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An active stabilizer for cable-driven parallel robot vibration damping

Maximilian Lesellier1 2, Loic Cuvillon2, Jacques Gangloff2 and Marc Gouttefarde1

Abstract— Cable-Driven Parallel Robots (CDPRs) can exe-
cute fast motions across a large workspace. However, these
performances are reached at the cost of a relatively low stiffness
which often yields parasitic vibrations at the CDPR mobile plat-
form. In this paper, vibration damping of CDPRs is addressed
by means of an original active stabilizer consisting of actuated
rotating arms installed on-board the CDPR mobile platform.
A control strategy for the whole system, which consists of the
CDPR and the stabilizer, and with one purpose for each—
position control for the platform and vibration damping for
the stabilizer—is designed. The system being controlled at two
different time scales, the singular perturbation theory can be
used to prove the stability of the corresponding closed-loop
system. The efficiency of the proposed device and control
strategy is tested in simulations in the case of a planar 3-DOF
CDPR equipped with a three-arm stabilizer.

I. INTRODUCTION

A Cable-Driven Parallel Robot (CDPR) is a type of
parallel robot whose mobile platform is driven by cables.
Controlling the lengths of the cables by means of winches,
the platform can be brought to a desired position and
orientation. Using cables instead of rigid links, CDPRs can
notably have a large payload-to-weight ratio, a very large
workspace, high dynamics, and reconfiguration capabilities
e.g. [1]–[6].

However, the advantages of flexible links is at the cost of
a relatively low stiffness and, therefore, of vibrations at the
CDPR mobile platform [7], [8]. Vibrations are an issue in
applications requiring good positioning accuracy, low settling
time, and limited fluctuations around the end-effector desired
trajectory. Moreover, flexible cables undergo a deflection
due to their own weight. This cable sagging may however
be neglected in the case of a high payload to cable mass
ratio, e.g. [9]. The cables can then be modeled as taught
strings. Since the axial flexibility of the cables contributes to
the mobile platform vibrations significantly more than their
transversal flexibility [10], the cables are usually modeled as
linear axial springs. Modeling the cables as springs instead of
inextensible segments can improve control algorithm stability
[11].

Vibrations damping is an active field in mechanical engi-
neering. The damping can be either passive or active. Passive
damping can only damp one specific natural frequency, and
in the case of a moving CDPR platform, the vibration natural
frequencies are higly dependent on the platform position and
orientation [10], [12]. Active damping consists in creating an
internal wrench to compensate vibrations [13]. It has already
been used for CDPRs, e.g. in [1] where the stiffness of the
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fully-constrained CDPR FALCON was increased by creating
internal forces. There are two major ways to perform active
vibration damping, either using input shaping methods or
generating a transient wrench to compensate the vibration.
In [14], an input shaping method in modal space is used to
reject vibrations on an over-constrained CDPR. Using input
shaping methods on a CDPR requires the winches to wind
the cables fast enough. In the case of large-dimension heavy-
payload CDPRs, this requirement cannot always be fulfilled.

Another solution to generate an internal wrench consists
in adding additional actuators [15], [16]. These actuators
are directly embedded in the mobile platform and can be
utilized to reduce the vibrations. Examples of such additional
actuators are reaction wheels used on a CDPR in [9],
Control Moment Gyros (CMG) or sliding-mass actuators
[17]. However, reaction wheels and CMG can only generate a
torque while linear actuators can only generate a force. They
may thus not be sufficient to compensate the vibrations of
the CDPR mobile platform, which act along all the Degrees
of Freedom (DOF) [10].

Besides, in [18], actuated rotating arms are used to adjust
the position of the center of mass of a static 6-DOF non-
actuated platform. The same type of actuator can be used
to generate inertial forces for dynamic reorientation as in
[19]. Several can be coupled together to generate forces and
torques along more than one directions [20], allowing more
complex control strategies. Force and moment generation
using rotating arms can thus be an interesting means to
actively damp vibrations of a CDPR mobile platform. This
type of method has already been used on a planar CDPR
in [21] where one rotating arm is used to control the
platform moment of inertia, and in [22] where two actuated
rotating arms are used to provide a reaction wrench for
eliminating out-of-plane vibrations occurring in the non-
controllable DOF. In these works, the platform positioning
and the vibration damping are two independent tasks realized
by two independent controllers.

Hereafter, a group of actuators mounted on the CDPR
platform for stabilization, is called the stabilizer. The system
consisting of a CDPR and its stabilizer is conceptually
similar to the micro-macro approach, where a small robot is
placed on a larger one, also for stabilization purposes [15],
[16], [23], [24]. The two systems work on two different tasks
and are controlled at two different time scales. An approach
that can be used to analyze the stability of the whole system
is the singular perturbation theory [25]. The latter considers
that the system variables work on two different time scales,
a slow one and a fast one, and thus can be decomposed as
two subsystems, one for each time scale. According to this
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Fig. 1. Principle of the wrench generation with actuated arms

theory, the system is treated as the sum of the fast and slow
subsystems, and it is stable if both subsystems are [26].

Besides vibration issues, the mobile platform might also
encounter positioning errors inherent to robots in general.
Various control approaches deal with this problem, including
the computed-torque method, which has already been used
on cable robots [27], [28].

The contribution of this paper is a multi-DOF active stabi-
lizer consisting of rotating arms placed on-board the CDPR
mobile platform to damp vibrations along all its DOFs.
Since the actions of the platform computed torque position
control and the stabilizer vibration damping happen at two
different time scales but interact, an overall control strategy
is proposed. Moreover, the stability of the corresponding
control law is proved by means of the singular perturbation
theory. The efficiency and robustness of the proposed control
strategy is tested in simulations on a planar 3-DOF CDPR
equipped with a three-arm stabilizer. Note that, unlike in
[22], the stabilizer is used to compensate vibrations on all
the DOFs of the CDPR platform, including the DOFs that
are also actuated through the cables. Its aim is then not to
work on uncontrollable DOFs but to speed up the damping
on controllable ones, working together with the platform
position control.

The paper is organized as follows. First, the main principle
of the stabilizer is described in Section II. The dynamic
model of a CDPR with an on-board stabilizer is presented in
Section III. The control strategy and the proof of its stability
are detailed in Section IV. A validation of the approach based
on computer simulations of a planar CDPR is presented in
Section V. Finally, conclusions are given in Section VI.

II. DESIGN OF THE STABILIZER

The main principle of a multi-DOF stabilizer consisting
of several arms is illustrated in Fig. 1 in the case of two
arms. Since a movement of one arm creates a wrench at the
center of mass of the stabilizer, a coordinated movement of
the two arms can create a single force or a single moment,
the unwanted components of the wrench of one arm being
compensated by the other arm. In the simple two-arm two-
DOF case shown in Fig. 1, two symmetric arms create a
moment by moving in the same direction and a force by
moving in opposite directions. With this principle and using a
number of stabilizer arms equal to or greater than the number
of mobile platform DOFs, it is possible to generate wrenches
along all the DOFs, as long as no pair of arms are aligned.
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Fig. 2. Schematic of a planar 3-DOF CDPR with 3 stabilization arms

In this paper, a multi-DOF active stabilizer following the
principle described above, is placed on-board the mobile
platform of a CDPR. The CDPR mobile platform is driven
by means of N cables which exit a stationary base frame
at points Ai and are attached to the CDPR mobile platform
at points Bi, i being the cable index. The cable lengths are
controlled by winches fixed to the base frame. The stabilizer
consists of J actuated arms, mounted on the CDPR mobile
platform in order to damp its vibrations. The stabilizer is
composed of actuated rotating arms terminated by point
masses. The rotating arms are identical and attached to the
CDPR mobile platform at point O j, j ∈ [1..J], whose position
relative to the platform center of mass Gp is defined by vector
rrr j =
−−−→
GpO j. Each arm length is denoted λ j and the point mass

is denoted m j. The CDPR mobile platform has n DOFs and,
in this paper, J ≥ n.

The jth arm makes an angle θ j with respect to a nominal
resting position and its actuator provides a torque κ j. An
appropriate nominal resting position of the arms should be
chosen so as to maximize the wrench applied by the stabilizer
on the CDPR platform. κκκ and θθθ are the vectors of motor
torques and angle from rest position of the stabilizer arms,
respectively.

A planar 3-DOF CDPR with a three-arm stabilizer is
shown in Fig. 2. This stabilizer can compensate the vibrations
on the 3 DOFs of the planar CDPR mobile platform. In this
example, the motors located at points O1, O2, and O3 are
rigidly fixed to the CDPR mobile platform.

III. DYNAMIC MODELING
Since the stabilizer is placed on-board the CDPR platform

and both the cable forces and the stabilizer movements



affect the same DOFs in Cartesian space, their dynamics
are coupled as detailed in the next section.

A. Static modeling of the CDPR mobile platform

The frame attached to the CDPR mobile platform is
denoted Rp and the fixed base frame is denoted R0. The
pose of the platform is given by the vector xxx, composed of
the position of the platform center of mass in R0 and of
three Euler angles defining the orientation of Rp in R0.

Similarly to [9], [14], the cables are assumed to be
massless and all tensed, which allows to neglect the sagging
effect [29]. Their longitudinal elasticity is taken into account
by modeling them as linear axial springs. The cable tension
vector is denoted τττ . By means of inverse kinematics, the
pose xxx of the mobile platform gives directly the cable
actual (strained) lengths l2l2l2(xxx). The vector of cable unstrained
lengths is denoted l1l1l1. The cable tensions can then be written
as follows:

τττ = kc diagdiagdiag(l1l1l1)−1(l2l2l2(xxx)− l1l1l1) (1)

where kc is the specific axial stiffness per unit of cable
length, under the assumption that the N cables have the same
constant stiffness.

B. Dynamic modeling of the CDPR with embedded stabilizer

The dynamics of the stabilizer and the CDPR mobile
platform are coupled. The corresponding dynamic model can
be obtained using Newton-Euler equations:

MMM(xxx,θθθ)
(

ẍ̈ẍx
θ̈̈θ̈θ

)
+CCC(xxx, ẋ̇ẋx,θθθ , θ̇̇θ̇θ)

(
ẋ̇ẋx
θ̇̇θ̇θ

)
+GGG(xxx,θθθ) =

(
−JJJTτττ

κκκ

)
(2)

where MMM is the generalized mass matrix of the CDPR mobile
platform and its on-board stabilizer, CCC the Coriolis matrix, GGG
the wrench due to the weight of the whole system (platform
and stabilizer) and JJJ the Jacobian matrix of the CDPR. n
being the number of DOFs of the CDPR mobile platform, MMM
and CCC are two square matrices of dimension (n+J)×(n+J),
GGG is a vector of dimension (n+ J), JJJ is a N×n matrix, τττ a
vector of dimension N, and κκκ a vector of dimension J.

The symmetric positive definite matrix MMM can be written
under the following form:

MMM =

 M11M11M11 M12M12M12

MMMT
121212 M22M22M22

 (3)

where M11M11M11 is a square n×n matrix and M22M22M22 a J× J matrix.
The matrix CCC can be partitioned into two submatrices C1C1C1 and
C2C2C2. Likewise, the vector GGG can be separated into G1G1G1 and G2G2G2.

With these notations, (2) is equivalent to:{
M11M11M11ẍxx+M12M12M12θ̈θθ +C1C1C1(xxx,ẋxx,θθθ , θ̇̇θ̇θ)ẋxx+G1G1G1(xxx) = −JJJT

τττ

M12M12M12
T ẍxx+M22M22M22θ̈θθ +C2C2C2(xxx,ẋxx,θθθ , θ̇̇θ̇θ)θ̇θθ +G2G2G2(θθθ) = κκκ

(4a)

(4b)

IV. DESIGN OF THE CONTROLLER AND
STABILITY PROOF

A. Design of the controller

The proposed strategy to control the whole system, con-
sisting of the CDPR and the on-board stabilizer, is shown
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in Fig. 3. This control scheme is composed of three control
loops, two for the stabilizer control and one for the CDPR
mobile platform control.

The first stabilizer control loop aims at canceling the
CDPR mobile platform vibrations. Since the wrench applied
by the stabilizer on the CDPR platform is maximal when
the stabilizer arms are at their resting nominal positions, a
second stabilizer control loop should be used to bring back
the stabilizer arms to their nominal positions to enhance
the system performance. The corresponding nominal state
is defined as Θ0 =

{
θ̈θθ d = 0, θ̇θθ d = 0, θθθ d = 0

}
where

θθθ d = 0 corresponds to the arm nominal positions. The first
loop needs to be fast to be able to compensate vibrations
whereas the second loop has to be designed to be much
slower than the first one to not interfere with it. In Fig. 3,
the first loop is thus called the stabilizer fast loop (shown in
red) whereas the second loop is called the slow loop (shown
in green). Moreover, as shown in blue in Fig. 3, an inverse
dynamics control loop is used to control the CDPR mobile
platform position.

These three control loops can be divided into two slow
loops, one for the position control of the CDPR platform and
one for steering the stabilizer arms back to their nominal po-
sitions, and a faster loop for active CDPR vibration damping
by means of stabilizer arm fast movements. Because these
loops work at different time scales, the singular perturbation
theory can be used to prove the stability of the whole system
[26]. The use of the singular perturbation theory requires the
closed-loop system equations to be split into the two parts.
Following the methods described in [25], [30], the system
closed-loop equations are given hereafter.

Since the generalized mass matrix MMM is invertible by
definition, let HHH be its block partitioned inverse:

HHH =

 M11M11M11 M12M12M12

MMMT
121212 M22M22M22


−1

=

 H11H11H11 H12H12H12

H21H21H21 H22H22H22

 (5)

where H11H11H11 a n× n matrix, H12H12H12 a n× J matrix, and H22H22H22 a
J× J matrix. To ensure tracking of a desired platform pose,
a nonlinear feedback linearization control loop is set up as



follows:

τττ =−(JJJT )+
(

M11M11M11ẍdẍdẍd +C1C1C1(xxx,ẋxx,θθθ , θ̇̇θ̇θ)ẋxx+GGG1(xxx)+H−1
11H−1
11H−1
11 (KvKvKv∆ẋ∆ẋ∆ẋ+KpKpKp∆x∆x∆x)

)
(6)

where KpKpKp and KvKvKv are two positive diagonal high gain matrices
and H−1

11H−1
11H−1
11 is used for later simplifications in (13). The

subscript d indicates the desired value for a variable and
∆x∆x∆x = xxxd−xxx is the pose error.

For the second subsystem (4b), a composite control law
κκκ = κsκsκs +κ fκ fκ f is proposed for the torque control of the stabi-
lizing arms. First, κ fκ fκ f aims at damping the CDPR vibrations
through the inertial reaction wrenches of the arms on the
CDPR platform:

κ fκ fκ f =H+
12H+
12H+
12KηKηKη∆ẋ∆ẋ∆ẋ (7)

where KηKηKη is a positive diagonal gain matrix and H+
12H+
12H+
12 is the

pseudo-inverse of H12H12H12, useful for later simplifications in (12).
Note that, since the case J ≥ n—at least as many stabilizer
arms as number of CDPR platform DOFs—is dealt with in
this paper, and under the assumption that no pair of stabilizer
arms are aligned, the matrix M12M12M12 has full row rank and
H+

12H+
12H+
12H12H12H12 = In×nIn×nIn×n. Note also that matrices M12M12M12 and H12H12H12 depend

on time dependent variables ∆x∆x∆x and θθθ .
Second, as any wrench can be created on the platform by

the stabilizer arms as long as no pair of arms are aligned,
κsκsκs aims at driving the stabilizer arms back to their resting
nominal positions Θ0. Hence, κsκsκs is set using the following
inverse dynamics approach:

κsκsκs =MMMT
121212ẍ̈ẍxd +CCC2(xxx,ẋxx,θθθ , θ̇̇θ̇θ)θ̇θθ +GGG2(θθθ)−KωKωKωθ̇θθ −KθKθKθθθθ (8)

where KθKθKθ and KωKωKω are two positive diagonal gain matrices of
an order of magnitude lower than KηKηKη .

By substituting equations (6), (8) and (7) in (4), the
nonlinear closed-loop system can be written as follows:{

M11M11M11∆ẍ∆ẍ∆ẍ−M12M12M12θ̈̈θ̈θ +H−1
11H−1
11H−1
11 KvKvKv∆ẋ∆ẋ∆ẋ+H−1

11H−1
11H−1
11 KpKpKp∆x∆x∆x = 000

MMMT
121212∆ẍ∆ẍ∆ẍ−M22M22M22θ̈̈θ̈θ +H+

12H+
12H+
12KηKηKη∆ẋ∆ẋ∆ẋ−KωKωKω θ̇̇θ̇θ −KθKθKθθθθ = 000

(9a)

(9b)

The matrices MMM and HHH are time dependent through the
variables xxxd , ∆x∆x∆x and θθθ .

B. Time scale separation and singular perturbation model

To retrieve a standard form of the closed-loop system (9)
convenient for its stability analysis, it is rewritten under the
following matrix representation:[

M11M11M11 M12M12M12
MT

12MT
12MT
12 M22M22M22

][
∆ẍ∆ẍ∆ẍ
−θ̈̈θ̈θ

]
+

[
H−1

11H−1
11H−1
11 KvKvKv 0

H+
12H+
12H+
12KηKηKη KωKωKω

][
∆ẋ∆ẋ∆ẋ
−θ̇̇θ̇θ

]
+

[
H−1

11H−1
11H−1
11 KpKpKp 0

0 KθKθKθ

][
∆x∆x∆x
−θθθ

]
= 000

(10)

and multiplied by MMM−1 =HHH:
∆ẍ∆ẍ∆ẍ =−KvKvKv∆ẋ∆ẋ∆ẋ−KηKηKη∆ẋ∆ẋ∆ẋ−KpKpKp∆x∆x∆x+H12H12H12

(
KωKωKω θ̇̇θ̇θ +KθKθKθθθθ

)
θ̈̈θ̈θ = HHHT

121212H−1
11H−1
11H−1
11 KvKvKv∆ẋ∆ẋ∆ẋ+H22H22H22H+

12H+
12H+
12KηKηKη∆ẋ∆ẋ∆ẋ

+ HHHT
121212H−1

11H−1
11H−1
11 KpKpKp∆x∆x∆x−H22H22H22(KωKωKω θ̇̇θ̇θ +KθKθKθθθθ)

(11a)

(11b)

With the assumptions of Section IV-A on the magnitudes
of the controller feedback gains, it can be assumed that

KθKθKθ and KωKωKω are O(1) gain matrices and that KpKpKp is a high
gain feedback matrix of order O( 1

ε
), with ε a small scalar

parameter. Let KpKpKp = 1
ε
IIIn×n and let K̃vKvKv =

√
εKvKvKv and K̃ηKηKη =√

εKηKηKη be O(1) diagonal gain matrices.
Introducing the variable zzz =KpKpKp∆x∆x∆x, the system (11) can be

written under the standard singular perturbation model [25]:
εz̈̈z̈z =−

√
ε(K̃vKvKv +K̃ηKηKη )ż̇żz−zzz+H12H12H12(KωKωKω θ̇̇θ̇θ +KθKθKθθθθ)

θ̈̈θ̈θ =
√

εH21H21H21H−1
11H−1
11H−1
11 K̃vKvKvż̇żz+

√
εH22H22H22H+

12H+
12H+
12K̃ηKηKη ż̇żz+H21H21H21H−1

11H−1
11H−1
11 zzz

− H22H22H22(KωKωKω θ̇̇θ̇θ +KθKθKθθθθ)

(12a)

(12b)

For ε small enough, this system exhibits a two-time scale
behavior between a variable θθθ varying slowly and zzz a fast
transient variable superimposed on the slowly varying quasi-
steady state (ε → 0 and ‖z̈̈z̈z‖>>

∥∥θ̈̈θ̈θ
∥∥).

Using results from singular perturbation theory derived
from Tikhonov’s Theorem [23], [30], the stability of the
system (12) can then be inferred if both its quasi-steady state
(slow) model and its boundary layer (fast transient response)
model are stable.

C. Quasi-steady state model (slow subsystem)

The quasi-steady state model is derived from the singular
perturbation model by setting ε = 0. Dividing (12a) by ε

on both sides highlights that z̈̈z̈z becomes very large when
ε→ 0. Hence, it can be assumed that the variable zzz converges
instantaneously to zzzs, the solution of equation (12a) when
ε = 0. Moreover, substituting zzz for zzzs in (12b) with ε = 0
yields the linear quasi-steady state (slow) model for system
(12): 

zzzs =H12H12H12(KωKωKω θ̇̇θ̇θ +KθKθKθθθθ)

θ̈̈θ̈θ = (H22H22H22−H21H21H21H−1
11H−1
11H−1
11 H12H12H12)︸ ︷︷ ︸

M−1
22M−1
22M−1
22

(−KωKωKω θ̇̇θ̇θ −KθKθKθθθθ)

(13a)

(13b)

The stability of this quasi-steady state model can be proved
with the following Lyapunov function based on its kinetic
energy and its elastic potential energy:

Vs =
1
2

θ̇̇θ̇θ
TM22M22M22θ̇̇θ̇θ +

1
2

θθθ
TKθKθKθθθθ (14)

where M22M22M22 and KθKθKθ are constant positive definite matrices.
With relation (13b), its time derivative V̇s is given by:

V̇s =−θ̇̇θ̇θ
TKωKωKω θ̇̇θ̇θ (15)

Since KωKωKω is positive definite, V̇s < 0 for θ̇̇θ̇θ 6= 000 and,
consequently, the origin of the quasi-steady state or reduced
linear system is exponentially stable.

D. Boundary layer model (fast subsystem)

The quasi-steady state model assumes fast convergence
of zzz to zzzs. This convergence thus requires some stability
conditions on this fast dynamics. To study the behavior of
the fast dynamics of zzz with respect to its quasi-steady state
solution zzzs, two tools are introduced:
• A change of variable zzz f = zzz− zzzs, where zzz f is the

deviation from the quasi-steady state solution zzz;



1
s

CDPR
Computed

Torque

Cable &
Winches
Model

CDPR
Model

× Controller

×
Stabilizer
Computed

Torque
Stabilizer

Geometry
Error

Stiffness
Error Inertia

Error

Poke
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• A scaled time t̄ = t√
ε

, where the prime superscript
corresponds to a differentiation with respect to t̄.

The boundary layer system (12) can be written as:
zzz′′ =−(K̃vKvKv +K̃ηKηKη )zzz′−zzz+H12H12H12(

1√
ε

KωKωKωθθθ
′+KθKθKθθθθ)

θθθ ′′ = ε

(
H21H21H21H−1

11H−1
11H−1
11 K̃vKvKvzzz′+H22H22H22H12H12H12

−1K̃ηKηKηzzz′+H21H21H21H−1
11H−1
11H−1
11 zzz

−H22H22H22(
1√
ε
KωKωKωθθθ ′+KθKθKθθθθ)

)
(16a)

(16b)

When ε → 0, the fast time scale t̄ → ∞ and thus time is
stretched out. On the one hand, the ”slow” variable θθθ appears
to be frozen in this fast time scale for ε = 0. On the other
hand, the fast model for the variable zzz f is given by:

zzz′′f =−(K̃vKvKv +K̃ηKηKη )zzz′f −zzz f (17)

As previously, the following Lyapunov function based on
the kinetic energy and elastic (unitary stiffness) potential
energy can be selected to prove the stability of the boundary
layer system:

V f =
1
2

zzz′Tf zzz′f +
1
2

zzzT
f zzz f (18)

According to Eq. (17), the stretched time derivative V ′f is:

V ′f = zzz′Tf zzz′′f +zzz′Tf zzz f =−zzz′Tf (K̃KKv +K̃KKη )zzz′f (19)

where K̃KKη and K̃KKv are positive definite. Since V ′f < 0, ∀ zzz′f 6=
000, the origin

{
zzz f ,zzz′f

}
= {000,000} of the linear boundary layer

system is exponentially stable.
As the quasi-steady state (slow) model and the boundary

layer (fast) model are both exponentially stable, the theorem
11.4 from [30] states that, for an ε small enough, the system
(12) is also exponentially stable at the origin.

V. SIMULATION RESULTS

This section presents the simulations performed in order
to evaluate the control approach designed for the CDPR
embedding the stabilizer introduced in Section II. First, the
simulation model is introduced, then the simulation results
are presented, and the influence of various parametric errors
is finally discussed.

TABLE I
MODEL PARAMETER VALUES

Parameter Value

R0AAA

[
0 0.24 −2
0 0 0

]
RpBBB

[
−0.12 0.12 0
0.15 0.15 0.15

]
kc 500 Nm−1

x0x0x0

[
−0.94 m −1 m 0 rad

]T

θθθ 0 [0 π
−π

2 ]T

mp 3.2 kg
λ j 0.1 m
m j 0.15 kg

A. Presentation of the simulation model

In the simulations, the planar 3-DOF suspended CDPR
with an on-board stabilizer composed of three rotating arms,
as shown in Fig. 2, is considered.

The simulation model of this robot has been implemented
in Matlab-Simulink, with the goal of using the same overall
structure for the current simulation and for later experimental
studies using embedded Simulink functionalities. The phys-
ical behavior of the CDPR and the stabilizer are simulated
using a Simscape Multibody model. Simscape Multibody is
a Matlab Simulink toolbox solving the equations of motion
for a multibody mechanical system.

The CDPR is chosen to be a planar 3-DOF cable-
suspended robot driven by 3 cables. This CDPR being
suspended, the gravity passively ensures that the cables
remain in tension. The values of the geometric parameters of
this CDPR have been chosen close to the ones in [31], with
the distances A1A2 = B1B2. As shown in Fig. 2, the vertices
of the mobile platform upper edge are attached to the points
A1 and A2. The position of the attachment point A3 has been
selected so as to maximize the size of the Wrench Feasible
Workspace (WFW) [32]. The cable A3B3 is such that point
A3 is positioned at the limit of the workspace and B3 at the
center of the platform upper edge. The initial position of the
mobile platform is denoted xxx0.

The stabilizer mounted on-board the suspended CDPR
mobile platform consists of three rotating arms. In the current
model, the arms are represented by massless bars of length λ j
having point masses m j attached at their ends. The resting
nominal (initial) configuration of the arms allows a good
clearance without collision with the CDPR platform and
cables, and allows the application of forces along the Y and
Z axes and moments along the out-of-the-plane X axis. In
the present study, the initial arm position θθθ 0 was chosen to
maximize the stroke for each arm. During the simulations,
no collision between the stabilizer arms and the cables has
been observed.

The values of the parameters used in the simulations are
given in Tab. I.



TABLE II
CONTROL GAINS

Coefficient Value
KpKpKp 500 diagdiagdiag(

[
1 1 1

]
)

KvKvKv 5 diagdiagdiag(
[
1 1 1

]
)

KθKθKθ 2.10−2 diagdiagdiag(
[
1 1 1

]
)

KωKωKω 5.10−2 diagdiagdiag(
[
1 1 1

]
)

KηKηKη 250 diagdiagdiag(
[
0.8 0.5 0.95

]
)

Fig. 5. Positions of the stabilizer arms

B. Simulation results

The control scheme implemented in the Simulink simu-
lation model is the one of Fig. 3 and introduced in Section
IV. The vibration speed is obtained by subtracting the “mea-
sured” speed to the desired speed ẋ̇ẋxd obtained by integrating
the desired acceleration ẍ̈ẍxd . The structure of the simulation
is presented in Fig. 4. In this figure, the various parametric
error sources discussed later in Section V-C are shown.

The CDPR platform and the stabilizer are simulated using
a Simscape model. The “Cable and Winch Models” block
implements, on the one hand, the relationship between the
cable tension and its unstrained length from Eq. (1), and,
on the other hand, the low-level control of the winches. The
winch motor are servoed with a RST polynomial control
law. The actuators of the stabilizer arms are also controlled
in position with a classic PID control.

The gain values used in the three control loops of Fig. 3 are
given in Tab. II. These gains have been tuned to be effective
close to the center of the WFW of the CDPR.

The simulation experiment starts at the center of the WFW
at x0x0x0 =

[
−0.94 m −1 m 0 rad

]T . First a step motion of[
0 m 0.2 m 0 rad

]T along the vertical axis is performed.
After 15 seconds it is perturbed with a vertical a poke (a
short force input of 20N along the vertical axis applied to
the CDPR platform). In both cases, the action creates a
perturbation wrench putting the robot into a vibrating motion,
mostly along the Z axis.

To compensate these vibrations, the stabilizer arms move
to produce a wrench opposed to the perturbation, by means

Fig. 6. Position of arm 2

Fig. 7. Damping along the Y axis

of the control law defined in Section IV. The movements of
the three arms are shown in Fig. 5. On the curve representing
the trajectory of the second arm shown in Fig. 6, it is possible
to distinguish the two parts of the control law. In red the fast
movement made to compensate the vibrations and in dashed
blue the slow one that drives the arm back to its nominal
position.

The resulting damped vibrations using the gain values in
Tab. II are compared to the free responses, where the stabiliz-
ers do not move and only the CDPR inverse dynamics control
loop has an effect on the vibrations. With the proposed
method using the stabilizer, the vibrations are damped much
faster, which can be seen in Figs. 7, 8 and 9, where the green
curves correspond to the free responses (without stabilizer)
and the blue ones to the damped responses. As shown in
Fig. 8, when the stabilizer is used, the vibrations along the
Z axis are damped in 5 s whereas, without the stabilizer, the
vibrations are damped only by the mobile platform position
control loop in 15 s.

C. Influence of parametric errors

In order to evaluate the influence of inaccuracies in the
modeling, the parameters most subjected to measurement
errors have been identified. On these parameters, an error
in a given confidence interval has been added, in order to
assess the robustness of the stabilizer, i.e., its efficiency in



Fig. 8. Damping along the Z axis

Fig. 9. Damping on the rotation around X

rejecting perturbations due to parameter uncertainties.
The uncertain parameters considered in this study are the

geometry of the CDPR (the positions of the cable attachment
points on the base frame and on the mobile platform), the
position of the platform center of mass, and the stiffness of
the cables. Simulation experiments similar to the ones in Sec-
tion V-B but for a step value of

[
0.2 m −0.5 m π

10 rad
]T

have been executed. Each test has been performed with a
random error added to all the geometric parameters and to the
cable stiffness. These errors are comprised within±5% of the
position parameter nominal values and ±10% for the cable
stiffness, the nominal values being given in Tab. I. Uniform
distribution of these random errors has been considered. The
results of these tests are shown in Tab. III where the mean
value and standard deviation (std) of a quality index over 200
simulations are given. The Root Mean Square (RMS) errors
on the three DOFs σy, σz and σα have been considered as the
quality index. The RMS position error σy on the translation
along the Y axis is defined as:

σy =

√√√√ Ns

∑
k=1

(
ŷk− ydk

)T (
ŷk− ydk

)
(20)

where ŷk is the kth sample of ŷ(t), ŷ the “measured” value,
yd the desired value and Ns the number of samples. Similar

TABLE III
INFLUENCE OF PARAMETRIC UNCERTAINTIES ON DAMPING

Case σy σz σα

mean 0.0256 0.1098 0.5955
With stabilizer std 0.0111 0.0914 0.4875

mean 0.0290 0.1180 0.7987
Without stabilizer std 0.0130 0.0927 0.5012

TABLE IV
DAMPING QUALITY

Case σy σz σα

With stabilizer 0.0274 0.0525 0.6325
Without stabilizer 0.0298 0.0573 0.6238

definitions give the RMS position errors σz and σα for the
translation along the Z axis and for the rotation around X ,
respectively.

The influence of the parametric errors given in Tab. III
are to be compared to the damping quality index in ideal
conditions (no parametric uncertainty) shown in Tab. IV.
As expected, on overall, the parametric uncertainties are
seen to have a non-negligible impact on the position errors.
Nevertheless, the embedded stabilizer remains efficient in all
these simulation cases.

VI. CONCLUSIONS

In this paper, an original device for active stabilization of a
CDPR has been presented. This device consists of a stabilizer
made of actuated rotating arms placed on-board the CDPR
mobile platform. A control strategy for active vibration
damping of the CDPR platform equipped with the stabilizer
has also been proposed. The stability of the corresponding
closed-loop system has been analyzed using singular pertur-
bation theory and the Lyapunov’s second method. Finally,
the efficiency and robustness of the proposed device and of
the control strategy have been tested in simulations in the
case of a planar 3-DOF CDPR equipped with a stabilizer
composed of three rotating arms.

Unnecessary movements of the stabilizer arms may oc-
cur using the proposed control strategy because actuation
redundancy in the whole system consisting of the CDPR
and the stabilizer is resolved by means of pseudo-inverse
calculations. Part of the future work will deal with the inte-
gration into the control strategy of more efficient redundancy
resolution methods.

A planar 3-DOF CDPR demonstrator is currently being
built to validate the current approach on a physical test bed.
A multi-DOF version of the stabilizer is also being designed,
for future use on the spatial 6-DOF CDPR CoGiRo.

VII. ACKNOWLEDGEMENTS

This work was supported by the ANR under grant ANR-
15-CE10-0006, project DexterWide.

REFERENCES

[1] S. Kawamura, W. Choe, S. Tanaka, and S. Pandian, “Development
of an ultrahigh speed robot falcon using wire drive system,” in IEEE
International Conference on Robotics and Automation, 1995.



[2] C. Lambert, M. Nahon, and D. Chalmers, “Implementation of an aero-
stat positioning system with cable control,” IEEE/ASME Transactions
on Mechatronics, vol. 12, no. 1, 2007.

[3] J.-P. Merlet and D. Daney, “A portable, modular parallel wire crane
for rescue operations,” in IEEE International Conference on Robotics
and Automation, 2010.

[4] A. Pott, H. Mutherich, W. Kraus, V. Schmidt, P. Miermeister, and
A. Verl, “Ipanema: A family of cable-driven parallel robots for
industrial applications,” in Cable-Driven Parallel Robots, 2013.

[5] M. Gouttefarde, J.-F. Collard, N. Riehl, and C. Baradat, “Geometry
selection of a redundantly actuated cable-suspended parallel robot,”
IEEE Transactions on Robotics, vol. 31, no. 2, 2015.

[6] L. Gagliardini, S. Caro, M. Gouttefarde, and A. Girin, “Discrete
reconfiguration planning for cable-driven parallel robots,” Mechanism
and Machine Theory, vol. 100, 2016.

[7] S. Kawamura, H. Kino, and C. Won, “High-speed manipulation by
using parallel wire-driven robots,” Robotica, vol. 18, no. 1, 2000.

[8] S. Behzadipour and A. Khajepour, “Stiffness of cable-based parallel
manipulators with application to stability analysis,” Journal of Me-
chanical Design, vol. 128, no. 1, 2006.

[9] X. Weber, L. Cuvillon, and J. Gangloff, “Active vibration canceling
of a cable-driven parallel robot using reaction wheels,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2014.

[10] X. Diao and O. Ma, “Vibration analysis of cable-driven parallel
manipulators,” Multibody System Dynamics, vol. 21, no. 4, 2009.

[11] M. A. Khosravi and H. D. Taghirad, “Dynamic modeling and control
of parallel robots with elastic cables: singular perturbation approach,”
IEEE Transactions on Robotics, vol. 30, no. 3, 2014.

[12] F. Montgomery and J. Vaughan, “Modeling and control of a cable-
driven robot for inspection of wide-area horizontal workspaces,”
in Dynamic Systems and Control Conference, American Society of
Mechanical Engineers, 2016.

[13] N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce
system vibration,” Journal of Dynamic Systems, Measurement, and
Control, vol. 112, no. 1, 1990.

[14] X. Weber, L. Cuvillon, and J. Gangloff, “Active vibration canceling of
a cable-driven parallel robot in modal space,” in IEEE International
Conference on Robotics and Automation, 2015.

[15] Y. Cheng, G. Ren, and S. Dai, “Vibration control of gough-stewart
platform on flexible suspension,” IEEE Transactions on Robotics,
vol. 19, no. 3, 2003.

[16] S. Lee and W. Book, “Robot vibration control using inertial damping
forces,” in CISM-IFToMM Symposium Symposium on Robot Design,
Dynamics and Control, 1990.

[17] M. Rushton and A. Khajepour, “Optimal actuator placement for

vibration control of a planar cable-driven robotic manipulator,” in
American Control Conference, 2016.

[18] S. Trimpe and R. D’Andrea, “The balancing cube: A dynamic sculp-
ture as test bed for distributed estimation and control,” IEEE Control
Systems Magazine, vol. 32, no. 6, 2012.

[19] T. Libby, A. M. Johnson, E. Chang-Siu, R. Full, and D. Koditschek,
“Comparative design, scaling and control of appendages for inertial
reorientation,” IEEE Transactions on Robotics, vol. 32, no. 6, 2016.

[20] G. He, X. Tan, X. Zhang, and Z. Lu, “Modeling, motion planning
and control of one-legged hopping robot actuated by two arms,”
Mechanism and Machine Theory, vol. 43, no. 1, 2008.

[21] F. Montgomery and J. Vaughan, “Suppression of cable suspended
parallel manipulator vibration utilizing input shaping,” in Conference
on Control Technology and Applications, 2017.

[22] Rushton, Mitchell, “Vibration control in cable robots using a multi-
axis reaction system,” Master’s thesis, Univ. Waterloo, 2016.

[23] F. Ghorbel, J. Y. Hung, and M. W. Spong, “Adaptive control of flexible
joint manipulators,” IEEE Control Systems Magazine, vol. 9, no. 7,
1989.

[24] J. Lin, Z. Huang, and P. Huang, “An active damping control of robot
manipulators with oscillatory bases by singular perturbation approach,”
Journal of sound and vibration, 2007.

[25] B. Siciliano and W. J. Book, “A singular perturbation approach to
control of lightweight flexible manipulators,” International Journal of
Robotics Research, vol. 7, no. 4, 1989.

[26] P. V. Kokotovic, R. E. O’Malley Jr, and P. Sannuti, “Singular perturba-
tions and order reduction in control theory - an overview,” Automatica,
vol. 12, no. 2, 1976.

[27] R. Williams, P. Gallina, and J. Vadia, “Planar translational cable-direct-
driven robots,” Journal of Field Robotics, vol. 20, no. 3, 2003.

[28] S.-R. Oh and S. K. Agrawal, “Generation of feasible set points and
control of a cable robot,” IEEE Transactions on Robotics, vol. 22,
no. 3, 2006.

[29] N. Riehl, M. Gouttefarde, C. Baradat, and F. Pierrot, “On the de-
termination of cable characteristics for large dimension cable-driven
parallel mechanisms,” in IEEE International Conference on Robotics
and Automation, 2010.

[30] H. K. Khalil, Nonlinear Systems. Pearson, 2001.
[31] X. Jiang and C. Gosselin, “Dynamically feasible trajectories for three-

dof planar cable-suspended parallel robots,” in ASME International
Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, 2014.

[32] M. Gouttefarde, D. Daney, and J.-P. Merlet, “Interval-analysis-based
determination of the wrench-feasible workspace of parallel cable-
driven robots,” IEEE Transactions on Robotics, vol. 27, no. 1, 2011.


