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Abstract. Solutions to genome scaffolding problems can be represented
as paths and cycles in a “solution graph”. However, when working with
repetitions, such solution graphs may contain branchings and, thus, they
may not be uniquely convertible into sequences. Having introduced vari-
ous ways of extracting the unique parts of such solutions, we extend pre-
viously known NP-hardness results to the case that the solution graph is
planar, bipartite, and subcubic, and show that there is no PTAS in this
case.

1 Introduction

Extracting information from genomes has become a very largely spread task, at
numerous levels, and most of these need to consider their nucleotidic sequence.
Large databases contain genomic sequences of a very large range of organisms,
or various individuals of a same species. However, difficulties arise when it comes
to extract nucleotidic sequences from the DNA molecule. Technical limitations
induce a complex inference process, beginning with the sequencing step, where
a large amount of overlapping, short sequences are produced, going on with
the assembly step, which takes those short sequences called reads, and exploits
overlaps to output longer sequences called contigs. Those contigs are usually the
final product of most of genomes, called drafted genomes. NGS data are going to
evolve towards longer and longer sequences, but most of the available sequencing
data in public databases are huge collections of billions of short reads (i.e. words
of between fifteen and hundreds of characters) [12]. Those genomes are often
sufficient to extract useful information, for instance detect and compare genic
content. However, the global structure of the genome may be lacking, depending
on how these genomes stay fragmented. Intending to cure this fragmentation,
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and improve the assembly process, it is possible to perform a scaffolding of
the contigs, that is the inference of relative order and orientation of contigs,
using additional information. Most of scaffolding tools are using information
from paired-end sequencing, and using various models and methods (see [7, 9]
for surveys).

Few of them are considering genomic repeats, which are often disturbing
both assembly and scaffolding. In numerous organisms, a significant part of the
genome is repeated. Such repeats may be of various sizes and present variable
copy numbers, according to the species and individuals [3]. Due to the conser-
vatism of some assembly methods, a repeat may cover an entire contig which is
separated from the other genomic side fragments [13]. i.e.

In the jungle of problems We focus in this paper on models, graphs and problems
aiming to participate to scaffolding with repeated contigs. To this purpose, we
essentially manipulate two kinds of graphs, both modeling contigs and their
interactions, the scaffold graph and the solution graph. We denote by E(G) and
V (G) the set of edges and vertices, respectively, of a graph G (or E and V if
no ambiguity occurs). A solution graph is a special kind of scaffold graph, the
latter being defined the following way:
Definition 1 (scaffold graph). A graph (G,M∗, ω,m) is a scaffold graph if V
corresponds to a set of contig extremities, and E is composed of two subsets: M∗
is the set of edges between extremities belonging to a same contig (thus defining
a perfect matching in G), and E \M∗ is the set of interactions between contigs.
A scaffold graph comes with two functions ω,m : E → N, defining respectively
the confidence level of inter-contigs interactions, and the multiplicity of contigs
(their copy number). If m is not provided, then all multiplicities are equal to one.

An example of scaffold graph, and inference of solutions on this graph, can
be found in Figure 1.

Given a set of contigs, it is possible to infer their multiplicities using various
techniques involving for instance the cover depth in a mapping of reads on contigs
(using for instance tools like CRAC [11]), or directly infer multiple contigs from
kmer counting [8]. Getting links between contigs necessits additional information,
for instance mapping of paired-end reads on contigs [4].

Inferring scaffolds, i.e. sequences of contigs at the chromosome scale, is mod-
eled by an optimisation problem in the scaffold graph, similar to Traveling Sales-
man Problem, but taking into account the chromosomal structure (numbers of
linear and circular chromosomes). In the simplified case where every contig is
supposed to appear just once, this problem is stated as:

Scaffolding (SCA)
Input: a scaffold graph (G,M∗, ω) and integers σp, σc, k ∈ N
Question: Is there some S ⊆ E \M∗ such that S∪M∗ is a collection of
≤ σp alternating paths and≤ σc alternating cycles and

∑
e∈S ω(e) ≥ k?

For a vertex v, we define M∗(v) as the unique vertex u with uv ∈ M∗. A
path (or a cycle) p is called alternating with respect to M∗ if, for all vertices u
of p, also M∗(u) is a vertex of p.
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Scaffolding has been studied in the framework of complexity and approx-
imation [4, 14, 15]. In this case, the produced solution is a collection of disjoint
paths alternating between edges fromM∗ (contigs) and edges from E\M∗ (links
between contigs), from which it is easy to infer without any ambiguity a set of
nucleotidic sequences by reading contig sequences, and for inter-contig links, ei-
ther detecting possible overlaps missed by the assembly process, or completing
with N’s.

To improve the realism of the model, it is convenient to take the multiplicities
of contigs into account. The main difference induced by allowing a contig to
appear several times in the solution, is that the set of edges which are selected
in an optimal solution does not necessarily lead to a unique interpretation as a set
of scaffolds. The scaffolding problem with multiplicities thus involves a solution
which is a graph, corresponding to the fusion of the right number of walks in
the original scaffold graph. For each non-contig edge uv, its multiplicity m(uv)
equals the smaller of the multiplicities of the contig edges incident to u and
v. A walk W is a sequence (u1, u2, . . . , u`) of vertices such that, for each two
consecutive vertices ui and ui+1, we have uiui+1 ∈ E. Then, W is called closed
if u1 = u` and W is called alternating with respect to M∗ if ` is even and, for
each odd i, we have uiui+1 ∈M∗.
Observation 1 For each vertex u of a solution graph, the sum of multiplicities
of its incident non-matching edges is at most the multiplicity of its incident
matching edge.

The scaffolding problem with multiplicities is thus stated as follows:

Scaffolding with Multiplicities (MSCA)
Input: a scaffold graph (G,M∗, ω,m) and σp, σc, k ∈ N
Question: Is there a multiset S of ≤ σc closed and ≤ σp non-closed

alternating walks in G such that each e ∈ M∗ occurs at most m(e)
times in accross all walks of S and

∑
e∈E(S)\M∗ ω(e) ≥ k?

In this setting, a scaffold graph (G∗,M∗, ω∗,m∗) is called solution graph for
(G,M∗, ω,m) if (a) G∗ is a subgraph of G, (b) ω∗ is the restriction of ω to G∗,
(c) m∗(uv) ≤ m(uv) for all uv ∈ E(G), (d) G∗ can be decomposed into ≤ σc
closed and ≤ σp non-closed walks. Such a decomposition into walks is called a
linearization of the solution graph and, in general, it is not necessarily unique
(see Figure 1). Note that decomposability also implies that no vertex can have
more incident non-matching multiplicities than the multiplicity of its incident
matching edge.

It turns out that, in presence of repeated contigs, a solution graph implies
a unique set of sequences if and only if it does not contain so called ambiguous
paths [16].
Definition 2 (Ambiguous path). Let p be an alternating u-v-path in a so-
lution graph. If all edges of p have the same multiplicity µ (that is, m(e) = µ
for all e ∈ p), then p is called µ-uniform (or simply uniform if µ is unknown).
Further, if p is µ-uniform and each of u and v is incident with a non-matching
edge of multiplicity strictly less than µ, then p is called “ambiguous”.

3



Problem Scaffolding Scaffolding with Multiplicities Semi-Brutal Cut
Input Scaffold Graph Scaffold Graph Solution Graph
Output Scaffolds Solution Graph Scaffolds

Table 1: Problems around genome scaffolding.

Thus, the task above can be achieved by destroying all ambiguous paths in
the solution graph. A brutal way to do this is to cut the non-contig edges incident
to both extremities of each ambiguous path. However, this solution may erase
potentially important information. Indeed, to destroy an ambiguous path, it
is sufficient to remove the non-contig edges incident to one of its extremities.
Further, let v be an extremity of an uniform path, we sometimes say “to cut v”,
by which we mean removing all non-contig edges incident with v, and in that
case v is denoted as a vertex-cut. The problem of finding a most parsimonious
(with respect to some cost function ω′) set X of vertex-cuts which destroys all
ambiguous paths is called Semi-Brutal Cut. Several cost-functions ω′ make
sense in this setting.
Definition 3. A weight-function ω′ : 2V → N is called
1. cut-score, if ω′ counts one per vertex-cut (that is, ω′(X) = |X|),
2. path-score, if ω′ counts one per removed edge (that is,

ω′(X) :=
∑
{m(uv) | uv ∈ E \M∗ ∧ uv ∩X 6= ∅}), and

3. weight-score, if ω′ counts the total weight of the removed edges (that is,
ω′(X) :=

∑
{m(uv) · ω(uv) | uv ∈ E \M∗ ∧ uv ∩X 6= ∅}).

Note that, from the perspective of computational complexity, the path-score is
a special case of the weight score, since we can just set ω′(e) = 1 for all edges e.
Thus, when saying “both scores” we refer to cut- and weight-score. Formally, the
Semi-Brutal Cut problem on which we focus here, is defined the following way:

Semi-Brutal Cut (SBC)
Input: a solution graph (G,M∗, ω,m) and some k ∈ N
Question: Is there a set X of vertex-cuts of G which destroys all am-

biguous paths and the score of X is at most k?

We consider the functions defined in Definition 3 as scores forX. In context of
approximation, Semi-Brutal Cut refers to its optimization variant, minimizing
the score of X.

A summary of the different problems involved and their input/output is
presented in Table 1.

Related works. In previous work [5, 16], we proposed the first results concern-
ing the complexity and approximation of Semi-Brutal Cut according to the
scoring functions mentioned in Definition 3. Some questions remain open con-
cerning the complexity and (Non)-approximation for the cut and weight-score.
In this article, we conclude the study of linearization in the framework of com-
plexity and approximation. We prove that Semi-Brutal Cut according to the
cut-score is APX-complete.

Organization of the article. The Section 2 is devoted to the complexity result, we
push this hardness result to bipartite, planar, subcubic graphs whereas Section 3
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(a) Scaffold graph. This graph illustrates
relationship between four contigs, figured
by bold edges ab, cd, ef and gh. Labels on
these edges show the sequence of the con-
tigs, and their mutliplicity (in parenthe-
sis). Edge cd, whose sequence is CCT, has
multiplicity two. Other contigs are of mul-
tiplicity one. Links between contigs are la-
beled by their weight. In the input scaffold
graph, the real sequences are both paths
(a, b, c, d, e, f) and (c, d, g, h)
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(b) Solution graph after solving Scaf-
folding with Multiplicities. The so-
lution graph is obtained as a solution for
the MSCA instance asking for two open
walks with total weight ≥ 42. In the so-
lution graph, the contig of multiplicity
two labeled CCT constitutes an ambigu-
ous path, yielding two possible sets of
sequences {ATCCT..CCT..TAAAA, CCT..CATG}
and {ATCCT..CCT..CATG, CCT..TAAAA}.
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(c) Linearisation using Semi-Brutal
Cut. Brutal cut would provide a set
of four independent sequences of to-
tal weight zero (the initial set of con-
tigs), whereas Semi-Brutal Cut with
weight-score provides a unique set of four
sequences {ATCCT..CCT, CCT, TAAAA, CATG},
and weight 26 (minimal weight-score 16).
After resolving successively MSCA (with
σp = 2 and σc = 0) and SBC (dashed
edges are cut), the solution is compatible
with the initial hypothesis. The only am-
biguous path is the matching edge {c, d}
and the cut vertex is d.
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(d) Direct linearisation from the scaffold
graph. Directly searching two maximum
weighted alternating paths such that the
solution graph does not contain ambiguity
yields a chimeric sequence (f, e, g, h).

Fig. 1: Example of scaffold graph (Figure 1a), a solution graph (Figure 1b),
scaffolds after solving Semi-Brutal Cut (Figure 1c) and a direct linearization
leading to chimeric solution (Figure 1d).5



Topologies Type of cut Complexity Lower and upper bound
general all NP-hard [16]
trees all linear [16]
planar, ∆ ≤ 4 cut-score NP-hard [16] approx: 1.37 (P 6= NP) [16],

approx: 2− ε (UGC) [16],
exact: 2o(n)(ETH) [16]

bip. plan., ∆ ≤ 3 cut-score NP-hard ([5]) APX-Hard [5]
exact: 2o(

√
n+m)nO(1) (ETH)

[5]
4-approximation Theorem 3

bip., planar ∆ ≤ 3 weight-score NP-hard Theorem 1 2-approximation [5]
APX-Complete Corollary 1

∆ ≤ 3 1.000056.. Theorem 2
Table 2: Overview of results for Semi-Brutal Cut.

propose some lowers bounds according to complexity hypothesis. In the last
section, we develop a polynomial-time approximation algorithm which conclude
Semi-Brutal Cut. Table 2 summarizes the overall results.

2 Computational Hardness

We consider in this section a very restricted class of graphs, which are planar,
bipartite, subcubic graphs. The choice of this class is simultaneously led by
biological and theoretical reasons. Biologically, we noticed that solution graphs
are really sparse, and once reduced the non-ambiguous paths, are often equivalent
to planar graphs with small degrees. However, this is only empirical observation
and to our knowledge there are no general properties on real solution graphs
that could be directly exploited. The theoretical reason is a wide literature on
those classical classes of graphs, and we know hardness and non-approximation
results that could be exploited through classical reductions. We mean then to
show that, though not capturing the essential of solution graph properties, the
results below give a good indication on how hard the problem is to solve, even
under structural constraints.

Although it is know that Semi-Brutal Cut is NP-hard under both cut- and
weight-score [16], we extend this hardness for the weight-score to planar, bipar-
tite, subcubic graphs. To this end, we reduce the classic NP-complete problem
3-SAT to Semi-Brutal Cut.

Monotone 3-Satisfiability (3-SAT)
Input: A boolean formula ϕ in conjunctive normal form where each

clause contains exactly three positive literals or three negative liter-
als.

Question: Is there a satisfying assignment β for ϕ?

Construction 1 Let ϕ be an instance of 3-SAT with n variables x1, x2, . . . and
m clauses C1, C2, . . .. For each variable xi, let ψi be the list of indices ` such that
C` contains xi and |ψi| is the number of occurrences of xi in ϕ. We construct
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q1 q3 qm

ci1

ci1

ci2

ci2 ci3

ci3

r`1

c1

b`1

r`2

c2

b`2 r`3

c3b`3

Fig. 2: Matching edges are bold. Left: variable gadget cxi linked to the clause
gadgets q1, q3 and qm, where xi occurs positively in C1 and C3 and negatively
in Cm. Right: clause gadget corresponding to the clause C` =(x1 ∨ x2 ∨ x3).
the following solution graph (G∗,M∗, ω,m) along with a 2-coloring of G∗ (see
Figure 2).
– For each xi, we construct a cycle ci on the vertex set

⋃
j≤|ψi|{u

i
j , u

i
j , v

i
j , v

i
j}

such that, for all j ≤ |ψi|,
• {uij , uij}, {vij , vij} ∈M∗, and
• the vertices uij and vij are blue and the vertices uij and vij are red.

– For each clause C`, we construct an alternating 6-cycle q` on the vertex set⋃
j≤3{r`j , b`j} such that, for all j ≤ 3, {r`j , b`j} ∈ M∗, and r`j is red and b`j is

blue.
– For each variable xi and each j ≤ |ψi|, let C` be the jth clause of ψi and let
t be such that liti is the tth literal of C`. Then,
• create a single matching edge {c`j , c`j}, where c`j is blue and c`j is red,
• if xi occurs positively in C`, introduce the edges {r`t , uij} and {c`j , uij},
and

• if xi occurs negatively in C`, introduce the edges {b`t, uij} and {c`j , uij}.
– Each non matching edge has multiplicity 1 and weight 1 and all matching

edges have multiplicity 2 (thus, each matching edge except the {c`i , c`i} is an
ambiguous path).

Clearly, Construction 1 can be carried out in polynomial time. Further, the
resulting graph G∗ is bipartite and the maximum degree ∆(G∗) = 3. In the
following, we call a matching edge clean if one of its endpoints has degree one.
Note that a scaffold graph whose every matching edge is clean does not contain
ambiguous paths.

Theorem 1. Semi-Brutal Cut is NP-complete for the weight-score, even if
the graph is planar, bipartite, subcubic.

In order to prove Theorem 1, we use the following properties of Construction 1,
yielding a “canonical” set of cuts.

Lemma 1. Let S ⊆ V (G∗) be a set of vertex-cuts destroying all ambiguous
paths in (G∗,M∗, ω,m), let ci be a variable gadget and let q` be a clause gadget.
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We suppose that we start by cutting the vertices in the variable gadget and then
we cut the vertices in the clause gadget. There is a set S′ of vertex-cuts with
|S′| ≤ |S| that also destroys all ambiguous paths and
(a) ω′(S∩V (ci)) = ω′(S′∩V (ci)) ≥ 2×|ψi| and ω′(S∩V (q`)) = ω′(S′∩V (q`)) ≥

2 (S and S′ have the same score in variable gadgets and clause gadgets),
(b) if ω′(S′∩V (ci)) = 2×|ψi|, then S′∩V (ci) is either

⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j}

(if S′ is optimal on a variable gadget, cuts are only on positive sides or only
on negative sides),

(c) ω′(S′ ∩ V (q`)) = 2 if and only if S′ contains a vertex adjacent to q` (only
two cuts are needed in a clause gadget iff it has been isolated by a cut in an
adjacent variable gadget, meaning that the variable satisfies the clause).

Proof. (a): For each j ≤ |ψi|, we need to remove two edges to linearize the am-
biguous paths {uij , uij}. Then we need to remove at least 2× |ψi| edges in ci. In
the clause q`, we need to remove at least two edges in the inner cycle.

b`1

r`1

b`2 r`2

b`3

r`3

Fig. 3: A cut of size 2 in q` when
one incident edge to q` is cut.
Dashed edges and vertices are part
of the cut.

(b): Note that cutting all vertices in either⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j} suffices to re-

move all ambiguous path in xi and in that
case ω(S ∩ V (ci)) = 2 × |ψi|. If S con-
tains some uij and does not contain uij+1

for some j, then we need a cut to linearize
{vij , vij} which will increase by one the score
of the solution (and analogously for uij).
Hence if ω′(S ∩ V (ci)) = 2 × |ψi|, we can
suppose that S contains either

⋃
j≤|ψi|{u

i
j}

or
⋃
j≤|ψi|{u

i
j}. If S contains a cut in some

vij or some vij then, since the path {vij , vij}
is already linearized by a cut in {uij , uij+1},
we can remove the cut in S′.

(c): We need to remove at least two edges from the inner cycle of C`. Suppose
that all literals of C` occur positively. Suppose by symmetry that {b`1, b`2} ⊆ S′.
Then if the leaving edge incident to r`3 is not cut, then we need to remove one
more edge from q` and in that case ω′(S′ ∩ V (q`)) ≥ 2 (see Figure 3). ut

Proof (Proof of Theorem 1). Recall that 3-SAT remains NP-complete if the in-
put formula is planar [1] and, in this case, the graph produced by Construction 1
is also planar. Clearly, Semi-Brutal Cut is in NP. We show that Construction 1
is correct, that is, ϕ is satisfyable if and only if the scaffold graph (G∗,M∗, ω,m)
resulting from Construction 1 can be linearized with a score of 8m.

“⇒”: Let β be a satisfying assignment for ϕ. Then, for each variable xi and
for all j ≤ |ψi|, we cut the vertices uij if β(xi) = 1 and the vertices uij otherwise.
As β is satisfying, this removes at least one edge adjacent to each clause gadget.
Thus, according to Lemma 1(c), we can cut two vertices in each clause gadget
qj to turn every matching edge in qj clean. Since we also cut either the vertices
uij or the vertices u

i
j for each vertex gadget, we conclude that all matching edges

of the result are clean and we remove exactly 2m+
∑
i 2× |ψi| = 8m edges.
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“⇐”: Let S ⊆ V be the set of vertices such that cutting each vertex of S
destroys all ambiguous paths in (G∗,M∗, ω,m) and ω′(S) = 8m. According to
Lemma 1(a), each variable gadget remove |ψi| edges and each clause gadget re-
move two edges. Moreover, by Lemma 1(b), for each variable gadget ci, we can
suppose that S ∩ V (ci) equals

⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j}. In the former case,

we set β(xi) = 1 and, in the latter, we set β(xi) = 0. To show that β satisfies
ϕ, assume that there is a clause C` that is not satisfied by β. Then, none of the
edges incident to q` is cut which, by Lemma 1(c), contradicts the fact that there
are two removed edges in q`. ut

3 Non-Approximability

In this section, we prove approximation lower bounds for Semi-Brutal Cut.
First recall the definition of L-reduction between two hard problems Π and
Π ′, described by Papadimitriou [10]. This reduction consists of polynomial-time
computable functions f and g such that, for each instance x of Π, f(x) is an in-
stance of Π ′ and for each feasible solution y′ for f(x), g(y′) is a feasible solution
for x. Moreover there are constants α, β > 0 such that:
1. OPTΠ′(f(x)) ≤ αOPTΠ(x) and
2. |valΠ(g(y′))−OPTΠ(x)| ≤ β|valΠ′(y′)−OPTΠ′(f(x))|.
In the following, we present an L-reduction from the classical problem Max
3-SAT(4) to Semi-Brutal Cut.

Max 3-SAT(4)
Input: A boolean formula ϕ in exact 3-CNF where every variable occurs

in 4 clauses
Task: Find an assignment that satisfies a maximum number of clauses.

Construction 2 We reuse Construction 1 and change some variable gadgets
and the way we link the variable gadgets to the clause gadgets. First, we change
the links between the gadgets: let C` be a clause and xi be the jth literal of C`.
Then, attach ci to r`j. The difference with Construction 1 is that we attach the
variable gadgets to the red vertices of the clause gadget, no matter if the variable
occurs positively or negatively in the clause.

Now we change some variable gadgets. Let xi be a variable which occurs
positively in the clauses Cp and Cp′ and negatively in the clauses Cn and Cn′ .
We replace the variable gadget associated to xi by the following gadget ri:

– Construct a cycle ci on the vertex set
⋃
j≤2{uij , u

i
j , v

i
j , v

i
j} such that, for all

j ≤ 2, {uij , uij}, {vij , vij} ∈M∗, the vertices uij and vij are blue and uij and v
i
j

are red.
– Give multiplicity 1 and weight 1 to all non-matching edges and multiplicity

2 to all matching edges.
– Link the clause gadgets qp, qp′ , qn and qn′ to vertices ui1, ui2, u

i
1 and ui2 re-

spectively in the same way as previously described.

Note that all matching edges are ambiguous paths in the variable gadget. The
clause gadgets and the other variable gadgets remain unchanged.
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ui1

vi1

ui1 ui2

vi2

ui2

vi2
vi1

qp qp′ qn′qn

Fig. 4: Matching edges are bold. Example of variable gadget rxi linked to the
clause gadgets qp, qp′ , qn and qn′ , where xi occurs positively in Cp and Cp′ and
negatively in Cn and Cn′ .

The resulting graph G∗ is bipartite and ∆(G∗) = 3. In the following, when
we want to differentiate the variable gadgets, we designate by rectangle variable
gadget those defined in Construction 2 and by cycle variable gadget those defined
in Construction 1. An example of a rectangle variable gadget is given in Figure 4.
Notice that the properties (a) and (c) of Lemma 1 hold. We can add the following
property:

Lemma 2. Let S ⊆ V (G∗) be an optimal set of vertex-cuts destroying all am-
biguous paths in (G∗,M∗, ω,m), let ci be a cycle variable gadget and ri′ be a
rectangle variable gadget. There is a set S′ of cuts with ω(S′) = ω(S) that also
destroys all ambiguous paths, and
(a) S′ ∩ V (ci) is either

⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j}, and

(b) S′ ∩ V (ri′) is either {ui′1 , ui
′

2 } or {ui
′

1 , u
i′

2 }.

Proof. Recall that, by Lemma 1(a), ω(S ∩ V (ci)) ≥ |ψi|.
“(a)”: By symmetry, suppose that xi occurs mostly positively in ϕ. If xi

occurs four times positively, then replacing S ∩V (ci) by
⋃
j≤|ψi|{u

i
j} in S yields

a solution S′ as sought. Thus, suppose that xi occurs three times positively. Let
C` be the clause where xi occurs negatively and let z denote the neighbor of uij
in c`. If |S ∩ V (ci)| > |ψi|, then replacing S ∩ ci by

⋃
j≤|ψi|{u

i
j} plus z yields a

solution S′ as sought. Finally, if |S ∩ V (ci)| = |ψi|, then S already corresponds
to (a) as, otherwise, some ambiguous path {vij , vij} is not destroyed.

“(b)”: Note that one cut in ri′ is not enough to destroy all ambiguous paths
and cutting either the vertices {ui′1 , ui

′

2 } or the vertices {ui
′

1 , u
i′

2 } destroys all
ambiguous paths in the rectangle variable gadget. By symmetry, suppose that S
contains vi

′

1 , if S contains ui
′

1 , then we can remove vi
′

1 from S. Otherwise, since S
is optimal, S∩V (ri′){ui

′

1 , u
i′

2 , v
i′

1 }. Let z /∈ ri′ be the vertex adjacent to ui
′

1 . Then,
z is clean, since otherwise we can replace S ∩ V (ri′) by {ui

′

1 , u
i′

2 }, contradicting
the fact that S is optimal. We can then add z in S′ and swap ui

′

1 by ui
′

1 . Further
if S does not contains any vertices in {vi′1 , vi

′

1 , v
i′

2 , v
i′

2 }, then suppose without loss
of generality that S contains {ui′1 , ui

′

2 }. Let zj /∈ ri′ be the vertex incident to
ui
′

j . If S contains ui
′

j , then it only serve to remove the leaving edge incident to

10



ui
′

j and it also removes the edge {ui
′

j , v
i′

1+(j+1 mod 2)}, which contradicts the fact
that S is optimal. Thus, S ∩ V (ri′) = {ui

′

1 , u
i′

2 }.

Theorem 2. There is a constant ε′4 > 0 (the value ε′4 > 0 is defined in [2])
for which Semi-Brutal Cut cannot be approximated to any factor better than
(1 + 7(ε′4−1)/65·ε′4), even on graphs of maximum degree three, unless P=NP.

Proof. Recall that, unless P=NP, Max 3-SAT(4) cannot be approximated to
a factor better than ε′4 = 1, 00052 [2] and that, in an optimal solution of Max
3-SAT(4), at least 7/8 of the clauses are satisfied [6], yielding

OPT (ϕ) ≥ 7m/8. (1)

To show that Construction 2 constitutes an L-reduction, let f be a function
transforming any instance ϕ of Max 3-SAT(4) into an instance I of Semi-
Brutal Cut as above, let S be a feasible solution for I corresponding to the
properties of Lemma 1(a), Lemma 1(c) and Lemma 2, and let g be the function
that transforms S into an assignment β as constructed in the proof of Theorem 1:
each variable xi is set to true if S cuts uij for all j, and false, otherwise. By
Lemma 2, for each clause gadget q` without an adjacent vertex in S, the “extra”
cut occurs in q`. Hence, for each of the at most m/8 unsatisfied clauses in ϕ, we
have to remove an other edge to linearize I. Thus,

OPT (I) ≤ 8m+ m/8
(1)
≤ 65/7OPT (ϕ) (2)

An important obstacle to overcome (and reason why Construction 1 is not
enough for Theorem 2) is that an approximate solution to SBC might spend
extra cuts in variable gadgets in order to “change the assignment” of a variable
xi mid-way. However, since each variable occurs at most four times, this only
happens for variables that occur two times positively and two times negatively.
Now, with our modification to Construction 1, we can observe that each extra
cut in any of the variable gadgets allows such a misuse only for a single clause
gadget. Thus, the number of satisfied clauses of ϕ and the clause gadgets in
which we have to spend extra cuts adds up to m. Hence,

9m = val(g(S)) + val(S) = OPT (I) +OPT (ϕ) (3)

Thus, we constructed an L-reduction with α = 65/7, β = 1 and, since ε′4 ·
val(g(S)) ≤ OPT (ϕ), we conclude

val(S)
(3)
= OPT (I) +OPT (ϕ)− val(g(S))
> OPT (I) + (1− 1/ε′4) ·OPT (ϕ)
(2)
≥ (1 + 7(ε′4−1)/65.ε′4) ·OPT (I) ut

This is conclude the proof.
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Fig. 5: A forbidden path xuvy (left) and the result of cutting all its vertices
(right).

4 Linear-time approximation algorithm

In the following, we present a polynomial-time 4-approximation for Semi-Brutal
Cut with cut-score. To this end, we use the following reduction rule introduced
by Weller and al. [16].

Rule 1 Let µ ∈ N and let uvwx be a µ-uniform, alternating path in G. Then,
replace uvwx by a matching edge ux with multiplicity µ.

Rule 1 merges pairs of non-ambiguous contigs into one. Thus, each ambiguous
path will consist of a single contig edge. In this sense, we call a contig edge
ambiguous if it is an ambiguous path and clean, otherwise.

Our approximation algorithm works similarly to the well-known classical 2-
approximation for Vertex Cover that just returns the extremities of any max-
imal matching. Contrary to Vertex Cover, our forbidden structures are not
edges, but ambiguous edges. Thus, we have to consider length-four paths con-
taining an ambiguous edge, and we will cut all four of their vertices. In the
following, we call a path xuvy forbidden if xu and vy are inter-contig edges and
uv is an ambiguous edge such that m(xu) < m(uv) > m(vy) (see Figure 5).

Lemma 3. Let Q be a maximal packing of vertex-disjoint forbidden paths in
(G∗,M∗, ω,m), let X be any solution for SBC with cut-score on (G∗,M∗, ω,m).
Then, (a) cutting all vertices of Q destroys all ambiguous edges in G∗ and (b) X∩
p 6= ∅ for all p ∈ Q.

Proof. (a): Let H be the result of cutting all vertices of Q in G∗. Towards a
contradiction, assume that H contains an ambiguous edge uv. By definition,
there are inter-contig edges xu and vy in H such that m(xu) < m(uv) > m(vy).
But then, the path xuvy is a forbidden path, contradicting the maximality of Q.

(b): Let H be the result of cutting all vertices of X in G∗. Let xuvy ∈ Q
be a forbidden path in (G∗,M∗, ω,m) and assume towards a contradiction that
X ∩ xuvy = ∅. Then, none of the edges of xuvy are removed when cutting the
vertices of X, that is, xuvy survives in H. Then, however, uv is an ambiguous
path in H, contradicting X being a solution for (G∗,M∗, ω,m). ut

With Lemma 3, we can show that any maximal packing of forbidden paths
constitutes a 4-approximation for Semi-Brutal Cut with cut-score.

Theorem 3. A 4-approximate solution to Semi-Brutal Cut with cut-score
can be computed in linear time. This ratio is tight.
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Proof. First, Rule 1 can be exhaustively applied to (G∗,M∗, ω,m) in linear
time since the inner vertices of any µ-uniform alternating path have degree two.
Second, a packing of forbidden paths in (G∗,M∗, ω,m) can be computed by
scanning all contig edges uv and, if uv is ambiguous, then xuvy is a forbidden
path for any inter-contig edges xu and vy. By removing x, u, v, and y from G∗,
we make sure that the resulting packing is vertex-disjoint. Thus, such a packing
can be produced in linear time.

Let Q be any maximal vertex-disjoint packing of forbidden paths in (G∗,M∗,
ω,m). By Lemma 3(a), the vertices of Q form a solution for SBC. To show that
this solution is 4-approximate, consider any optimal solutionX for (G∗,M∗, ω,m).
By Lemma 3(b), X intersects each path in Q. Since the paths in Q are mutually
vertex disjoint and each of them contains exactly four vertices, we conclude that
Q contains at most four times as many vertices as X. Applying this algorithm
on a solution graph with a single ambiguous path provides a solution with four
vertex-cuts instead of one. Thus, the ratio is tight. ut

Corollary 1. Semi-Brutal Cut with cut-score is APX-complete.

5 Conclusion

We developed results concerning the complexity, lower bounds and approxima-
bility of the linearization problem for genome scaffolds sharing repeated contigs
with two possible scoring functions. We managed to strengthen previously known
NP-hardness to the very restricted class of planar bipartite subcubic graphs with
only two multiplicities for the cut-score. We also provided a simple, linear-time
4-approximation of for cut-scores. Natural perspectives of this work are to ex-
tend this result to the weight-score, explore the possibility of FPT algorithms
and approximations in the difficult cases, and examine the practical performance
of the presented approximation algorithm on larger real-world instances.
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