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New approach of cycling phases detection to improve FES-pedaling in
SCI individuals

Roberto Baptista 1,2 Member, IEEE, Benot Sijobert1, Christine Azevedo Coste1 Member, IEEE

Abstract— FES allows spinal cord injured individuals to
propel tricycles by means of their own leg power. The stim-
ulation patterns are in most of the cases predefined and muscle
activation triggered on the basis of the pedal position. This
requires an empirical tuning to fit the pattern to the pilot sitting
position and distance to crank with no possible generalization
and no adaptive properties. The aim of the present article is
to introduce a new approach of motion segmentation based on
inertial measurement units located on the cyclist legs with the
final aim to predict the optimal pedaling force evolution. Results
obtained with one healthy subject in different cycling conditions
are presented and the application to FES-cycling discussed.

I. INTRODUCTION

Functional Electrical Stimulation (FES) has been used
for decades with cycle ergometers for exercising purposes
in lower limb paralysis. Usually, patients are sitting in a
wheelchair and their legs are fixed to the pedals using ankle
orthoses. Different studies have shown the benefits of this
type of training in individuals with complete spinal cord
injuries (SCI) to reduce the complications related to the
paralysis [1], [2], [3].

Overground cycling using mobile tricycles has also been
considered in order to add a recreational aspect to the exer-
cise. Since 2006, different competitions have been proposed
in order to promote FES-cycling [4] aiming at improving life
quality and self-esteem by giving an active role to paralyzed
limbs in a locomotor activity.

In most of the systems, the crank angle is measured
through an encoder in order to track the pedaling cycle
execution which allows to trigger pre-programmed stim-
ulation sequences over the different muscles [5]. Usually
Quadriceps, Hamstrings and Gluteus groups are considered.
The different muscle activation phases are associated to
the crank angle values. As already discussed in previous
articles, the use of the crank angle as the input command to
trigger the different muscle stimulation phases has two main
disadvantages [6]: the need for a dedicated sensor such as an
encoder [7] or an inertial sensor [8] to measure crank angle
and the calibration phase to determine the muscle activation
pattern for a given sitting position [9]. Some authors have
explored the possibility to control muscle activation without
defining a desired pattern a priori [10].
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Recently, a new method has been proposed for estimating
knee and hip cycling percentage (CP) using inertial measure-
ment units (IMU) located on the shanks and thighs of both
legs [11], [12]. Using a two-dimensional geometric model
for the lower limbs, the knee and hip absolute angles are
estimated from the IMUs and then transformed to a nor-
malized range [0;1[. Instead of using the crank angle based
stimulation pattern, the CPs are used to define the stimulation
pattern for each leg. The CPs defines two zones: flexion /
extension of the corresponding joint (knee/hip). Depending
on the different phases, different muscle contributions should
be activated to produce a positive torque (Rectus femoris,
Hamstrings or Bicep Femoris). Knee and hip extension and
flexion phases being synergistic only knee CP was used in
the end. This allows the authors to define a generic muscle
activation pattern which is independent of the sitting position
and distance to crank.

For robustness purposes regarding the changes occurring
in the absolute joint angle evolution due to sliding on the
seat or IMU oscillations, the joint angle is bounded using
maximum and minimum peak values. To guarantee a safe
switching between phases in cases of disruptions a criterion
is introduced as well as an hysteresis between states [11].
An improvement to guarantee a safe switching between the
phases for the knee joint criteria is presented in [12] which
includes an extra variable, polar coordinates of right and left
leg, that are also estimated from IMU readings. The delay
between stimulation onset and force production needs to be
integrated and speed compensation methods developed as
suggested in [13].

In the present article we propose a different approach
of segmenting the pedaling cycle in phases based on knee
angle measurements using a method adapted from [14],
[15]. This method allows a robust segmentation, recognition
and assessment of human movements based on Switching
Linear Dynamic System (SLDS) modeling. As shown in
[14], this SLDS modeling approach is more robust than
conventional Finite State Machines (FSM) with fixed guard
conditions, particularly for detecting changes in phases for
human movement segmentation. Segmenting the pedaling
cycle is a particular case for this generic SLDS modeling
approach that we intended to explore in the present article.
Our goal is to propose an estimation method that allows
to correctly classify each phase of the pedaling movement,
based only on knee angle measurements and intrinsincly
ensuring robustness to slight changes in the cycling pattern.
A preliminary validation is performed on experimental data
from one healthy individual and performances in segmenting



the pedaling cycle of the method are analyzed.
This paper is organized as follows: Section II introduces

the proposed method for cycling phases segmentation, Sec-
tion III presents the experimental setup used to collect data
during cycling trials and describes the datasets used for
validation of the segmentation method. Section III-B presents
the results obtained and is followed by a general discussion
and conclusion.

II. CYCLING PHASES SEGMENTATION ALGORITHM

In a previous article [15], a methodology was proposed to
model, segment, recognize and assess human movement us-
ing the Switching Linear Dynamic System (SLDS) modeling
approach. In the present paper, this approach was adapted to
segment a sequence of pedaling cycles in order to detect knee
flexion and extension movements. In the following, first the
SLDS approach is presented and then an explanation of the
proposed approach for cycling is detailed.

In essence, in the context of pedaling, the SLDS model
can be seen as an elaborated finite state machine (FSM),
in which the estimation of the current state is determined
by both the dynamic behaviour of the continuous variables
(knee angles) and the interaction among the three phases
(still, flexion, extension).

A. Switching Linear Dynamic Systems

A SLDS is a model used to represent complex, non-linear
systems through a combination (or switching) of simpler
linear state-space models.

It is composed by a conventional state-space model, but
indexed by a variable st in the form:

xt+1 = A(st+1)xt + vt+1(st+1) (1)
yt =Cxt +wt , with

x0 = v0(s0)

where xt ∈ℜN is the hidden state of the state-space model,
vt is the state noise, yt ∈ ℜM is the observed measurement
of the system, wt is the measurement noise. A(st) is the state
transition matrix and C is the observation matrix.

The switching variable, st , belongs to a set of S discrete
symbols {c1, . . . ,cS} and its dynamic is modelled similarly
to a Hidden Markov Model (HMM):

Pr(st+1|st) = s′t+1Πst , with (2)
Pr(s0) = π0

where the state transition matrix Π, whose elements are
Π(i, j) = Pr(st+1 = ci|st = c j), represents the probability of
st+1 = ci, given that st = c j. The state transition matrix A(st)
and the measurement noise v(st)∼N(0,Q(st)) are associated
with a switching variable st , which indicates which model
(A(st),vt ) is used at each time t.

Besides the formal modeling, the SLDS approach develops
the probabilistic equations for learning the parameters of the
models (specially A(cS),Q(cS),Π) and tracking the observed
measurements in a time-series (specially st ,xt ), combining
two well known probabilistic approaches: the Kalman Filter

and Hidden Markov models. The method presented in [15]
explains how to automatically set the parameters of a SLDS
model for human movement using labeled datasets. Fur-
thermore, it explains the estimation algorithms to segment,
recognize and assess a sequence of human movements using
the parameterized SLDS model.

B. SLDS Model for Cycling

The representation of knee flexion and extension move-
ments is a particular case of the method. Three phases are
defined for cycling: the first phase, or still phase corresponds
to the situation when the legs are immobile (no variation
of knee angles); the second phase corresponds to the right
knee extension and left knee flexion situation; and finally the
third phase corresponds to the left knee extension and right
knee flexion situation. Figure 1 presents the three phases
for one complete pedaling cycle, taken as a snippet from
one experimental dataset. In this paper we used the time-
series for both the right and left knee angle measurements
as a two-dimensional array to estimate the three phases. This
means that for each phase there is a two-dimensional state-
space model as in Eq. 1. The switching variable, st , indicates
at each sampling time the current phase, which evolves
according to Eq. 2. The goal in this case is to estimate the
value of st at each moment and detect transitions between
the three phases.
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Fig. 1. Segmentation of a sequence representing the three phases of cycling.
Depicted are experimental data recorded in one healthy individual over one
pedalling cycles starting from a resting position: right knee angle evolution
(RK), left knee angle evolution (LK). Each phase is identified and labelled:
still, RK extension and LK extension.

There are two main steps in the proposed approach. First a
labeled experimental dataset containing at least one interval
for each phase is used to automatically extract the parameters
for the components of the SLDS model as in Eq. 1 and



2. Later this model is used to estimate the phases at each
sample time in an experimental dataset. The estimation
is achieved using the Viterbi algorithm adapted to SLDS
models introduced in [17].

We previously showed on [15] that once the SLDS model
is parameterized, it can be applied to datasets from other
trials, also including different subjects. The movements in
the trials must be contained in the set of movements of
the parameterization dataset. Furthermore, since the SLDS
model looks at the overall movement patterns, it is robust
against slight deviations on sensor placement and subject’s
size and body type.

III. EXPERIMENTAL VALIDATION

One healthy subject was installed on a recumbent tricycle
ICE Adventure R©. Slight mechanical adaptations were made
to adapt the tricycle for a SCI subject and are described in
[7]. Feet were fixed to the pedals by means of calf support
holding the ankle joint at 90o.

The subject was equipped with 4 inertial measurement
units (IMU Bosch BNO055) on shank and thigh bilaterally
(fig.2) to assess knee angles. The IMUs were placed on the
shanks and thighs with custom rubber straps. Each sensor
embedded a high speed ARM Cortex-M0 based processor
to process all the sensor data, abstract the sensor fusion
and directly provide a quaternion representation relative to
Earth frame, at a sampling rate of 100 Hz. The quaternion
expressing the rotation of the shank relative to the thigh was
computed via an Hamilton product of the thigh quaternion
conjugate in Earth frame by the shank quaternion in Earth
frame. Both shank and thigh quaternions in the Earth Frame
were estimated by an extended kalman filter fusion sensor
algorithm running on each of the BNO055 IMU. Quaternions
were then converted to Euler angles in order to compute
knee angles. The four IMUs were connected and wired to a
Raspberry PI3.

This IMU-based measurement setup was previously vali-
dated with an external reference system and provides reliable
angle measurements [20].

Two additional wireless IMUs (Hikob FOX, Villeurbanne,
France) were located on the crank and rear wheel. Raw
inertial data recorded at 20 Hz were used to estimate crank
angle, pedalling cadence and trike velocity. Martin et al.
[16] fusion sensor algorithm was implemented to be used
to compute crank angle, bike velocity was accurately and
directly measured from the gyrometer data.

A. Validation dataset

Two trials were executed during which two datasets were
collected to showcase our method. The subject was pedal-
ing over a 45 meter straight corridor, starting from a still
position and pushed into motion by a helper. In the first
experiment, the subject was instructed to keep a constant
cadence of 5 km/h with visual and auditory cues from the
instrumentation system and the experimenter. For the second
experiment, the subject was instructed to vary the cadence
along the trajectory: first, to keep a constant cadence lower

Fig. 2. Schematic view describing the experimental setup used to validate
the proposed segmentation approach.

than 5 km/h, then, with an auditory cue, he was instructed to
increase the cadence to around 5 km/h in the middle part of
the corridor and finally increase the cadence to above 5 km/h
towards the end of the trial.

Our method does not assume that the movement is cyclic,
so we tested each dataset in two situations: one including the
still phase at the beginning (datasets named SCC and SVC)
and another situation were we excluded the still phase and
starting at the second pedaling cycle (datasets CC and VC).

Given the high sampling rate for the IMUs positioned
on the subject’s legs, the datasets containing the estimated
angles from the IMUs were decimated to a sampling fre-
quency of 50 Hz and all variables were normalized according
to the maximum and minimum value for each variable in
each dataset. Also, the angle estimations from the IMUs in
each dataset were smoothed using a 10 sample fixed window
moving average filter. The moving average filter was chosen
to reduce noise and keep a sharp step response, i.e. to capture
the overall angle movement pattern [21].

Initially, a subset of the SCC dataset including the still
stand and two complete pedaling cycles was used to identify
the SLDS model’s parameter.

Right and left knee estimated angles based on IMUs
measurements were manually labeled to indicate each of
the following phase: P1) still; P2) right knee extension/left
knee flexion and P3) left knee extension/right knee flexion.
An automatic parameterization procedure, as described in
Section II, processed this labeled dataset and resulted in a
parameterized multidimensional SLDS model capturing the
dynamics of the knee angles for each phase as well as the
transitions between them.

Next, the parameterized SLDS model was used, along with
the estimation algorithm, to automatically segment the four
datasets (SCC, SVC, CC, VC) into the three distinct phases.
The output is a set of labels, which indicate the phase of
each data sample. The results are presented in Section III-B.

To assess the results of the estimation algorithm, we used
the following statistics: True Positive (TP), False Positive



(FP) and False Negative (FN), expressed as a percentage
of the total of true transitions between phases in each
dataset. Each dataset was manually labeled to identify the
true transitions, which were taken either as peak or valley
points representing the knee flexion or extension movements.
A TP is an estimation that matches the true transition, a FP
is the estimation of a transition, when there is none, and
a FN is the miss of a transition in the estimation. Besides
checking for the estimation at the correct instant, a tolerance
for delay, terror was taken in account, so a correct transition
estimate with a delay of less than 60 ms was considered a
TP.

B. Results

An overview of the results is depicted in Figure 3. The
time-series for the first 25 s of the varied cadence dataset
for the following normalized variables are shown: right knee
angle, left knee angle and speed, along with the estimated
phase classification: still (P1), right knee extension (P2) and
left knee extension (P3). Although the pedalling motion is
cyclic, it is clear in Figure 3 that peak and valley values are
not constant. Furthermore, the period for each cycle varies
according to the change in cadence, as expected. Numerical
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Fig. 3. Results for classification for the first 25 seconds on the varied
cadence dataset. Depicted are the normalized data: right knee angle (RK),
left knee angle (LK), cycle velocity (CV), and the estimated phases from
automatic segmentation algorithm for each data sample: still (P1), right leg
extension (P2), left leg extension (P3).

results for segmentation estimation for both datasets are
presented in Table I as percentage for the statistics: TP, FN
and FP. The fact that in all cases the FP is equal to FN means
that the number of estimated transitions matches the number
of true transitions, but they were outside the tolerance terror.

Figure 4(a) and 4(b) show an example of a FP and FN
compared to the true transition moment.

Although the correct estimation at the true instant, i.e.
terror = 0 ms is poor in some cases (for the SVC dataset the
TP is only 58), in all cases the results improves when taking
the tolerance of terror = 60 ms. This is the case depicted
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Fig. 4. Example of FP and FN estimaiton compared to true transition
moment

in Figure 4(b). The difference in the performance between
both SCC and SVC datasets (TP = 98%) and the CC and
VC (TP=100%) is caused by the miss in the estimation of
the transition from the still phase to the right knee extension
phase (P1 to P2). As illustrated in Figure 3 this transition
is indeed estimated in all cases, but far from the terror =
60 ms tolerance. In fact, for the SCC dataset the delay for
this estimation was 620 ms and for the SVC dataset it was
520 ms. This is the case depicted in Figure 4(a).

TABLE I
SEGMENTATION RESULTS FOR THE CONSTANT AND VARIABLE CADENCE

(CC AND VC), AND DATASETS INCLUDING THE INITIAL STILL STAND

(SCC AND SVC). RESULT IS PRESENTED AS TRUE POSITIVE (TP),
FALSE POSITIVE (FP) AND FALSE NEGATIVE (FN), EXPRESSED AS A

PERCENTAGE (%) OF THE TOTAL TRUE TRANSITIONS, WITHIN AN ERROR

BOUND (terror )

terror=0ms terror<60ms
Dataset TP FP FN TP FP FN

SCC 98 2 2 98 2 2
SVC 58 41 41 98 2 2
CC 71 29 29 100 0 0
VC 60 40 40 100 0 0

IV. DISCUSSION

The results in Section III-B show that the proposed method
is adequate to segment the pedaling cycle considering a small
tolerance for delay in the phase transition estimation. This
provides a robust approach, regarding changes in cycling
pattern due to small IMU placement oscillations, since no
special attention was given to precise IMU placement and our
previous results [19] confirm that the method works as long
as the overall movement pattern is captured. For the datasets
which the still position is not included and considering an



error bound of terror = 60 ms we achieved a success rate
of 100% in phase transition detection. We consider this a
suitable result to use as a triggering condition for the FES
activation and control scheme.

A direct comparison with the method proposed in [11],
[12] is not possible because the authors did not provide
performance results for the specific task of segmenting the
pedaling cycle. Furthermore, they did not provide sufficient
details to allow us to implement their method and make a fair
comparison. However, a qualitative comparison is possible.

The main concerns regarding the phase detection algo-
rithm to use in the context of FES activation in cycling are:
the correct detection of transition at the moment it occurs,
and the avoidance of fast-switching when estimating phase
transitions. The method proposed in [11], [12] relies directly
on a geometric model of the lower limbs and crank to
estimate the transition. Theoretically this would be sufficient
to guarantee a correct estimation, but there are shortcomings
in this approach. Sliding in seat position and IMU placement
and readings oscillations disturbs the output. Some heuristics
must be taken to ensure safe switching: including a small
hysteresis in the estimation procedure [11] and include an
extra guard condition, the polar coordinates of each leg [12].
These are usual adjustments in methods, which are developed
for segmenting a specific movement pattern.

In contrast, we used a generic method for human move-
ment segmentation and adapted it to the case of segmenting
the pedaling cycle. This approach is straightforward and
avoids the use of heuristics. Also no assumption on the
cyclic property of the motion is made, a stochastic model
is parameterized using only one labeled dataset.

Fast switching can occur, especially when dealing with
noisy data. We overcame this by smoothing data with a mov-
ing average filter, in fact any low-pass filter could be used.
It is important to notice that fast-switching did not occur in
our tests in which we used datasets containing variations in
both cycle period and min/max values, providing evidence
that our method is robust against changes in cycling pattern
due for instance to seat sliding or IMU displacements.

Delay in estimation is expected when using stochastic
filters, since we make the decision based on the probability
that a sample belongs to one or another phase, and its impact
is evident in Table I. Considering the datasets containing only
movement, all transitions were correctly estimated within
60 ms. In FES activation schemes for cycling, usually a
latency time of 130 ms is taken in account for muscle force
response [13]. Therefore, we consider 60 ms an acceptable
delay. However its impact must be further explored in the
complete context of FES triggering and control scheme. The
delay in the detection of the transition from still position to
right knee extension is high compared to the delay for the
other transitions. But from the still position the movement
must be started at an arbitrary moment and FES activation
usually occurs during movement. The correct detection of
still phase could be useful to detect when the movement
seized, particularly due to muscle fatigue.

Besides providing an alternative method for pedaling cycle

segmentation for FES triggering, using this type of stochastic
filter approach allows to extend the method to include other
functionalities. One possible development is to forecast the
switching moment, which can be used to anticipate the
trigger of the FES to accommodate the latency for muscle
response. Another possibility is to track the knee angle at
the transitions and use this measurement to detect changes
in the subject’s posture due for instance to sliding on the
seat. Finally, the next step of this work will be to test this
estimation with a FES trigger and control scheme.

V. CONCLUSION

A new approach to segment pedaling cycle based on
knee joint angles was proposed. In contrast to previous
approaches developed specifically for this purpose and which
require some heuristics to guarantee robustness, our ap-
proach is based on a generic method for human movement
segmentation and is modeled using experimental labeled
datasets. Results show that this method is robust to fast-
switching between transitions and correctly estimates the
transitions between knee flexion and extension movements.
Furthermore, since no assumption of cyclic motion is made,
a stand still phase can also be included in the model. Our
method is based on stochastic filters and provides estimates
on discrete and continuous variables and could be used to
forecast transitions or assess the quality of the motion. The
direct application of this approach will be to include this
estimation procedure in a scheme for trigger and control of
FES cycling in order to activate the different muscles at the
correct instant to to propel a tricycle.
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