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Abstract. Solutions to genome scaffolding problems can be represented
as paths and cycles in a “solution graph”. However, when working with
repetitions, such solution graph may contain branchings and they may
not be uniquely convertible into sequences. Having introduced, in a previ-
ous work, various ways of extracting the unique parts of such solutions,
we extend previously known NP-hardness results to the case that the
solution graph is planar, bipartite, and subcubic, and show the APX-
completeness in this case. We also provide some practical tests.

1 Introduction

Motivation. The process of generating proper biological genomes, from Next-
Generation Sequencing (NGS) data to a full sequence of nucleotides, is a path
strewn with pitfalls [6]. NGS data are going to evolve towards longer and longer
sequences, but most of the available sequencing data in public databases are huge
collections of billions of short reads (i.e. words of between fifteen and hundreds of
characters) [17] which have to be assembled into longer sequences called contigs.
Those contigs represent fragments of the final genome but they usually do not
reach the size of chromosomes and the thusly obtained draft genomes may there-
fore be highly fragmented, especially due to repeats in the genomes [18]. Though
some emerging methods aim to use partially assembled genomes to infer global
information on genomes [3], reducing this fragmentation is of great interest when
it comes to consider whole-genome rearrangements. This fragmentation can be
reduced by an additional operation, the scaffolding, that aims at providing an
order and relative orientation of contigs that is consistent with most of the origi-
nal NGS data [14]. Especially when reads are paired, it is possible to construct a
scaffold graph summarizing the putative hypotheses concerning ordering and ori-
entation of contigs [4]. Herein, a scaffold graph is a weighted, undirected graph G
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consisting of 1. a perfect matchingM∗ that corresponds to the contigs and 2. non-
contig edges uv whose weights indicate the confidence that the contig-extremity u
is adjacent to the contig-extremity v in the target genome. This paper focuses
on the following problem: suppose that (a) we know for each contig how often it
occurs in the genome (its multiplicity – which can be inferred using various pos-
sibilities), and (b) an optimal subgraph (the solution graph) has been extracted
from the input scaffold graph (see [4, 20, 22] for methods to infer such solution
graphs), which we consider as a given input. Then, the task is to infer sequences
from the solution graph (see Figure 1). We consider several score functions, ex-
amine several special cases and performed tests on a dataset of various species.

Repeats. If each contig occurs exactly once in the target genome, then all
vertices of the solution graph will have degree at most two and the problem
becomes easy. However, in numerous organisms, a significant part of the genome
is repeated. Such repeats may be of various sizes and present variable copy
numbers, according to the species and individuals [2]. Due to the conservatism of
some assembly methods, a repeat may cover an entire contig which is separated
from the other genomic side fragments [18]. It turns out that, in presence of
repeated contigs, a solution graph implies a unique set of sequences if and only
if it does not contain so called ambiguous paths [21]. Thus, the task above can
be achieved by destroying all ambiguous paths in the solution graph. A brutal
way to do this is to cut the non-contig edges incident to both extremities of
each ambiguous path. However, this solution may erase potentially important
information. Indeed, to destroy an ambiguous path, it is sufficient to remove
the non-contig edges incident to one of its extremities. The problem of finding
a most parsimonious (with respect to some cost function) set X of edges such
that removing X from the given solution graph destroys all ambiguous paths is
called Semi-Brutal Cut.

Definitions and problems. We denote by E(G) and V (G) the set of edges
and vertices, respectively, of a graph G (or E and V if no ambiguity occurs). A
scaffold graph (G,M∗, ω) consists of a simple loopless multigraph G associated
with a perfect matching M∗, a weight function ω : E \M∗ → N. The match-
ing M∗ represents the contigs and ω represents the confidence that two contigs
occur consecutively (respecting relative orientation implied by the edge) in the
target sequence. The maximum degree of a graph G is denoted by ∆(G). For a
vertex v, we define M∗(v) as the unique vertex u with uv ∈ M∗. A path (resp.
a cycle) is a sequence (u1, u2, . . . , u`) of distinct vertices (resp. distinct vertices
except the first and the last) such that, for each two consecutive vertices ui and
ui+1, we have uiui+1 ∈ E. A path (or a cycle) p is called alternating with respect
to M∗ if, for all vertices u of p, also M∗(u) is a vertex of p. The Scaffolding
problem is defined as follows:

2



ATCCT (1)

GAGT (1)

CCT (2)

TAAAA (1)

CATG (1)

5

12

20

5

3

1

1

3

1

(a) Scaffold graph

ATCCT (1)

GAGT (1)

CCT (2)

TAAAA (1)

CATG (1)

5

12

20

5

1
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Fig. 1: A scaffold graph, its solution graph, and sequences that can be in-
ferred. Contigs are represented by bold edges, labeled by the corresponding se-
quence and their multiplicity (in parentheses). Inter-contig edges are labeled by
their weight. The solution graph is obtained as a solution for the MSCA in-
stance asking for two walks with total weight ≥ 42. In the solution graph, the
contig of multiplicity two labeled CCT constitutes an ambiguous path, yield-
ing two possible sets of sequences {ATCCT..CCT..TAAAA, GAGT..CCT..CATG} and
{ATCCT..CCT..CATG, GAGT..CCT..TAAAA}. Brutal cut would provide a set of six in-
dependent sequences of total weight zero (the initial set of contigs), whereas
Semi-Brutal Cut with weight-score provides a unique set of four sequences
{ATCCT, GAGT, CCT..TAAAA, CCT..CATG}, and weight 25 (minimal weight-score 17).

Scaffolding (SCA)
Input: a scaffold graph (G,M∗, ω) and integers σp, σc, k ∈ N
Question: Is there some S ⊆ E \M∗ such that S∪M∗ is a collection of
≤ σp alternating paths and ≤ σc alternating cycles and the weight-
score

∑
e∈S ω(e) ≥ k?

Scaffolding has been studied in the framework of complexity and approxi-
mation [4, 20, 22]. If contigs may appear repeatedly in the genome, we add a
multiplicity function m : E → N to the scaffold graph. For contig edges, the
multiplicity equals the number of times the contig occurs in the genome and this
can be estimated from the data [9]. For each non-contig edge uv, its multiplic-
ity m(uv) equals the smaller of the multiplicities of the contig edges incident to
u and v. A walk W is a sequence (u1, u2, . . . , u`) of vertices such that, for each
two consecutive vertices ui and ui+1, we have uiui+1 ∈ E. Then, W is called
closed if u1 = u` andW is called alternating with respect toM∗ if ` is even and,
for each odd i, we have uiui+1 ∈ M∗. The difference between path and walk
(resp. cycle and closed walk) is that the vertices do not need to be distinct. The
Scaffolding with Multiplicities problem is the following:

Scaffolding with Multiplicities (MSCA)
Input: a scaffold graph (G,M∗, ω,m) and σp, σc, k ∈ N
Question: Is there a multiset S of ≤ σc closed and ≤ σp non-closed

alternating walks in G such that each e ∈ M∗ occurs at most m(e)
times in across all walks of S and

∑
e∈E(S)\M∗ ω(e) ≥ k?

In this setting, a scaffold graph (G∗,M∗, ω∗,m∗) is called solution graph for
(G,M∗, ω,m) if (a) G∗ is a subgraph of G, (b) ω∗ is the restriction of ω to
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G∗, (c) m∗(uv) ≤ m(uv) for all uv ∈ E, (d) G∗ can be decomposed into ≤ σc
closed and ≤ σp non-closed walks. Such a decomposition into walks is called a
linearization of the solution graph and, in general, it is not necessarily unique
(see Figure 1).
Observation 1 For each vertex u of a solution graph, the sum of multiplicities
of its incident non-matching edges is at most the multiplicity of its incident
matching edge.

In earlier work [21], we showed that a largest uniquely linearizable subgraph
can be obtained by destroying all ambiguous paths, that is, all alternating paths p
such that all edges of the path have the same multiplicity mp and both extremi-
ties of p are incident to a non-contig edge with multiplicity strictly less than mp.
Thus, the main problem considered in this work is the following.

Semi-Brutal Cut (SBC)
Input: a solution graph (G∗,M∗, ω,m) and some k ∈ N
Question: Is there a set X of non-contig edges of G such that G −X

does not contain ambiguous paths and the score of X is at most k?

We choose to separate MSCA and Semi-Brutal Cut, which is justified by the
danger of producing chimeric sequencing when combining optimisation of weight
on the scaffold graph and the linearisability constraint (see Figure 2). Moreover,
the solution graph is by itself an interesting object to study. It embeds all possi-
bilities, and may be a reasonable representation of a genome under our current
knowledge. We expect that additional information may disambiguate a solution
graph, such as finer study of the nature of involved repeats, dynamic of trans-
posed elements, etc. Thus, Semi-Brutal Cut was raised as a problem aiming
to propose a standard output (e.g. fasta files) from the solution graph. Several
cost-functions ω′ make sense in this setting.
Definition 1. A weight function ω′ : 2E → N is called
1. cut-score, if ω′ counts one per cut vertex (that is, ω′(X) is the size of a

smallest vertex cover of X),
2. path-score, if ω′ counts one per removed edge (that is, ω′(X) = |X|), and
3. weight-score, if ω′ counts the total weight of the removed edges (that is,

ω′(X) =
∑
e∈X ω(e)).

Note that, from the perspective of computational complexity, the path-score is
a special case of the weight score, since we can just set ω(e) = 1 for all edges e.
Thus, when saying “both scores” we refer to cut- and weight-score. Further,
when talking about cut-score, we sometimes say “to cut a vertex v”, by which we
mean cutting all non-contig edges incident with v. In context of approximation,
Semi-Brutal Cut refers to its optimization variant, minimizing the score of X.
Related works. In previous work [21], we proposed the first results concern-
ing the complexity of Semi-Brutal Cut according to the scoring functions
mentioned in Definition 1. In that article, two main results are proved: the NP-
completeness for general graphs and a polynomial-time algorithm for trees based
on dynamic programming. Here, we push this hardness result to bipartite, pla-
nar, subcubic graphs and give polynomial-time algorithms for more special cases
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Fig. 2: (Left) Edge {c, d} has multiplicity two. Other multiplicities are equal to
one. The labels on the edges correspond to their weight. In the input scaffold
graph, the real sequences are both paths (a, b, c, d, e, f) and (c, d, g, h). (Middle)
After resolving successively MSCA (with σp = 2 and σc = 0) and SBC (dashed
edges are cut), the solution is compatible with the initial hypothesis. The only
ambiguous path is the matching edge {c, d} and the cut vertex is d. (Right) Di-
rectly searching two maximum weighted alternating paths such that the solution
graph does not contain ambiguity yields a chimeric sequence (f, e, g, h).

Topologies Score Complexity Lower bound
general all NP-hard [21]
trees all linear [21]
planar, ∆ ≤ 4 cut-score NP-hard [21] approx: 1.37 (P 6= NP) [21], 2− ε

(UGC) [21], exact: 2o(n)(ETH) [21]
general, ∆ ≤ 2 all linear (Prop. 1)
complete bipartite cut-score linear (Prop. 2)
bip. plan., ∆ ≤ 3 cut-score NP-hard (Th. 1) APX-Hard (Th. 2)

exact: 2o(
√
n+m)nO(1) (ETH) (Cor. 1)

Table 1: Overview of results for Semi-Brutal Cut.

(especially for ∆ ≤ 2) marking the boundary between the NP-completeness and
the polynomiality. Table 1 summarizes the complexity results.

2 Computational Hardness

While Semi-Brutal Cut is known to be NP-hard for both cut- and weight-
score [21], we extend the cut-score hardness to planar, bipartite, subcubic graphs.
To this end, we reduce the classic NP-complete 3-SAT [7] problem to SBC.

3-Satisfiability (3-SAT)
Input: A boolean formula ϕ in conjunctive normal form where each

clause contains exactly three literals.
Question: Is there a satisfying assignment β for ϕ?

Construction 1 Let ϕ be an instance of 3-SAT with n variables x1, . . . , xn
and m clauses C1, . . . , Cm. For each variable xi, let ψi be the list of indices `
such that C` contains xi and |ψi| is the number of occurrences of xi in ϕ. We
construct the following solution graph (G∗,M∗, ω,m) with a 2-coloring of G∗
(see Figure 3).
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Fig. 3: Matching edges are bold. Left: variable gadget cxi
linked to the clause

gadgets q1, q3 and qm, where xi occurs positively in C1 and C3 and negatively
in Cm. Right: clause gadget corresponding to the clause C` =(x1 ∨ x2 ∨ x3).
– For each xi, we construct a cycle ci on the vertex set

⋃
j≤|ψi|{u

i
j , u

i
j , v

i
j , v

i
j}

such that, for all j ≤ |ψi|,
• {uij , uij}, {vij , vij} ∈M∗, and
• the vertices uij and vij are blue and the vertices uij and vij are red.

– For each C`, we construct an alternating 6-cycle q` on the vertex set
⋃
j≤3{r`j , b`j}

such that, for all j ≤ 3, {r`j , b`j} ∈M∗, and r`j is red and b`j is blue.
– For each clause C` and each j ≤ 3, let xi be the jth literal of C` and let t be

such that C` is the tth clause in which xi occurs. Then,
• create a single matching edge {a`j , a`j}, where a`j is blue and a`j is red,
• if xi is a positive literal, introduce the edges {r`j , uit} and {b`j , a`j}, and
• if xi is a negative literal, introduce the edges {b`j , uit} and {r`j , a`j}.

– Each non matching edge has multiplicity 1 and all matching edges have mul-
tiplicity 2 (thus, each matching edge except the {a`i , a`i} is an ambiguous
path).

Clearly, Construction 1 can be carried out in polynomial time. Further, the
resulting graph G∗ is bipartite and ∆(G∗) = 3. In the following, we call a
matching edge clean if one of its endpoints has degree one. Note that a scaffold
graph whose every matching edge is clean does not contain ambiguous paths.

Theorem 1. Semi-Brutal Cut is NP-complete for the cut-score, even if the
graph is planar, bipartite, subcubic and all multiplicities are one or two.

In order to prove Theorem 1, we use the following properties of Construction 1,
yielding a “canonical” set of cuts.

Lemma 1. Let S ⊆ V (G∗) be a set of vertex-cuts destroying all ambiguous paths
in (G∗,M∗, ω,m), let ci be a variable gadget and let q` be a clause gadget. There
is a set S′ of cuts with |S′| ≤ |S| that also destroys all ambiguous paths and
(a) |S ∩ V (ci)| = |S′ ∩ V (ci)| ≥ |ψi| and |S ∩ V (q`)| = |S′ ∩ V (q`)| ≥ 2 (S and

S′ have the same cut partition in variable gadgets and clause gadgets),
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(b) if |S′ ∩ V (ci)| = |ψi|, then S′ ∩ V (ci) is either
⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j}

(if S′ is optimal on a variable gadget, cuts are only on positive sides or only
on negative sides),

(c) |S′ ∩ V (q`)| = 2 if and only if S′ contains a vertex adjacent to q` (only two
cuts are needed in a clause gadget iff it has been isolated by a cut in an
adjacent variable gadget, meaning that the variable satisfies the clause).

Proof. (a): Since, in a cycle with y ambiguous paths, each cut can destroy at
most two of them, we need at least dy/2e cuts to linearize this cycle. A clause
gadget and a variable gadget contain a cycle of three ambiguous paths and a
cycle of 2|ψi| ambiguous paths, respectively. Thus, we need at least two cuts in
a clause gadget and |ψi| cuts in a variable gadget to linearize G∗.
(b): If vij ∈ S for some j, then we can swap it for uij in S (and analogously for
vij). This operation does not increases the cardinality of S. Thus, we suppose
that S contains neither vij nor vij for any j, implying that S contains either uij
or uij for each j. Since |S ∩ V (ci)| = |ψi| we know that exactly one of uij and u

i
j

is in S for each j. Now, if S contains some uij and some uij′ , then it also contains
such vertices for consecutive j and j′. Hence, we can suppose that j′ = (j + 1)
mod |ψi|, implying that {vij , vij} is an ambiguous path.

b`1

r`1

b`2 r`2

b`3

r`3

Fig. 4: A cut of size 2 in q` when 1
incident edge to q` is cut. Dashed
edges and vertices are part of the
cut.

(c): Note that both r`1 and b`1 are incident
with a non-matching edge leaving q`. To de-
stroy the ambiguous path {r`1, b`1}, one of
these edges has to be removed. By symme-
try the same holds for {r`2, b`2} and {r`3, b`3}.
Since at least three edges leaving q` have to
be removed, we need a total of three cuts
inside of q` unless a vertex adjacent to q` is
cut. Conversely, suppose by symmetry that
the edge incident to the vertex r`2 is cut.
Then, q` can be linearized by cutting b`1 and
b`3 (see Figure 4). ut
Proof. of Theorem 1

Recall that 3-SAT remains NP-complete if the input formula is planar [12]
and, in this case, since each gadget is planar and the edges between the clause
gadget and the variable gadget can be placed in any order on the gadgets, the
graph produced by Construction 1 can also be assumed to be planar. Since,
clearly, Semi-Brutal Cut ∈ NP, it remains to show that Construction 1 is
correct, that is ϕ is satisfiable if and only if the scaffold graph (G∗,M∗, ω,m)
resulting from Construction 1 can be linearized with 5m cuts.

“⇒”: Let β be a satisfying assignment for ϕ. Then, for each variable xi and
for all j ≤ |ψi|, we cut the vertices uij if β(xi) = 1 and the vertices uij otherwise.
As β is satisfying, this removes at least one edge adjacent to each clause gadget.
Thus, according to Lemma 1(c), we can cut two vertices in each clause gadget
qj to turn every matching edge in qj clean. Since we also cut either the vertices
uij or the vertices u

i
j for each vertex gadget, we conclude that all matching edges

of the result are clean and we cut exactly 2m+
∑
i |ψi| = 5m vertices.
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“⇐”: Let S ⊆ V be the set of vertices such that cutting each vertex of S
destroys all ambiguous paths in (G∗,M∗, ω,m) and |S| = 5m. According to
Lemma 1(a), each variable gadget contains |ψi| cuts and each clause gadget
contains two cuts. Moreover, by Lemma 1(b), for each variable gadget ci, we can
suppose that S ∩ V (ci) equals

⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j}. In the former case,

we set β(xi) = 1 and, in the latter, we set β(xi) = 0. To show that β satisfies
ϕ, assume that there is a clause C` that is not satisfied by β. Then, none of the
edges incident to q` is cut which, by Lemma 1(c), contradicts the fact that there
are two cuts in q`. ut

Since Construction 1 is linear in the number of vertices and planar 3-SAT
does not admit a 2o(

√
n+m)nO(1)-time algorithm [13], there is also no 2o(

√
n+m)nO(1)-

time algorithm for Semi-Brutal Cut.
Corollary 1. Assuming ETH, there is no 2o(

√
n+m)nO(1)-time algorithm for

Semi-Brutal Cut in bipartite planar subcubic graphs for the cut-score.

3 Non-Approximability

In this section, we prove approximation lower bounds for Semi-Brutal Cut.
First recall the definition of L-reduction between two hard problems Π and
Π ′, described by Papadimitriou and Yannakakis [16]. This reduction consists of
polynomial-time computable functions f and g such that, for each instance x of
Π, f(x) is an instance of Π ′ and for each feasible solution y′ for f(x), g(y′) is
a feasible solution for x. Moreover, let Π ′′ ∈ {Π,Π ′}, we denote by OPTΠ′′ the
value of an optimal solution of Π ′′ and by valΠ′′(y′′) the value of a solution y′′
of an instance of Π ′′. There are constants α, β > 0 such that:
1. OPTΠ′(f(x)) ≤ αOPTΠ(x) and
2. |valΠ(g(y′))−OPTΠ(x)| ≤ β|valΠ′(y′)−OPTΠ′(f(x))|.
In the following, we present an L-reduction from the classical problem Max
3-SAT(4) to Semi-Brutal Cut.

Max 3-SAT(4)
Input: A boolean formula ϕ in exact 3-CNF where every variable occurs

in 4 clauses
Task: Find an assignment that satisfies a maximum number of clauses.

Construction 2 We reuse Construction 1 and change some variable gadgets.
Let xi be a variable which occurs positively in the clauses Cp and Cp′ and nega-
tively in the clauses Cn and Cn′ . We replace the variable gadget associated to xi
by the following gadget ri:
– Construct a cycle ci on the vertex set

⋃
j≤2{uij , u

i
j , v

i
j , v

i
j} such that, for all

j ≤ 2, {uij , uij}, {vij , vij} ∈M∗, the vertices uij and vij are blue and uij and v
i
j

are red.
– Give multiplicity 1 to all non-matching edges and multiplicity 2 to all match-

ing edges.
– Link the clause gadgets qp, qp′ , qn and qn′ to vertices ui1, ui2, u

i
1 and ui2 re-

spectively in the same way as in Construction 1.
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ui1

vi1

ui1 ui2

vi2

ui2

vi2
vi1

qp qp′ qn′qn Fig. 5: Matching edges are bold. Example of vari-
able gadget rxi

linked to the clause gadgets qp,
qp′ , qn and qn′ , where xi occurs positively in Cp
and Cp′ and negatively in Cn and Cn′ .

Note that all matching edges are ambiguous paths in the variable gadget. The
clause gadgets and the other variable gadgets remain unchanged.

The resulting graph G∗ is bipartite and ∆(G∗) = 3. In the following, when
we want to differentiate the variable gadgets, we designate by rectangle variable
gadget those defined in Construction 2 and by cycle variable gadget those defined
in Construction 1. An example of a rectangle variable gadget is given in Figure 5.
Notice that the properties (a) and (c) of Lemma 1 hold. We can add the following
property:
Lemma 2. Let S ⊆ V (G∗) be an optimal set of vertex-cuts destroying all am-
biguous paths in (G∗,M∗, ω,m), let ci be a cycle variable gadget and ri′ be a
rectangle variable gadget. There is a set S′ of cuts with |S′| = |S| that also
destroys all ambiguous paths, and
(a) S′ ∩ V (ci) is either

⋃
j≤|ψi|{u

i
j} or

⋃
j≤|ψi|{u

i
j}, and

(b) S′ ∩ V (ri′) is either {ui′1 , ui
′

2 } or {ui
′

1 , u
i′

2 }.
Proof. Recall that S covers the edges of M∗ and, by Lemma 1(a), |S ∩ V (ci)| ≥
|ψi|.

“(a)”: By symmetry, suppose that xi occurs mostly positively in ϕ. If xi
occurs four times positively, then replacing S ∩V (ci) by

⋃
j≤|ψi|{u

i
j} in S yields

a solution S′ as sought. Thus, suppose that xi occurs three times positively. Let
C` be the clause where xi occurs negatively and let z denote the neighbor of uij
in c`. If |S ∩ V (ci)| > |ψi|, then replacing S ∩ ci by

⋃
j≤|ψi|{u

i
j} plus z yields a

solution S′ as sought. Finally, if |S ∩ V (ci)| = |ψi|, then S already corresponds
to (a) as, otherwise, some ambiguous path {vij , vij} is not destroyed.

“(b)”: Note that one cut in ri′ is not enough to destroy all ambiguous paths
and cutting either the vertices {ui′1 , ui

′

2 } or the vertices {ui
′

1 , u
i′

2 } destroys all
ambiguous paths in the rectangle variable gadget. Further if S cuts {vi′1 , vi

′

2 }
or {vi

′

1 , v
i′

2 }, then we can instead cut {ui′1 , ui
′

2 } or {ui
′

1 , u
i′

2 }, respectively, without
creating ambiguous paths. Suppose without loss of generality that {ui′1 , ui

′

2 } ⊆ S.
Suppose further that there is some u ∈ S∩V (ri′)\{ui

′

1 , u
i′

2 }. Then, there is some
clause gadget qn linked to u since, otherwise, S−u is also a solution, contradicting
optimality of S. Since all matching edges of ri′ are already clean, the cut can
only remove the edge between u and qn. Thus we can replace u by its neighbor
in qn without changing the cardinality of S. By swapping the one or two cuts in
S ∩ V (ri′) \ {ui

′

1 , u
i′

2 }, we obtain S′ ∩ V (rj) = {ui
′

1 , u
i′

2 }. ut
Theorem 2. There is a constant ε′4 > 0 (the value ε′4 > 0 is defined in [1]) for
which Semi-Brutal Cut cannot be approximated to any factor better than (1+
7(ε′4−1)/41·ε′4), even on bipartite graphs of maximum degree three, unless P=NP.

Proof. Recall that, unless P=NP, Max 3-SAT(4) cannot be approximated to
a factor better than ε′4 = 1, 00052 [1] and that, in an optimal solution of Max
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3-SAT(4), at least 7/8 of the clauses are satisfied [8], yielding

OPT (ϕ) ≥ 7m/8. (1)

To show that Construction 2 constitutes an L-reduction, let f be a function
transforming any instance ϕ of Max 3-SAT(4) into an instance I of Semi-
Brutal Cut as above, let S be a feasible solution for I corresponding to the
properties of Lemma 1(a), Lemma 1(c) and Lemma 2, and let g be the function
that transforms S into an assignment β as constructed in the proof of Theorem 1:
each variable xi is set to true if S cuts uij for all j, and false, otherwise. By
Lemma 2, for each clause gadget q` without an adjacent vertex in S, the “extra”
cut occurs in q`. Hence, for each of the at most m/8 unsatisfied clauses in ϕ, we
have to spend another cut to linearize I. Thus,

OPT (I) ≤ 5m+ m/8
(1)
≤ 41/7OPT (ϕ) (2)

An important obstacle to overcome (and reason why Construction 1 is not
enough for Theorem 2) is that an approximate solution to SBC might spend
extra cuts in variable gadgets in order to “change the assignment” of a variable
xi mid-way. However, since each variable occurs at most four times, this only
happens for variables that occur two times positively and two times negatively.
Now, with our modification to Construction 1, we can observe that each extra
cut in any of the variable gadgets allows such a misuse only for a single clause
gadget. Thus, the number of satisfied clauses of ϕ and the clause gadgets in
which we have to spend extra cuts adds up to m. Hence,

6m = val(g(S)) + val(S) = OPT (I) +OPT (ϕ) (3)

Thus, we constructed an L-reduction with α = 41/7, β = 1 and, since ε′4 ·
val(g(S)) ≤ OPT (ϕ), we conclude

val(S)
(3)
= OPT (I) +OPT (ϕ)− val(g(S))
> OPT (I) + (1− 1/ε′4 ·OPT (ϕ)
(2)
≥ (1 + 7(ε′4−1)/41·ε′4) ·OPT (I) ut

Relaxing on planarity et or maximum degree, we obtain better lower bounds:

Theorem 3. There is a constant ε′4 > 0 for which Semi-Brutal Cut cannot
be approximated to any factor better than 1 + ε′4/10, even on bipartite, subcubic
graphs with multiplicities in the set {1, 2} unless P=NP.

The value ε′4 > 0 is defined in [1].
Proof. We use a gap preserving reduction from Max 3-SAT(4) (assume w.l.o.g.
that each clause of φ has exactly three literals (this can be easily done by re-
peating the literals within a clause, if necessary)) to Semi-Brutal Cut even on
bipartite, subcubic graphs with multiplicities in the set {1, 2} that transforms a
Boolean formula φ to a graph using Construction 1 such that:

10



1. if OPT (ϕ) = m then OPT (G) = 5m (see Theorem 1), and
2. if OPT (ϕ) < (1− ε′4)m then OPT (G) ≥ 5m+ ε′4m/2.

First item is obtained by Theorem 1. Second item comes from the observation
that if the optimal solution of Max 3-SAT(4) does not satisfy m clauses, but
k ≤ m−1, it means that an extra cut was necessary in the transformed instance
to linearize the graph G. If this extra cut is placed in a variable gadget, it can
linearize between one and two clauses (the extra cut can not linearize more
than two clauses since otherwise changing the value of the variable increases the
number of satisfied clauses which is a contradiction). Thus, for k between m− 1
and m − 2, we know that at least one extra cut is needed. We generalize this
argument to any number of satisfied clauses in the optimal solution, to finally get:

OPT (G) ≥ 5m+

⌈
m−OPT (ϕ)

2

⌉
.

By hypothesis we have OPT (ϕ) < (1−ε′4)m, thus OPT (G) ≥ 5m+dε′4m/2e ≥
5m+ ε′4m/2. The Theorem follows. ut

Hereafter, we consider Max 3-SAT(B) which is the restricted special case
of Max 3-SAT where every variable occurs in at most B clauses. Recall that for
Max 3-SAT(B) the best possible approximation is at least 7/8 + Ω(1/B) (as a
function of B) and at most 7/8+O(1/

√
B) unless NP=RP[19]. Based on the same

arguments as given in Theorem 2, we have val(S) ≥ (335/328−O(1/
√
B))OPT (ϕ),

this leads us to following result:
Theorem 4. Semi-Brutal Cut cannot be approximated to any factor better
than 335/328−O(1/

√
B), even on bipartite graphs of maximum degree three, unless

RP=NP.

4 Polynomial Cases

In this section, we consider the Semi-Brutal Cut problem in graphs with
maximum degree two and in complete bipartite graphs. We show a linear-time
algorithm for both cut-score and weight-score. Recall that Semi-Brutal Cut
can be solved in linear time in trees [21]. In the following, we suppose that
the input solution graph contains at least one ambiguous path and that G is
connected as otherwise, we can treat each connected component individually.
Proposition 1. Semi-Brutal Cut can be solved in linear time on a collection
of paths and cycles (∆(G) = 2) for the weight function given by Definition 1 .

Proof. First, since ∆(G) = 2, the cut-score is a special case of the weight-score
with ω(e) = 1 for all non-matching edges e. Thus, suppose that the weight-score
is used. Second, since SBC can be solved in linear time on paths [21], suppose
that G is a cycle. Let p be any ambiguous path in G, let e1 and e2 be the two
unique non-matching edges incident to the extremities of p. Since G1 = G− e1
and G2 = G − e2 are trees, we can find and compare optimal solutions X1 and
X2 for G1 and G2, respectively, in linear time. Further, as p is ambiguous, all
optimal solutions delete e1 or e2 (or both) and, thus, one of X1 ∪ {e1} and
X2 ∪ {e2} is optimal for G. ut
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Algorithm 1: Greedy Algorithm
Data: A solution graph (G∗,M∗, ω,m).
Result: A set X ⊆ E \M∗ whose removal makes G∗ uniquely linearizable.

1 X ← ∅ ;
2 A← list of extremities of ambiguous paths;
3 while A 6= ∅ do
4 u← argminx∈A ωX(x);
5 remove the two extremities of the ambiguous path containing u from A;
6 add all non-matching edges incident with u to X;
7 end
8 return X;

x y u v

Fig. 6: Tightness of the approximation ratio. Edges are bold (∈ M∗), solid (∈
Xopt) or dashed (∈ X) and all edges have weight one. The multiplicities of the
matching edges are equal to two and the multiplicities of the non-matching edges
are equal to one. Thus, ω(X) = 2 and ω(Xopt) = 1.

Proposition 2. Semi-Brutal Cut can be solved in linear time for cut-score
on complete bipartite graphs.

Proof. Let Kn,n be a complete bipartite graph and note that n > 2 as, other-
wise, there is no ambiguous path in Kn,n. Also note that, by Observation 1, all
matching edges are ambiguous paths. Then, it is sufficient to cut all but one
vertex of any of the two cells of the bipartition to turn all matching edges clean.
To show that n − 1 cuts are also necessary, assume that there is a solution X
with cut-score n − 2 and let u and v be the vertices that are not cut. Then, u
and v are in the same cell of the bipartition since, otherwise, there is a matching
edge xy with ux, vy /∈ X and, thus, xy is an ambiguous path in G − X. But
then, {u,M∗(v)} and {M∗(u), v} are not in X, implying that {u,M∗(u)} is an
ambiguous path in G−X. ut

5 Approximable Cases

We propose a greedy strategy (see Algorithm 1) for the Semi-Brutal Cut
problem under the weight-score function. Let (G∗,M∗, ω,m) be a solution graph
and let X ⊆ E \M∗ be a set of non-matching edges. For a vertex x, we let ωX(x)
denote the sum of the weights of all non-matching edges incident with x that are
not in X. More formally, we define ωX(x) :=

∑
e∈E\(M∗∪X) ω(e) · χe(x), where

χe(x) := |e∩{x}| is the characteristic function of e. The principle of our algorithm
is to successively visit each ambiguous path and cut the edges incident to the
extremity with the lowest value of wS , where S contains all previously cut edges.

Proposition 3. In O((|V |+ |E|) log |V |) time, Algorithm 1 computes a solution
for Semi-Brutal Cut under the weight-score with an approximation ratio of 2
and this ratio is tight.
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Proof. Since each time some extremities are removed from A, the ambiguous
path they belonged to has been destroyed, there are no more ambiguous paths
remaining when A = ∅. Thus, the set X that is returned is indeed a solution. Let
Xopt be an optimal solution. Let pi denote the ambiguous path of G∗ considered
in step i of Algorithm 1, let u and v be its extremities, and let Xi be the set of
edges added to X in step i. If Xopt contains all non-matching edges incident to
u, then let Qi contain them. Otherwise, Xopt contains all non-matching edges
incident to v, and we let Qi contain those. Then, ω′(Xi) ≤ ω′(Qi) for all i and,
thus, ω′(X) ≤

∑
i ω
′(Qi). Further,

⋃
iQi = Xopt and, since each edge of G∗

occurs in at most two sets Qi, we conclude
∑
i ω
′(Qi) ≤ 2ω′(Xopt). The claimed

approximation factor of two follows and, by Figure 6, it is tight.
Concerning the running time, the list of ambiguous paths is build in O(|E|+

|V |) with a depth-first search algorithm. The sorting of this list can be done
in O(|V | log |V |). The maintain of the sorting of the list at each cut yields a
O((|V |+ |E|) log |V |). ut

6 Experiments

In order to observe the behavior of our algorithm on real instances, we tested
it on datasets described below and we compare the obtained solutions of three
different algorithms.

Description of the datasets They were generated in the following way:
1. A set of reference genomes in the Nucleotide NCBI database (see Table 2)

have been chosen for their diversity in genome sizes, and types of organisms.
2. Paired-end reads, have been simulated using wgsim [11].then assembled using

the De Bruijn Graph based de novo assembly tool minia [5].
3. Reads have been mapped to the contigs, using bwa [10] and contigs on the

reference genome, using megablast [15], in order to find their multiplicities
and generate scaffold graphs. Table 3 presents some statistics about produced
scaffolding graphs. Notice that those graphs may be large, however their spar-
sity and mean degree explain why we consider very constrained classes of
graphs (degree bounded by three, planar, bipartite, etc.). They do not fit
these constraints, but they are quite close to.

4. We generated the solution graphs from the scaffold graphs using our ILP
formulation [23] for Scaffolding with Multiplicities and using the cplex
solver. Statistics on solution graphs are available on Table 4.

Results We ran Algorithm 1 on the datasets and we compared it with two other
algorithms:

1. an exact algorithm obtained by an ILP formulation of Semi-Brutal Cut
2. a naive algorithm cutting arbitrary extremities of ambiguous path as long

as such paths exist.

The idea of implementing the naive algorithm is that it provides an upper bound
of Semi-Brutal Cut. We wanted answer to the following question: is the ra-
tio of Algorithm 1 closer than 1 to those provided by the naive algorithm on
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Table 2: Sequences selected for experiments.
species Tax. alias size (bp) type acc. number
Bacillus anthracis str.
Sterne

Bacteria anthrax 5228663 Chrom. NC_005945.1

Gloeobacter violaceus
PCC 7421

Bacteria gloeobacter 4659019 Chrom. NC_005125.1

Lactobacillus
acidophilus NCFM

Bacteria lactobacillus 1993560 Chrom. NC_006814.3

Pandoravirus salinus Virus pandora 2473870 Comp. NC_022098.1
Pseudomonas
aeruginosa PAO1

Bacteria pseudomonas 6264404 Chrom. NC_002516.2

Oryza sativa Japonica Plant rice 134525 Chlor. X15901.1
Saccharomyces
cerevisiae

Yeast sacchr3 316613 Chrom. 3 X59720.2

Saccharomyces
cerevisiae

Yeast sacchr12 1078177 Chrom. 12 NC_001144.5

1. chromosome 2. complete genome 3. chloroplast

Table 3: Scaffold graphs.
Data |V | |E| Min/Max/Avg degree
anthrax 8110 11013 1 / 7 / 2.72
gloeobacter 9034 12402 1 / 12 / 2.75
lactobacillus 3796 5233 1 / 12 / 2.76
pandora 4902 6722 1 / 7 / 2.74
pseudomonas 10496 14334 1 / 9 / 2.73
rice 168 223 1 / 6 / 2.65
sacchr3 592 823 1 / 7 / 2.78
sacchr12 1778 2411 1 / 10 / 2.12

Table 4: Sequences selected for experiments.
data #AP #NAP total weight avg. deg. max/min deg.
anthrax 13 260 329 5.31 4 / 2
gloeobacter 44 432 694 5.68 6 / 2
lactobacillus 15 135 225 5.27 5 / 2
pandora 5 183 210 5.00 4 / 2
pseudomonas 47 413 650 5.20 5 / 2
rice 6 9 29 4.17 3 / 2
sacchr3 5 25 54 5.40 4 / 2
sacchr12 23 74 190 4.87 4 / 2

1. ambiguous paths 2. non-ambiguous paths 3. average degree of extremities of amb.
paths
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real-world instances? Statistics on produced solutions are presented in Table 5.
We notice that Algorithm 1 finds an optimal solution in most of the cases, even
if the number of cuts is of the order of several dozens (i.e. gloeobacter, pseu-
domonas). The algorithm does not find an optimal solution for two instances:
rice and sacchr12 and the ratio of the computed solutions are 1.33 and 1.11,
respectively. The high ratio of the rice can be explained by the low score in the
optimal solution. Thus, the answer to our question seems to be that the ratio of
Algorithm 1 is close to 1. However, the tested instances are relatively small and
it is interesting to run tests on bigger instances.

Table 5: Results statistics.
exact naive algorithm Algorithm 1

data score #cuts score ratio #cuts score ratio #cuts
anthrax 17 13 20 1.17 13 17 1.00 12
gloeobacter 68 45 80 1.17 43 68 1.00 41
lactobacillus 19 15 21 1.10 14 19 1.00 14
pandora 6 5 7 1.16 5 6 1.00 5
pseudomonas 51 50 65 1.27 41 51 1.00 40
rice 3 6 5 1.66 4 4 1.33 4
sacchr3 6 5 6 1.00 4 6 1.00 5
sacchr12 18 23 24 1.33 16 20 1.11 17

7 Conclusion

In this article, we develop results concerning the complexity, lower bounds and
approximability of the linearization problem for genome scaffolds sharing re-
peated contigs with two possible scoring functions. We managed to strengthen
previously known NP-hardness to the very restricted class of planar bipartite
subcubic graphs with only two multiplicities for the cut-score. Natural perspec-
tives of this work are to extend this result to the weight-score, explore the possi-
bility of FPT algorithms and approximations in the difficult cases, and examine
the practical performance of the presented greedy algorithm on larger real-world
instances.
Acknowledgments This work was supported by the Institut de Biologie Com-
putationnelle (ANR Projet Investissements d’Avenir en bioinformatique IBC).
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