2, 1 are symmetric to the drawing
points numbered 1, 2, ..., n − 1, n, respectively. Thereby,
by symmetry, only 4 drawing point positions have to be
optimized for n = 8.

The green areas in Fig. 4 represent the zones where the
drawing points can be located. These areas are defined to
cover the prescribed workspace by the drawing points while
reducing as much as possible the extension outside of the
building. A maximum distance of 2 m to the sides (in the x
direction) and up to 5 m in front of the building facade (in
the negative y direction) are available for the drawing points
at the ground level. The height of these drawing points (1,
2, 7 and 8) is set to 1.2 m to avoid collisions with some
stacks of objects which may clutter the ground level. The
remaining 4 drawing points are positioned at the top of the
building. More precisely, they are located above the building
at a height of 1 m up to 1.5 m. The drawing points 4 and
5 are shifted outwards the facade in an effort to enlarge the
CDPR workspace.

The CDPR mobile platform dimensions are more related
to the facade elements to be installed and to the size of
components placed on-board the platform. The platform
geometry parametrization is shown in Fig. 5. It consists of
three geometric parameters whose (range of possible) values
are indicated in Table I.

TABLE I
GEOMETRIC PARAMETERS OF THE MOBILE PLATFORM

wp tp hp

1.5 [1, 1.5] [2, 3]

A CDPR cable configuration is completed with the defini-
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Fig. 5. Platform geometry with 8 cables.

tion of the cable connections between the drawing points
(base geometry) and the attachment points (platform ge-
ometry). In order to consider in the geometry optimization
problem all possible cable connections between the base and
platform geometries defined above, a combinatorial problem
must be dealt with. A unique pair of platform and base ge-
ometry with n cables connected between them leads to Cn

2

n

possibilities (4.4 109 possibilities for 8 cables). Nevertheless,
some constraints can be defined so as to decrease this number
of combinations to a more reasonable number. As discussed
earlier, in this paper, the CDPR is symmetric with respect to
the yz plane. Cable connections violating this constraint are
disregarded. In addition, collisions between cables and the
platform are predicted.

VI. DESIGN CRITERIA

In order to proceed with the geometry optimization, the
objective function and the constraints should be defined. The
ones used in the present study are presented in this section.

A. Cable tension reduction

The CDPR cost is partly related to the maximum cable ten-
sions. In fact, the smallest possible maximum cable tension
is sought. Accordingly, the lowest maximum cable tensions
calculated in (14) (and (15)) are defined as the objective
function to be minimized. As briefly discussed at the end
of Section IV, the lowest maximum cable tension should be
computed at various poses across the CDPR workspace. In
this paper, the finite number of workspace poses described
in Section V-A are considered. The maximal value among
these poses is considered as the performance index for a
given CDPR geometry.

B. Cable collisions

Another criterion that must be considered in the design of
the CDPR is the avoidance of collisions between the cables
and between the cables and the mobile platform, across the
CDPR workspace. For instance, a collision can be tested
using the distance between cables over all the workspace
poses. This distance must be larger than the cable diameters.
Cable collisions are tested at the finite number of workspace
poses described in Section V-A while the absence of cable
collisions across the workspace is verified afterward the
CDPR geometry optimization procedure. Additionally, the
cables must not pass throughout the mobile platform. This
condition is mainly considered in the generation of the cable

configurations between drawing points and attachment points
of the CDPR.

VII. GEOMETRIC DESIGN STUDY

The geometric design study in this paper aims to select
and optimize the CDPR geometry based on the performance
index defined in Section VI-A. Following the methodology
used in [2], the design study is based on two phases. The
first phase consists in testing a very large number of pos-
sible cable connections between various base and platform
preselected geometries. The second phase aims at refining
the result of the first phase using an optimization algorithm.
The design methodology in the two phases and the design
results are presented in this section.

A. Phase 1: Cable configurations
In this first phase, the workspace poses considered are

those defined in Section V-A, and the base and platform
geometry parametrizations are defined in Section V-B. All
the possible cable connections between the corresponding
base and platform points are first generated according to
Section V-B. All of the CDPR geometries thereby obtained
are then tested in order to retain the best ones. A geometry
without cable collisions is considered better than another one
according to the objective function presented in Section VI-
A.

B. Phase 2: Geometric parameter optimization
The first phase is followed by a second phase in order to

refine the dimensions of the CDPR. This second phase is
based on a sequential quadratic programming optimization.
Referring to Section VI-A, the optimization problem in this
paper consists in minimizing the maximum cable tension
tmax while variating the geometrical dimensions of the
drawing points (xd) and attachment points (xa):

minimize
xd,xa

tmax

subject to
{

tmax = txd,xamax

avoid collision
(16)

where txd,xamax is the maximum of tmax (evaluated using (14))
over the workspace poses (defined in section V-A). For
each pose, tmax is calculated by considering the geometrical
parameters xd and xa defining the drawing and attachment
points dimensions.

Various other design constraints may be defined according
to application requirements such as improving the stiffness,
avoid collision with an obstacle, etc. The best CDPR ge-
ometry found in the first phase is considered as the initial
guess for the optimization problem of the second phase. Note
that in this second phase, only the geometric dimensions are
optimized while the cable connections remain the same as
the one obtained in the first phase.

After the second phase, the best cable robot geometry and
the corresponding value of the lowest tmax are obtained.
However, the maximum cable tensions of the lower cables
tmaxl can be further reduced as explained at the end of
Section IV. The lowest value of tmaxl for the optimal
geometry is evaluated using (15).
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Fig. 6. Best CDPR geometries obtained after phases 1 and 2 of the
design with consideration of circular (RWcircular , subfigure a) and square
(RWsquare, subfigure b) CoM allowable zones.

C. Results and discussion

In the context of the EU project Hephaestus, a prototype
of the CDPR whose geometry optimization is the subject of
this paper should be installed on a demonstration building
facade. A computer code has been developed to select and
optimize this CDPR geometry according to the methodology
presented in the previous sections. Running this code for
the CDPR possible geometries and the optimization problem
defined in this paper, for a maximum mass mmax = 1000
kg, a minimum mass mmin = 200 kg, a minimum cable
tension tmin = 200 N and the two definitions of the required
wrench set RWsquare and RWcircular given in Section IV
with r = s = 0.5 m, the best CDPR geometry obtained
after the second phase for the two RW cases is shown in
Fig. 6. Several hours of computation time (on a standard
computer, Intel Core i7- 7820HQ @ 2.9 GHZ 16 GB RAM)
were needed to obtain this result.

This best CDPR geometry has been obtained in both the
case of RWsquare and RWcircular. However, the values of
the lowest maximum cable tensions (tmaxh and tmaxl) are
larger in the case of RWsquare which can be expected since
r = s = 0.5 m and, thus, all wrenches in RWcircular are
contained in RWsquare.

It is worth noting that the CDPR geometry obtained
in this paper (Fig. 6) possesses smaller lowest maximum
cable tensions than CDPR geometries similar to the ones
used in existing fully-constrained 8-cable CDPRs such as
IPAnema [7], CaBLAR [9], Media-TIC [32] and CableEndy,
as illustrated in Fig. 7. In this figure, the best values of the
lowest maximum cable tensions are indicated. These values
have been obtained using the optimization problem defined
in this paper (second phase, Section VII-B), where the way
of connecting the cables between the CDPR base and the
platform is similar to the one of the aforementioned fully-
constrained 8-cable CDPRs.

With the proposed method where the lowest maximum
cable tensions is minimized, it is possible to optimize CDPR
geometries having more than eight cables, which should lead
to a smaller values of the maximum cable tensions. The
corresponding optimal CDPR geometries are not shown in

Square CoM zone (1m x 1m)
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Fig. 7. Best CDPR geometries obtained for predefined cable connec-
tions with consideration of circular (RWcircular , subfigure a) and square
(RWsquare, subfigure b) CoM allowable zones.

this paper for short. However, a choice have to be made
between having more cables with lower maximum cable
tensions, or less cables with larger maximum cable tensions.
The selection of the number of cables is thus a trade-off
between, on the one hand, the number of CDPR components
(winches, drums, pulleys, supports, etc.) and, on the other
hand, the size, capability, and cost of these components.

In the specific application of the CDPR in the Hephaestus
project, it is required to handle heavy payloads that will be
located on the mobile platform between the platform and
the building. This implies a shift of the zone of possible
CoM locations towards the building facade. Future works
will focus on the definition of such CoM allowable zones,
of the corresponding RW , and on the calculation of the
lowest tmax for this RW . Moreover, in construction en-
vironments, lateral disturbances due to winds, as well as
contacts or collisions with an object can probably occur. To
make the CDPR robust to such disturbances, a minimum
stiffness should be targeted in the design. Therefore, another
perspective of the current work is to include constraints on
the CDPR stiffness in the CDPR geometry optimization.
A first approach may address the stiffness in a specific
direction. Similarly to [33], the stiffness in the y direction
is critical to the present application. A lower bound for this
directional stiffness may thus be imposed as an additional
constraint. Otherwise, a more complex approach may analyze
the displacement of a given point of the platform according
to a homogenized stiffness matrix, as discussed in [34].
Finally, the geometric tolerances on the cable drawing points
is normally high in construction sites. The determination of
tmax while considering these tolerances may also be part of
future works.

VIII. CONCLUSION

The optimization of the geometry of a large CDPR
intended to work on building facades was dealt with in
this paper. An explicit formulation of the lowest maximum
cable tension that ensures the validity of wrench-feasibility
constraints was first proposed. This lowest maximum cable
tension formulation was used as the objective function of



the CDPR geometry optimization problem since the max-
imum cable tension is a critical parameter in the design
of the components of a CDPR. Applying this geometry
optimization to an example case of a large CDPR intended
to work on a building facade, an original fully-constrained 8-
cable CDPR geometry was obtained and compared in term
of maximum cable tension to an existing fully-constrained
CDPR geometry.
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