Readitopics: Make Your Topic Models Readable via Labeling and Browsing - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2018

Readitopics: Make Your Topic Models Readable via Labeling and Browsing

Abstract

Readitopics provides a new tool for browsing a textual corpus that showcases several recent work for labeling topic models and estimating topic coherence. We will demonstrate the potential of these techniques to get a deeper understanding of the topics that structure different kinds of datasets. This tool is provided as a Web demo but it can be easily installed to experiment with your own dataset. It can be further extended to deal with more advanced topic modeling techniques.
Fichier principal
Vignette du fichier
readitopics2018.pdf (492.18 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-01910611 , version 1 (01-11-2018)

Identifiers

  • HAL Id : lirmm-01910611 , version 1

Cite

Julien Velcin, Antoine Gourru, Erwan Giry-Fouquet, Christophe Gravier, Mathieu Roche, et al.. Readitopics: Make Your Topic Models Readable via Labeling and Browsing. IJCAI: International Joint Conference on Artificial Intelligence, Jul 2018, Stockholm, Sweden. ⟨lirmm-01910611⟩
376 View
261 Download

Share

Gmail Mastodon Facebook X LinkedIn More