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0.1. Introduction

Resource Description Framework (RDF) is a standard for the conceptual descrip-
tion of knowledge. The RDF data is cherished and exploited by various domains such
as life sciences, Semantic Web, social network, etc. Further, its integration at Web-
scale compels RDF management engines to deal with complex queries in terms of
both size and structure. Popular examples are provided by Google, that exploits the so
called knowledge graph to enhance its search results with semantic information gath-
ered from a wide variety of sources, or by Facebook, that implements the so called
entity graph to empower its search engine and provide further information extracted,
for instance by Wikipedia. Another example is supplied by recent question-answering
systems [CAB 12, ZOU 14a] that automatically translate natural language questions
in SPARQL queries and successively retrieve answers by considering the available
information in the different Linked Open Data sources. In all these examples, com-
plex queries (in terms of size and structure) are generated to ensure the retrieval of all
the required information. Since the use of large knowledge bases that are commonly
stored as RDF triplets is becoming a common way to ameliorate a wide range of ap-
plications, efficient querying of RDF data sources using SPARQL 1 (query language
conceived to query RDF data) is becoming crucial for modern information retrieval
systems.

With the ever increasing advantage of representing real world data of various do-
mains in RDF format, two vital challenges have been faced by the RDF data man-
agement community: firstly, the automatically generated queries cannot be bounded
in their structural complexity and size (e.g., the DBPEDIA SPARQL Benchmark
[MOR 11] contains some queries having more than 50 triplets [ALU 14a]); secondly,
the queries generated by retrieval systems (or by any other applications) need to be
efficiently answered in a reasonable amount of time. Modern RDF data management,
such as x-RDF-3X [NEU 10] and Virtuoso [ERL 12], are designed to address the scal-
ability of SPARQL queries but they still have problems to answer big and structurally
complex SPARQL queries [ALU 14b].

In order to address these challenges, in this chapter, we discuss about a graph-
based RDF querying engine AMBER [ING 16] (Attributed Multigraph Based Engine
for RDF querying), that involves two steps: an offline stage where RDF data is trans-
formed into multigraph and indexed, and an online step where an efficient approach
to answer SPARQL query is proposed. First of all RDF data is represented as a multi-
graph where subjects/objects constitute vertices and multiple edges (predicates) can
appear between the same pair of vertices. Then, new indexing structures are con-
ceived to efficiently access RDF multigraph information. Finally, by representing the
SPARQL queries also as multigraphs, the query answering task can be reduced to the

1. http://www.w3.org/TR/sparql11-overview/
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8 RDF Querying

problem of subgraph homomorphism. To deal with this problem, AMBER employs
an efficient approach that exploits structural properties of the multigraph query as well
as the indices previously built on the multigraph structure. Experimental evaluation
over popular RDF benchmarks show the quality in terms of time performances and ro-
bustness of our proposal. In this chapter, we focus only on the SELECT/WHERE clause
of the SPARQL language 2, that constitutes the most important operation of any RDF
query engines.

0.2. Related Work

In order to efficiently answer SPARQL queries, many stores and APIs inspired
by relational model were proposed [ERL 12, BRO 02, NEU 10, CAR 04]. x-RDF-
3X [NEU 10], inspired by modern RDBMS, represent RDF triples as a big three-
attribute table. The RDF query processing is boosted using an exhaustive indexing
schema coupled with statistics over the data. Also Virtuoso [ERL 12] heavily exploits
RDBMS mechanism in order to answer SPARQL queries. Virtuoso is a column-store
based systems that employs sorted multi-column column-wise compressed projec-
tions. Also these systems build table indexing using standard B-trees. Jena [CAR 04]
supplies API for manipulating RDF graphs. Jena exploits multiple-property tables that
permit multiple views of graphs and vertices which can be used simultaneously.

The database community has recently started to investigate RDF stores based
on graph data management techniques [DAS 14, ZOU 14b, KIM 15]. The work in
[DAS 14] addresses the problem of supporting property graphs as RDF, since ma-
jority of the graph databases are based on property graph model. The authors intro-
duce a property graph to RDF transformation scheme and propose three models to
address the challenge of representing the key/value properties of property graph edges
in RDF. gStore [ZOU 14b] applies graph pattern matching techniques using filter-
and-refinement strategy to answer SPARQL queries. It employs an indexing schema,
named VS∗-tree, to concisely represent the RDF graph. Once the index is built, it
is used to find promising subgraphs that match the query. Finally, exact subgraphs
are enumerated in the refinement step. Turbo_Hom++ [KIM 15] is an adaptation of a
state of the art subgraph isomorphism algorithm (TurboISO[HAN 13]) to the problem
of SPARQL queries. Exploiting the standard graph isomorphism problem, the authors
relax the injectivity constraint to handle the graph homomorphism, which is the RDF
pattern matching semantics. Unlike the proposed AMBER, TurboHom++ does not
index the RDF graph, while gStore concisely represents RDF data through VS∗-tree.

2. http://www.w3.org/TR/sparql11-overview/

http://www.w3.org/TR/sparql11-overview/
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0.3. Background and Preliminaries

In this section we provide basic definitions on the interplay between RDF and its
multigraph representation. Later, we explain how the task of answering SPARQL
queries can be reduced to multigraph homomorphism problem.

0.3.1. RDF Data

As per the W3C standards 3, RDF data is represented as a set of triples<S,P,O>,
as shown in Figure 1a, where each triple <s, p, o> consists of three components: a
subject, a predicate and an object. Further, each component of the RDF triple can
be of any two forms; an IRI (Internationalized Resource Identifier) or a literal. For
brevity, an IRI is usually written along with a prefix (e.g., <http://dbpedia.org/
resource/isPartOf> is written as ‘x:isPartOf’), whereas a literal is always written
with double quotes (e.g., “90000"). While a subject s and a predicate p are always an
IRI, an object o is either an IRI or a literal.

RDF data can also be represented as a directed graph where, given a triple<s, p, o>,
the subject s and the object o can be treated as vertices and the predicate p forms a
directed edge from s to o, as depicted in Figure 1b. Further, to underline the difference
between an IRI and a literal, we use standard rectangles and arc for the former while
we use beveled corner and edge (no arrows) for the latter.

0.3.1.1. Data Multigraph Representation

Motivated by the graph representation of RDF data (Figure 1b), we take a step
further by transforming it to a data multigraph G, as shown in Figure 1c.

Let us consider an RDF triple <s, p, o> from the RDF tripleset <S,P,O>. Now
to transform the RDF tripleset into data multigraph G, we set four protocols: we
always treat the subject s as a vertex; a predicate p is always treated as an edge;
we treat the object o as a vertex only if it is an IRI (e.g., vertex v2 corresponds to
object ‘x:London’); when the object is a literal, we combine the object o and the
corresponding predicate p to form a tuple <p, o> and assign it as a vertex attribute to
the subject s (e.g., <‘y:hasCapacityOf’, “90000"> is assigned to vertex v4). Every
vertex is assigned a null value {-} in the vertex attribute set. However, to realize this in
the realms of graph management techniques, we maintain three different dictionaries,
whose elements are a pair of ‘key’ and ‘value’, and a mapping function that links
them. The three dictionaries depicted in Table 1 are: a vertex dictionary (Table 1a), an
edge-type dictionary (Table 1b) and a vertex attribute dictionary (Table 1c). In all the
three dictionaries, an RDF entity represented by a ‘key’ is mapped to a corresponding

3. http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

<http://dbpedia.org/resource/isPartOf>
<http://dbpedia.org/resource/isPartOf>
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
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Prefixes: x= http://dbpedia.org/resource/ ;  y=http://dbpedia.org/ontology/

Subject  Predicate Object

x:London y:isPartOf x:England

x:England y:hasCapital x:London

x:Christophar_Nolan y:wasBornIn x:London

x:Christophar_Nolan y:LivedIn x:England

x:Christophar_Nolan y:isPartOf x:Dark_Knight_Trilogy

x:London y:hasStadium x:WembleyStadium

x:WembleyStadium y:hasCapacityOf “90000”

x:Amy_Winehouse y:wasBornIn x:London

x:Amy_Winehouse y:diedIn x:London

x:Amy_Winehouse y:wasPartOf x:Music_Band

x:Music_Band y:hasName “MCA_Band”

x:Music_Band y:FoundedIn “1994”

x:Music_Band y:wasFormedIn X:London

x:Amy_Winehouse y:livedIn x:United States

x:Amy_Winehouse y:wasMarriedTo x:Blake Fielder-Civil

x:Blake Fielder-Civil y:livedIn x:United States

(a) RDF tripleset

“MCA_Band”“1934”
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wasMarriedTowasPartOf
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diedIn
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(b) Graph representation of RDF data
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(c) Equivalent multigraph G

Figure 1 – (a) RDF data in n-triple format; (b) graph representation (c) attributed
multigraph G

‘value’, which can be a vertex/edge/attribute identifier. Thus by using the mapping
functions - Mv , Me, and Ma for vertex, edge-type and vertex attribute mapping
respectively, we obtain a directed, vertex attributed data multigraph G (Figure 1c),
which is formally defined as follows.

Definition 1. Directed, Vertex Attributed Multigraph. A directed, vertex attributed
multigraph G is defined as a 4-tuple (V,E,LV , LE) where V is a set of vertices,
E ⊆ V × V is a set of directed edges with (v, v′) 6= (v′, v), LV is a labelling
function that assigns a subset of vertex attributes A to the set of vertices V , and LE is
a labelling function that assigns a subset of edge-types T to the edge set E.
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To summarise, an RDF tripleset is transformed into a data multigraph G, whose
elements are obtained by using the mapping functions as already discussed. Thus,
the set of vertices V = {v0, . . . , vm} is the set of mapped subject/object IRI, and the
labelling function LV assigns a set of vertex attributes A = {-, a0, . . . , an} (mapped
tuple of predicate and object-literal) to the vertex set V . The set of directed edges E is
a set of pair of vertices (v, v′) that are linked by a predicate, and the labelling function
LE assigns the set of edge types T = {t0, . . . , tp} (mapped predicates) to the set
of directed edges E. The edge set E maintains the topological structure of the RDF
data. Further, mapping of object-literals and the corresponding predicates as a set of
vertex attributes, results in a compact representation of the multigraph. As depicted in
Figure 1c, all the object-literals and the corresponding predicates are reduced to a set
of vertex attributes. For example, the pair <y:hasCapacityOf, “90000"> is mapped
to the vertex attribute a0; similarly, <y:wasFoundedIn, “1994"> and <y:hasName,
“MCA_Band"> are mapped to attribute a1 and a2 respectively.

0.3.2. SPARQL Query

A SPARQL query usually contains a set of triple patterns, much like RDF triples,
except that any of the subject, predicate and object may be a variable, whose bindings
are to be found in the RDF data 4. In the current work, we address the SPARQL queries
with ‘SELECT/WHERE’ option, where the predicate is always instantiated as an IRI
(Figure 2a). The SELECT clause identifies the variables to appear in the query results
while the WHERE clause provides triple patterns to match against the RDF data.

0.3.2.1. Query Multigraph Representation

In any valid SPARQL query (as in Figure 2a), every triplet has at least one un-
known variable ?X , whose bindings are to be found in the RDF data. It should now
be easy to observe that a SPARQL query can be represented in the form of a graph as
in Figure 2b, which in turn is transformed into query multigraph Q (as in Figure 2c).

In the query multigraph representation, each unknown variable ?Xi is mapped to
a vertex ui that forms the vertex set U component of the query multigraph Q (e.g.,
?X6 is mapped to u6). Since a predicate is always instantiated as an IRI, we use
the edge-type dictionary in Table 1b, to map the predicate to an edge-type identifier
ti ∈ T (e.g., ‘isMarriedTo’ is mapped as t8). When an object oi is a literal, we use the
attribute dictionary (Table 1c), to find the attribute identifier ai for the predicate-object
tuple <pi, oi> (e.g., {a0} forms the attribute for vertex u4). Further, when a subject
or an object is an IRI, which is a not a variable, we use the vertex dictionary (1a), to
map it to an IRI-vertex uirii (e.g., ‘x:United_States’ is mapped to uiri0 ) and maintain a
set of IRI vertices R. Since this vertex is not a variable and a real vertex of the query,

4. http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/


12 RDF Querying

SELECT  ?X0 ?X1  ?X2  ?X3  ?X4  ?X5  ?X6  WHERE  { 
?X0 y:livedIn ?X1 .
?X1 y:isPartOf ?X2 . 
?X2 y:hasCapital ?X1 . 
?X1 y:hasStadium ?X4 .
?X3 y:wasBornIn ?X1 .
?X3 y:diedIn ?X1 .
?X3 y:isMarriedTo ?X6 .
?X3 y:wasPartOf ?X5 .
?X5 y:wasFormedIn ?X1 .
?X4 y:hasCapacity “90000” .
?X5 y:hasName “MCA_Band” .
?X5 y:foundedIn “1934” . 
?X3 y:livedIn x:United States . }

(a) SPARQL Query

“MCA_Band”“1934”

hasCapital

isPartOf

hasStadium

isMarriedTowasPartOf

wasBornIn

diedIn

foundedIn wasForm
edIn

ha
sA

Nam
e

“90000”

hasCapacityOf

X:United_States

livedIn

wasBornIn

?X6

?X1

?X2

?X3?X5

?X0

?X4

(b) Graph representation of SPARQL
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(c) Equivalent Multigraph Q

Figure 2 – (a) SPARQL query representation; (b) graph representation (c) attributed
multigraph Q

we portray it differently by a shaded square shaped vertex. When a query vertex ui
does not have any vertex attributes associated with it (e.g., u0, u1, u2, u3, u6), a null
attribute {-} is assigned to it. On the other hand, an IRI-vertex uirii ∈ R does not have
any attributes. Thus, a SPARQL query is transformed into a query multigraph Q.

In this work, we always use the notation V for the set of vertices of G, and U for
the set of vertices of Q. Consequently, a data vertex v ∈ V , and a query vertex u ∈ U .
Also, an incoming edge to a vertex is positive (default), and an outgoing edge from a
vertex is labelled negative (‘-’).

0.3.3. SPARQL Querying by Adopting Multigraph Homomorphism

As we recall, the problem of SPARQL querying is addressed by finding the solu-
tions to the unknown variables ?X , that can be bound with the RDF data entities, so
that the relations (predicates) provided in the SPARQL query are respected. In this
work, to harness the transformed data multigraph G and the query multigraph Q, we
reduce the problem of SPARQL querying to a sub-multigraph homomorphism prob-
lem. The RDF data is transformed into data multigraph G and the SPARQL query
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s/o Mv(s/o)
x:Music_Band v0

x:Amy_Winehouse v1
x:London v2
x:England v3

x:WembleyStadium v4
x:United States v5

x:Blake Fielder-Civil v6
x:Christopher_Nolan v7

x:Dark_Knight_Trilogy v8

(a) Vertex Dictionary

p Me(p)
y:isPartOf t0

y:hasCapital t1
y:hasStadium t2

y:livedIn t3
y:diedIn t4

y:wasBornIn t5
y:wasFormedIn t6

y:wasPartOf t7
y:wasMarriedTo t8

(b) Edge-type Dictionary

<p, o> Ma(<p, o>)
<y:hasCapacityOf, “90000"> a0
<y:wasFoundedIn, “1994"> a1
<y:hasName, “MCA_Band"> a2

(c) Attribute Dictionary

Table 1 – Dictionary look-up tables for vertices, edge-types and vertex attributes

is transformed into query multigraph Q. Let us now recall that finding SPARQL an-
swers in the RDF data is equivalent to finding all the sub-multigraphs of Q in G that
are homomorphic. Thus, let us now formally introduce homomorphism for a vertex
attributed, directed multigraph.

Definition 2. Sub-multigraph Homomorphism. Given a query multigraph Q =
(U,EQ, LU , L

Q
E) and a data multigraph G = (V,E, LV , LE), the sub-multigraph

homomorphism from Q to G is a surjective function ψ: U → V such that:

1) ∀u ∈ U,LU (u) ⊆ LV (ψ(u))

2) ∀(um, un) ∈ EQ, ∃ (ψ(um), ψ(un)) ∈ E, where (um, un) is a directed edge,
and LQE(um, un) ⊆ LE(ψ(um), ψ(un)).

Thus, by finding all the sub-multigraphs in G that are homomorphic to Q, we enu-
merate all possible homomorphic embeddings of Q in G. These embeddings contain
the solution for each of the query vertex that is an unknown variable. Thus, by using
the inverse mapping functionM−1v (vi) (referring to the vertex dictionary in Table 1a),
we find the bindings for the SPARQL query. The decision problem of subgraph homo-
morphism is NP-complete. This standard subgraph homomorphism problem can be
seen as a particular case of sub-multigraph homomorphism, where both the labelling
functions LE and LQE always return the same subset of edge-types for all the edges
in both Q and G. Thus the problem of sub-multigraph homomorphism is at least as
hard as subgraph homomorphism. Further, the subgraph homomorphism problem is a
generic scenario of subgraph isomorphism problem where, the injectivity constraints
are slackened [KIM 15].
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0.4. AMBER: A SPARQL Querying Engine

The proposed AMBER (Attributed Mulitgraph Based Engine for RDF querying)
contains two different stages: (i) an offline stage during which, RDF data is trans-
formed into multigraph G and then a set of index structures I is constructed that
captures the necessary information contained in G; (ii) an online stage during which,
a SPARQL query is transformed into a multigraph Q, and then by exploiting the sub-
graph matching techniques along with the already built index structures I, the homo-
morphic matches of Q in G are obtained.

Given a multigraph representation Q of a SPARQL query, AMBER decomposes
the query vertices U into a set of core vertices Uc and satellite vertices Us. Intuitively,
a vertex u ∈ U is a core vertex, if the degree of the vertex is more than one; on
the other hand, a vertex u with degree one is a satellite vertex. For example, in Fig-
ure 2c, Uc = {u1, u3, u5} and Us = {u0, u2, u4, u6}. Once decomposed, we run the
sub-multigraph matching procedure on the query structure spanned only by the core
vertices. However, during the procedure, we also process the satellite vertices (if avail-
able) that are connected to a core vertex that is being processed. For example, while
processing the core vertex u1 , we also process the set of satellite vertices {u0, u2, u4}
connected to it; whereas, the core vertex u5 has no satellite vertices to be processed.
In this way, as the matching proceeds, the entire structure of the query mulitgraphQ is
processed to find the homomorphic embeddings inG. The set of indexing structures I
is extensively used during the process of sub-multigraph matching. The homomorphic
embeddings are finally translated back to the RDF entities using the inverse mapping
functionM−1v as discussed in Section 0.3.

0.5. Index Construction

Given a data multigraph G, we build the following three different indices: (i) an
inverted list A for storing the set of data vertex for each attribute in ai ∈ A (ii) a
trie index structure S to store features of all the data vertices V (iii) a set of trie
index structuresN to store the neighbourhood information of each data vertex v ∈ V .
For brevity of representation, we ensemble all the three index structures into I:=
{A,S,N}. During the query matching procedure (the online step), we access these
indexing structures to obtain the candidate solutions for a query vertex u. Formally,
for a query vertex u, the candidate solutions are a set of data verticesCu = {v|v ∈ V }
obtained by accessing A or S or N , denoted as CAu , CSu and CNu respectively.

0.5.1. Attribute Index

The set of vertex attributes is given by A = {a0, . . . , an} (Section 0.3), where a
data vertex v ∈ V might have a subset of A assigned to it. We now build the vertex
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Data vertex Signature Synopses
v σv f+

1 f+
2 f+

3 f+
4 f−1 f−2 f−3 f−4

v0 {{−t6}, {t7}} 1 1 -7 7 1 1 -6 6
v1 {{−t3}, {−t7}, {−t8}, {−t4,−t5}} 0 0 0 0 2 5 -3 8
v2 {{−t0}, {t1}, {−t2}, {t5}, {t6}, {t4, t5}} 2 4 -1 6 1 2 0 2
v3 {{t0}, {t3}, {−t1}} 1 2 0 3 1 1 -1 1
v4 {{t2}} 1 1 -2 2 0 0 0 0
v5 {{t3}, {t3}} 1 1 -3 3 0 0 0 0
v6 {{t8}, {−t3}} 1 1 -8 8 1 1 -3 3
v7 {{−t0}, {−t3}, {−t5}} 0 0 0 0 1 3 0 5
v8 {{t0}} 1 1 0 0 0 0 0 0

Table 2 – Vertex signatures and the corresponding synopses for the vertices in the data
multigraph G (Figure 1c)

attribute indexA by creating an inverted list where a particular attribute ai has the list
of all the data vertices in which it appears.

Given a query vertex u with a set of vertex attributes u.A ⊆ A, for each attribute
ai ∈ u.A, we access the index structure A to fetch a set of data vertices that have ai.
Then we find a common set of data vertices that have the entire attribute set u.A. For
example, considering the query vertex u5 (Fig. 2c), it has an attribute set {a1, a2}.
The candidate solutions for u5 are obtained by finding all the common data vertices,
in A, between a1 and a2, resulting in CAu5

= {v0}.

0.5.2. Vertex Signature Index

The index S captures the edge type information from the data vertices. For a lucid
understanding of this indexing schema we formally introduce the notion of vertex
signature that is defined for a vertex v ∈ V , which encapsulates the edge information
associated with it.

Definition 3. Vertex signature. For a vertex v ∈ V , the vertex signature σv is a multi-
set containing all the directed multi-edges that are incident on v, where a multi-edge
between v and a neighbouring vertex v′ is represented by a set that corresponds to the
edge types. Formally, σv =

⋃
v′∈N(v) LE(v, v′) where N(v) is the set of neighbour-

hood vertices of v, and ∪ is the union operator for multiset.

The index S is constructed by tailoring the information supplied by the vertex
signature of each vertex in G. To extract some interesting features, let us observe
the vertex signature σv2 as supplied in Table 2. To begin with, we can represent the
vertex signature σv2 separately for the incoming and outgoing multi-edges as σ+

v2 =
{{t1}, {t5}, {t6}, {t4, t5}} and σ−v2 = {{−t0}{−t2}} respectively. Now we observe
that σ+

v2 has four distinct multi-edges and σ−v2 has two distinct multi-edges. Now, let us
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assume that we want to find candidate solutions for a query vertex u. The data vertex
v2 can be a match for u only if the signature of u has at most four incoming (‘+’)
edges and at most two outgoing (‘-’) edges; else v2 can not be a match for u. Thus,
more such features (e.g., maximum cardinality of a set in the vertex signature) can be
proposed to filter out irrelevant candidate vertices. Thus, for each vertex v, we propose
to extract a set of features by exploiting the corresponding vertex signature. These
features constitute a synopses, which is a surrogate representation that approximately
captures the vertex signature information.

The synopsis of a vertex v contains a set of features F , whose values are computed
from the vertex signature σv . In this background, we propose four distinct features: f1
- the maximum cardinality of a set in the vertex signature; f2 - the number of unique
dimensions in the vertex signature; f3 - the minimum index value of the edge type; f4
- the maximum index value of the edge type. For f3 and f4, the index values of edge
type are nothing but the position of the sequenced alphabet. These four basic features
are replicated separately for outgoing (negative) and incoming (positive) edges, as
seen in Table 2. Thus for the vertex v2, we obtain f+1 = 2, f+2 = 4, f+3 = −1 and
f+4 = 7 for the incoming edge set and f−1 = 1, f−2 = 2, f−3 = 0 and f−4 = 2 for the
outgoing edge set. Synopses for the entire vertex set V for the data multigraph G are
depicted in Table 2.

Once the synopses are computed for all data vertices, an R-tree is constructed to
store all the synopses. This R-tree constitutes the vertex signature index S. A synopsis
with |F | fields forms a leaf in the R-tree. When a set of possible candidate solutions
are to be obtained for a query vertex u, we create a vertex signature σu in order to
compute the synopsis, and then obtain the possible solutions from the R-tree structure.

The general idea of using an R-tree is as follows. A synopsis F of a data vertex
spans an axes-parallel rectangle in an |F |-dimensional space, where the maximum co-
ordinates of the rectangle are the values of the synopses fields (f1, . . . , f|F |), and the
minimum co-ordinates are the origin of the rectangle (filled with zero values). For
example, a data vertex represented by a synopses with two features F (v) = [2, 3]
spans a rectangle in a 2-dimensional space in the interval range ([0, 2], [0, 3]). Now,
if we consider synopses of two query vertices, F (u1) = [1, 3] and F (u2) = [1, 4],
we observe that the rectangle spanned by F (u1) is wholly contained in the rectangle
spanned by F (v) but F (u2) is not wholly contained in F (v). Thus, u1 is a candidate
match while u2 is not.

Lemma 1. Querying the vertex signature index S constructed with synopses, guaran-
tees to output at least the entire set of candidate solutions.
Proof. Consider the field f±1 in the synopses that represents the maximum cardi-
nality of the neighbourhood signature. Let σu be the signature of the query vertex
u and {σv1 , . . . , σvn} be the set of signatures on the data vertices. By using f1 we
need to show that CSu has at least all the valid candidate matches. Since we are
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looking for a superset of query vertex signature, and we are checking the condition
f±1 (u) ≤ f±1 (vi), where vi ∈ V , a vertex vi is pruned if it does not match the inequal-
ity criterion since, it can never be an eligible candidate. This analogy can be extended
to the entire synopses, since it can be applied disjunctively. �

Formally, the set of candidate solutions for a query vertex u can be written as
CSu = {v|∀i∈[1,...,|F |]f±i (u) ≤ f±i (v)}, where the constraints are met for all the |F |-
dimensions. Since we apply the same inequality constraint to all the fields, we negate
the fields that refer to the minimal index value of the edge type (f+3 and f−3 ) so that
the rectangular containment problem still holds. Further to respect the rectangular
containment, we populate the synopses fields with ‘0’ values, in case, the signature
does not have either positive or negative edges in it, as seen for v1, v3, v4, v5 and v7.

For example, if we want to compute the possible candidates for a query vertex u0
in Figure 2c, whose signature is σu0 = {−t5}, we compute the synopsis which is [0
0 0 0 1 1 5 5]. Now we look for all those vertices that subsume this synopsis in the
R-tree, whose elements are depicted in Table 2, which gives us the candidate solutions
CSu0

= {v1, v7}, thus pruning the rest of the vertices.

The S index helps to prune the vertices that do not respect the edge type con-
straints. This is crucial since this pruning is performed for the initial query vertex, and
hence many candidates are cast away, thereby avoiding unnecessary recursion during
the matching procedure. For example, for the initial query vertex u0, whose candidate
solutions are {v1, v7}, the recursion branch is run only on these two starting vertices
instead of the entire vertex set V .

0.5.3. Vertex Neighbourhood Index

The vertex neighbourhood index N captures the topological structure of the data
multigraph G. The index N comprises of 1-neighbourhood trees built for each data
vertex v ∈ V . Since G is a directed multigraph, and each vertex v ∈ V can have both
the incoming and outgoing edges, we construct two separate index structuresN+ and
N− for incoming and outgoing edges respectively, that constitute the structure N .

To understand the index structure, let us consider the data vertex v2 from Fig-
ure 1c, shown separately in Figure 3a. For this vertex v2, we collect all the neighbour-
hood information (vertices and multi-edges), and represent this information by a tree
structure, built separately for incoming (‘+’) and outgoing (‘-’) edges. Thus, the tree
representation of a vertex v contains the neighbourhood vertices and the correspond-
ing multi-edges, as shown in Figure 3b, where the vertices of the tree structure are
represented by the edge types.
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In order to construct an efficient tree structure, we take inspiration from [TER 06]
to propose the structure - Ordered Trie with Inverted List (OTIL). To construct the
OTIL index as shown in Figure 3b, we insert each ordered multi-edge that is inci-
dent on v at the root of the trie. Consider a data vertex vi, with a set of n neigh-
bourhood vertices N(vi). Now, for every pair of incoming edge (vi, N

j(vi)), where
j ∈ {1, . . . , n}, there exists a multi-edge {ti, . . . , tj}, which is inserted into the OTIL
structure N+. Similarly for every pair of outgoing edge (N j(vi), vi), there exists a
multi-edge {tm, . . . , tn}, which is inserted into the OTIL structure N− maintaining
two OTIL structures that constitute N . Each multi-edge is ordered (w.r.t. increasing
edge type indexes), before inserting into the respective OTIL structure, and the or-
der is universally maintained for all data vertices. Further, for every edge type ti, we
maintain a list that contains all the neighbourhood vertices N+(vi)/N−(vi), that have
the edge type ti incident on them.

To understand the utility ofN , let us consider an illustrative example. Considering
the query multigraph Q in Figure 2c, let as assume that we want to find the matches
for the query vertices u1 and u0 in order. Thus, for the initial vertex u1, let us say, we
have found the set of candidate solutions which is {v2}. Now, to find the candidate
solutions for the next query vertex u0, it is important to maintain the structure spanned
by the query vertices, and this is where the indexing structure N is accessed. Thus to
retain the structure of the query multigraph (in this case, the structure between u1 and
u0), we have to find the data vertices that are in the neighbourhood of already matched
vertex v2 (a match for vertex u1), that has the same structure (edge types) between u1
and u0 in the query graph. Thus to fetch all the data vertices that have the edge type
t5, which is directed towards v2 and hence ‘+’, we access the neighbourhood index
trieN+ for vertex v2, as shown in Figure 3. This gives us a set of candidate solutions
CNu0

= {v1, v7}. It is easy to observe that, by maintaining two separate indexing
structures N+ and N−, for both incoming and outgoing edges, we can reduce the
time to fetch the candidate solutions.
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Figure 4 – Decomposing the query multigraph into core and satellite vertices

Thus, in a generic scenario, given an already matched data vertex v, the edge
direction ‘+’ or ‘-’, and the set of edge types T ′ ⊆ T , the index N will find a set of
neighbourhood data vertices {v′|(v′, v) ∈ E ∧ T ′ ⊆ LE(v′, v)} if the edge direction
is ‘+’ (incoming), while N returns {v′|(v, v′) ∈ E ∧ T ′ ⊆ LE(v, v′)} if the edge
direction is ‘-’ (outgoing).

0.6. Query Matching Procedure

In order to follow the working of the proposed query matching procedure, we
formalize the notion of core and satellite vertices. Given a query graph Q, we decom-
pose the set of query vertices U into a set of core vertices Uc and a set of satellite
vertices Us. Formally, when the degree of the query graph ∆(Q) > 1, Uc = {u|u ∈
U ∧ deg(u) > 1}; however, when ∆(Q) = 1, i.e, when the query graph is either a
vertex or a multiedge, we choose one query vertex at random as a core vertex, and
hence |Uc|= 1. The remaining vertices are classified as satellite vertices, whose de-
gree is always 1. Formally, Us = {U \Uc}, where for every u ∈ Us, deg(u) = 1. The
decomposition for the query multigraph Q is depicted in Figure 4, where the satellite
vertices are separated (vertices under the shaded region in Figure 4a), in order to ob-
tain the query graph that is spanned only by the core vertices (Figure 4b). Thus, during
query decomposition, satellite vertices are separated from the query graph, leaving a
core graph and a set of satellite vertices; the original query structure is preserved by
storing the edge information that links each satellite vertex and the corresponding core
vertex in the query graph spanned by core vertices.

The proposed AMBER-Algo (Algorithm 3) performs recursive sub-multigraph
matching procedure only on the query structure spanned by Uc as seen in Figure 4b.
Since the entire set of satellite vertices Us is connected to the query structure spanned
by the core vertices, AMBER-Algo processes the satellite vertices while performing
sub-multigraph matching on the set of core vertices. Thus during the recursion, if
the current core vertex has satellite vertices connected to it, the algorithm retrieves
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directly a list of possible matching for such satellite vertices and it includes them in
the current partial solution. Each time the algorithm executes a recursion branch with
a solution, the solution not only contains a data vertex match vc for each query vertex
belonging to Uc, but also a set of matched data vertices Vs for each query vertex be-
longing to Us. Each time a solution is found, we can generate not only one, but a set
of embeddings through the Cartesian product of the matched elements in the solution.

Since finding SPARQL solutions is equivalent to finding homomorphic embed-
dings of the query multigraph, the homomorphic matching allows different query ver-
tices to be matched with the same data vertices. Recall that there is no injectivity
constraint in sub-multigraph homomorphism as opposed to sub-multigraph isomor-
phism [KIM 15]. Thus during the recursive matching procedure, we do not have to
check if the potential data vertex has already been matched with previously matched
query vertices. This is an advantage when we are processing satellite vertices: we can
find matches for each satellite vertex independently without the necessity to check for
a repeated data vertex.

Before getting into the details of the AMBER-Algo, we first explain how a set of
candidate solutions is obtained when there is information associated only with the ver-
tices. Then we explain how a set of candidate solutions is obtained when we encounter
the satellite vertices.

0.6.1. Vertex Level Processing

To understand the generic query processing, it is necessary to understand the
matching process at vertex level. Whenever a query vertex u ∈ U is being pro-
cessed, we need to check if u has a set of attributes A associated with it or any IRIs
are connected to it (recall Section 0.3.2).

Algorithm 1: PROCESSVERTEX(u,Q,A,N )
1 if u.A 6= ∅ then
2 CA

u = QUERYATTINDEX(A, u.A)

3 if u.R 6= ∅ then
4 CI

u =
⋂

uiri
i
∈u.R

( QUERYNEIGHINDEX(N , LQ
E(u, uiri

i ), uiri
i ) )

5 CandAttu = CA
u ∩ C

I
u /* Find common candidates */

6 return CandAttu

To process an arbitrary query vertex, we propose a procedure PROCESSVERTEX,
depicted in Algorithm 1. This algorithm is invoked only when a vertex u has at least,
either a set of vertex attributes or any IRI associated with it. The PROCESSVERTEX
procedure returns a set of data vertices CandAttu, which are matchable with u; in
case CandAttu is empty, then the query vertex u has no matches in V . As seen
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in Lines 1-2, when a query vertex u has a set of vertex attributes i.e., u.A 6= ∅,
we obtain the candidate solutions CAu by invoking QUERYATTINDEX procedure, that
accesses the index A as explained in Section 0.5.1. For example, the query vertex
u5 with vertex attributes {a1, a2}, can only be matched with the data vertex v0; thus
CAu5

= {v0}.

When a query vertex u has IRIs associated with it, i.e., u.R 6= ∅ (Lines 3-4), we
find the candidate solutions CIu by invoking the QUERYNEIGHINDEX procedure. As
we recall from Section 0.3.2, a vertex u is connected to an IRI vertex uirii through a
multi-edge LQE(u, uirii ). An IRI vertex uirii always has only one data vertex v, that can
match. Thus, the candidate solutionsCIu are obtained by invoking the QUERYNEIGHIN-
DEX procedure, that fetches all the neighbourhood vertices of v that respect the multi-
edgeLQE(u, uirii ). The procedure is invoked until all the IRI vertices u.R are processed
(Line 4). Considering the example in Figure 2c, u3 is connected to an IRI-vertex uiri0 ,
which has a unique data vertex match v5, through the multi-edge {−t3}. Using the
neighbourhood index N , we look for the neighbourhood vertices of v5, that have the
multi-edge {−t3}, which gives us the candidate solutions CIu3

= {v1}. Finally in
Line 5, the merge operator ∩ returns a set of common candidates CandAttu, only if
u.A 6= ∅ and u.R 6= ∅. Otherwise, CAu or CIu are returned as CandAttu.

0.6.2. Processing Satellite Vertices

In this section, we provide insights on processing a set of satellite vertices Usat ⊆
Us that are connected to a core vertex uc ∈ Uc. This scenario results in a structure
that appears frequently in SPARQL queries called star structure [GUB 14, HUA 11].
A typical star structure depicted in Figure 5, has a core vertex uc = u1, and a set of
satellite vertices Usat = {u0, u2, u4} connected to the core vertex. For each candidate
solution of the core vertex u1, we process u0, u2, u4 independently of each other,
since there is no structural connectivity (edges) among them, although they are only
structurally connected to the core vertex u1.

Lemma 2. For a given star structure in a query graph, each satellite vertex can be
independently processed if a candidate solution is provided for the core vertex uc.
Proof. Consider a core vertex uc that is connected to a set of satellite vertices Usat =
{u0, . . . , us}, through a set of edge-types T ′ = {t0, . . . , ts}. Let us assume vc is a
candidate solution for the core vertex uc, and we want to find candidate solutions for
ui ∈ Usat and uj ∈ Usat, where i 6= j. Now, the candidate solutions for ui and uj can
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be obtained by fetching the neighbourhoods of already matched vertex vc that respect
the edge-type ti ∈ T ′ and tj ∈ T ′ respectively. Since two satellite vertices ui and
uj are never connected to each other, the candidate solutions of ui are independent of
that of uj . This analogy applies to all the satellite vertices. �

Algorithm 2: MATCHSATVERTICES(A,N , Q, Usat, vc)
1 SET: Msat = ∅, whereMsat = {[us, Vs]}|Usat|

s=1
2 for all us ∈ Usat do
3 Candus = QUERYNEIGHINDEX(N , LQ

E(uc, us), vc)
4 Candus = Candus ∩ PROCESSVERTEX(us, Q,A,N )
5 if Candus 6= ∅ then
6 Msat = Msat ∪ (us, Candus ) /* Satellite solutions */

7 else
8 returnMsat := 0 /* No solutions possible */

9 returnMsat /* Matches for satellite vertices */

Given a core vertex uc, we initially find a set of candidate solutions Canduc ,
by using the index S. Then, for each candidate solution vc ∈ Canduc

, the set of
solutions for all the satellite vertices Usat that are connected to uc are returned by the
MATCHSATVERTICES procedure, described in Algorithm 2. The set of solution tuple
Msat defined in Line 1, stores the candidate solutions for the entire set of satellite
vertices Usat. Formally, Msat = {[us, Vs]}|Usat|

s=1 , where us ∈ Usat and Vs is a set
of candidate solutions for us. In order to obtain candidate solutions for us, we query
the neighbourhood index N (Line 3); the QUERYNEIGHINDEX function returns all
the neighbourhood vertices of already matched vc by considering the multi-edge in
the query multigraph LQE(uc, us). As every query vertex us ∈ Usat is processed, the
solution set Msat that contains candidate solutions grows until all the satellite vertices
have been processed (Lines 2-8).

In Line 4, the set of candidate solutions Candus
are refined by invoking Algo-

rithm 1 (VERTEXPROCESSING). After the refinement, if there are finite candidate
solutions, we update the solution Msat; else, we terminate the procedure as there can
be no matches for a given matched vertex vc. The MATCHSATVERTICES procedure
performs two tasks: firstly, it checks if the candidate vertex vc ∈ Candus

is a valid
matchable vertex and secondly, it obtains the solutions for all the satellite vertices.

0.6.3. Arbitrary Query Processing

Algorithm 3 shows the generic procedure we develop to process arbitrary queries.
Recall that for an arbitrary query Q, we define two different types of vertexes: a set of
core vertices Uc and a set of satellite vertices Us. The QUERYDECOMPOSE procedure
in Line 1 of Algorithm 3, performs this decomposition by splitting the query vertices
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U into Uc and Us, as observed in Figure 4. To process arbitrary query multigraphs,
we perform recursive sub-mulitgraph matching procedure on the set of core vertices
Uc ⊆ U ; during the recursion, satellite vertexes connected to a specific core vertex are
processed too. Since the recursion is performed on the set of core vertices, we propose
a few heuristics for ordering the query vertices.

Ordering of the query vertices forms one of the vital steps for subgraph matching
algorithms [KIM 15]. In any subgraph matching algorithm, the embeddings of a query
subgraph are obtained by exploring the solution space spanned by the data graph. But
since the solution space itself can grow exponentially in size, we are compelled to
use intelligent strategies to traverse the solution space. In order to achieve this, we
propose a heuristic procedure VERTEXORDERING (Line 2, Algorithm 3) that employs
two ranking functions.

The first ranking function r1 relies on the number of satellite vertices connected
to the core vertex, and the query vertices are ordered with the decreasing rank value.
Formally, r1(u) = |Usat|, where Usat = {us|us ∈ Us ∧ (u, us) ∈ E(Q)}. A vertex
with more satellite vertices connected to it, is rich in structure and hence it would
probably yield fewer candidate solutions to be processed under recursion. Thus, in
Figure 4, u1 is chosen as an initial vertex. The second ranking function r2 relies on
the number of incident edges on a query vertex. Formally, r2(u) =

∑m
j=1 |σ(u)j |,

where u has m multiedges and |σ(u)j | captures the number of edge types in the jth

multiedge. Again, Uordc contains the ordered vertices with the decreasing rank value
r2. Further, when there are no satellite vertices in the query Q, this ranking function
gets the priority. Despite the usage of any ranking function, the query vertices in
Uordc , when accessed in sequence, should be structurally connected to the previous
set of vertices. If two vertices tie up with the same rank, the rank with lesser priority
determines which vertex wins. Thus, for the example in Figure 4, the set of ordered
core vertices is Uordc = {u1, u3, u5}.

The first vertex in the set Uordc is chosen as the initial vertex uinit (Line 3), and
subsequent query vertices are chosen in sequence. The candidate solutions for the
initial query vertex CandInit are returned by QUERYSYNINDEX procedure (Line 4),
that are constrained by the structural properties (neighbourhood structure) of uinit.
By querying the index S for initial query vertex uinit, we obtain the candidate so-
lutions CandInit ∈ V that match the structure (multiedge types) associated with
uinit. Although some candidates in CandInit may be invalid, all valid candidates
are present in CandInit, as deduced in Lemma 1. Further, PROCESSVERTEX proce-
dure is invoked to obtain the candidate solutions according to vertex attributes and IRI
information, and then only the common candidates are retained.

Before getting into the algorithmic details, we explain how the solutions are han-
dled and how we process each query vertex. We defineM as a set of tuples, whose ith

tuple is represented as Mi = [mc,Ms], where mc is a solution pair for a core vertex,
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Algorithm 3: AMBER-Algo (I, Q)
1 QUERYDECOMPOSE: Split U into Uc and Us

2 Uord
c = VERTEXORDERING(Q,Uc)

3 uinit = u|u ∈ Uord
c

4 CandInit = QUERYSYNINDEX(uinit, S)
5 CandInit = CandInit ∩ PROCESSVERTEX(uinit, Q,A,N )
6 FETCH: Usat

init = {u|u ∈ Us ∧ (uinit, u) ∈ E(Q)}
7 SET: Emb = ∅
8 for vinit ∈ CandInit do
9 SET: M = ∅,Ms = ∅,Mc = ∅

10 if Usat
init 6= ∅ then

11 Msat = MATCHSATVERTICES(A,N , Q, Usat
init, vinit)

12 ifMsat 6= ∅ then
13 for [us, Vs] ∈Msat do
14 UPDATE: Ms = Ms ∪ [us, Vs]

15 UPDATE: Mc = Mc ∪ [uinit, vinit]

16 Emb =Emb ∪ HOMOMORPHICMATCH(M, I, Q, Uord
c )

17 else
18 UPDATE: Mc = Mc ∪ (uinit, vinit)

19 Emb =Emb ∪ HOMOMORPHICMATCH(M, I, Q, Uord
c )

20 returnEmb /* Homomorphic embeddings of query multigraph */

and Ms is a set of solution pairs for the set of satellite vertices that are connected to
the core vertex. Formally mc = (uc, vc), where uc is the core vertex and vc is the
corresponding matched vertex; Ms is a set of solution pairs, whose jth element is a
solution pair (us, Vs), where us is a satellite vertex and Vs is a set of matched vertices.
In addition, we maintain a setMc whose elements are the solution pairs for all the core
vertices. Thus during each recursion branch, the size of M grows until it reaches the
query size |U |; once |M |= |U |, homomorphic matches are obtained.

For all the candidate solutions of initial vertex CandInit, we perform recursion
to obtain homomorphic embeddings (lines 8-19). Before getting into recursion, for
each initial match vinit ∈ CandInit, if it has satellite vertices connected to it, we
invoke the MATCHSATVERTICES procedure (Lines 10-11). This step not only finds
solution matches for satellite vertices, if there are, but also checks if vinit is a valid
candidate vertex. If the returned solution set Msat is empty, then vinit is not a valid
candidate and hence we continue with the next vinit ∈ CandInit; else, we update
the set of solution pairs Ms for satellite vertices and the solution pair Mc for the core
vertex (Lines 12-15) and invoke HOMOMORPHICMATCH procedure (Lines 17). On
the other hand, if there are no satellite vertices connected to uinit, we update the core
vertex solution set Mc and invoke HOMOMORPHICMATCH procedure (Lines 18-19).

In the HOMOMORPHICMATCH procedure (Algorithm 4), we fetch the next query
vertex from the set of ordered core vertices Uordc (Line 4). Then we collect the
neighbourhood vertices of already matched core query vertices and the correspond-
ing matched data vertices (Lines 5-6). As we recall, the set Mc maintains the solution
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Algorithm 4: HOMOMORPHICMATCH(M, I, Q, Uordc )
1 if |M |= |U | then
2 return GENEMB(M )

3 Emb = ∅
4 FETCH: unxt = u|u ∈ Uord

c
5 Nq = {uc|uc ∈Mc} ∩ adj(unxt)
6 Ng = {vc|vc ∈Mc ∧ (uc, vc) ∈Mc}, where uc ∈ Nq

7 Candunxt =
⋂|Nq|

n=1 (QueryNeighIndex(N , LQ
E(un, unxt), vn))

8 Candunxt = Candunxt∩ PROCESSVERTEX(unxt, Q,A,N )
9 for each vnxt ∈ Candunxt do

10 FETCH: Usat
nxt = {u|u ∈ Vs ∧ (unxt, u) ∈ E(Q)}

11 if Usat
nxt 6= ∅ then

12 Msat = MATCHSATVERTICES(A,N , Q, Usat
nxt, vnxt)

13 ifMsat 6= ∅ then
14 for every [us, V s] ∈Msat do
15 UPDATE: Ms = Ms ∪ [us, V s]

16 UPDATE: Mc = Mc ∪ (unxt, vnxt)

17 Emb =Emb ∪ HOMOMORPHICMATCH(M, I, Q, Uord
c )

18 else
19 UPDATE: Mc = Mc ∪ (unxt, vnxt)

20 Emb =Emb ∪ HOMOMORPHICMATCH(M, I, Q, Uord
c )

21 returnEmb

pairmc = (uc, vc) of each matched core query vertex. The setNq collects the already
matched core vertices uc ∈ Mc that are also in the neighbourhood of unxt, whose
matches have to be found. Further, Ng contains the corresponding matched query
vertices vc ∈ Mc. As the recursion proceeds, we find those matchable data vertices
of unxt that are in the neighbourhood of all the matched vertices v ∈ Ng , so that the
query structure is maintained. In Line 7, for each un ∈ Nq and the corresponding
vn ∈ Ng , we query the neighbourhood index N , to obtain the candidate solutions
Candunxt

, that are in the neighbourhood of already matched data vertex vn and have
the multiedge LQE(un, unxt), obtained from the query multigraph Q. Finally (line 7),
the set of candidate solutions that are common for every un ∈ Nq are retained in
Candunxt

.

Further, the candidate solutions are refined with the help of PROCESSVERTEX pro-
cedure (Line 8). Now, for each of the valid candidate solution vnxt ∈ Candunxt

, we
recursively call the HOMOMORPHICMATCH procedure. When the next query vertex
unxt has no satellite vertices attached to it, we update the core vertex solution set Mc

and call the recursion procedure (Lines 19-20). But when unxt has satellite vertices
attached to it, we obtain the candidate matches for all the satellite vertices by invoking
the MATCHSATVERTICES procedure (Lines 11-12); if there are matches, we update
both the satellite vertex solution Ms and the core vertex solution Mc, and invoke the
recursion procedure (Line 17).



26 RDF Querying

Once all the query vertices have been matched for the current recursion step, the
solution set M contains the solutions for both core and satellite vertices. Thus when
all the query vertices have been matched, we invoke the GENEMB function (Line
2) which returns the set of embeddings, that are updated in Emb. The GENEMB
function treats the solution vertex vc of each core vertex as a singleton and performs
Cartesian product among all the core vertex singletons and satellite vertex sets. For-
mally, Embpart = {v1c} × . . .× {v

|Uc|
c } × V 1

s × . . .× V
|Us|
c . Thus, the partial set of

embeddings Embpart is added to the final result Emb.

0.7. Experimental Analysis

In this section, we report on our extensive experiments on two RDF datasets. We
evaluate the time performance and the robustness of AMBER w.r.t. the state-of-the-
art competitors by varying the size, and the structure of the SPARQL queries. Ex-
periments are carried out on a 64-bit Intel Core i7-4900MQ @ 2.80GHz, with 32GB
memory, running Linux OS - Ubuntu 14.04 LTS. AMBER is implemented in C++.

0.7.1. Experimental Setup

We compare AMBER with the four standard RDF engines: Virtuoso-7.1 [ERL 12],
x-RDF-3X [NEU 10], Apache Jena [CAR 04] and gStore [ZOU 14b]. For all the com-
petitors we employ the source code available on the web site or obtained by the au-
thors. Another recent work TurboHOM++ [KIM 15] has been excluded since it is not
publicly available.

For the experimental analysis we use two RDF datasets - DBPEDIA and YAGO.
DBPEDIA constitutes the most important knowledge base for the Semantic Web com-
munity. Most of the data available in this dataset comes from the Wikipedia Infobox.
YAGO is a real world dataset built from factual information coming from Wikipedia
and WordNet semantic network. The time required to build the multigraph database
as well as to construct the indexes are reported in Table 3b. We note that the database
building time and the corresponding size are proportional to the number of triples.
Regarding the indexing structures, we underline that both building time and size are
proportional to the number of edges. For instance, DBPEDIA has the highest number
of edges (∼15M) and, consequently, AMBER employs more time and space to build
and store its data structure.

0.7.2. Workload Generation

In order to test the scalability and robustness of the different RDF engines, we
generate the query workloads considering a similar setting as in [GUB 14, ALU 14a,
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Dataset # Triples # Vertices # Edges # Edge types

DBPEDIA 33 071 359 4 983 349 14 992 982 676
YAGO 35 543 536 3 160 832 10 683 425 44

(a) Statistics of Datasets

Dataset Database Index I

Building Time Size Building Time Size

DBPEDIA 307 1300 45.18 1573
YAGO 379 2400 29.1 1322

(b) Database and Index Construction time
(seconds) and memory usage (Mbytes)

HAN 13]. We generate the query workload from the respective RDF datasets, which
are available as RDF triplesets. In specific, we generate two types of query sets: a
star-shaped and a complex-shaped query set; further, both query sets are generated for
varying sizes (say k) ranging from 10 to 50 triples, in steps of 10.

To generate star-shaped or complex-shaped queries of size k, we pick an initial-
entity at random from the RDF data. Now to generate star queries, we check if the
initial-entity is present in at least k triples in the entire benchmark, to verify if the
initial-entity has k neighbours. If so, we choose those k triples at random; thus the
initial entity forms the central vertex of the star structure and the rest of the entities
form the remaining star structure, connected by the respective predicates. To generate
complex-shaped queries of size k, we navigate in the neighbourhood of the initial-
entity through the predicate links until we reach size k. In both query types, we inject
some object literals as well as constant IRIs; rest of the IRIs (subjects or objects)
are treated as variables. However, this strategy could choose some very unselective
queries [GUB 14]. In order to address this issue, we set a maximum time constraint
of 60 seconds for each query. If the query is not answered in time, it is not con-
sidered for the final average (similar procedure is usually employed for graph query
matching [HAN 13] and RDF workload evaluation [ALU 14a]). We report the aver-
age query time and, also, the percentage of unanswered queries (considering the given
time constraint) to study the robustness of the approaches.

0.7.3. Comparison with RDF Engines

In this section we report and discuss the results obtained by the different RDF en-
gines. For each combination of query type and benchmark we report two plots by
varying the query size: the average time and the corresponding percentage of unan-
swered queries for the given time constraint. We remind that the average time per
approach is computed only on the set of queries that were answered.

The experimental results for DBPEDIA are depicted in Figure 6. The time per-
formance (averaged over 200 queries) for Star-Shaped queries (Fig. 6a), affirm that
AMBER clearly outperforms all the competitors. Further the robustness of each ap-
proach, evaluated in terms of percentage of unanswered queries within the stipulated
time, is shown in Figure 6b. For the given time constraint, x-RDF-3X and Jena are
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(a) Time performance (Star queries) (b) % Unanswered queries (Star queries)

(c) Time performance (Complex queries) (d) % Unanswered queries (Complex queries)

Figure 6 – Evaluation of time performance and robustness for DBPEDIA.

unable to output results for size 20 and 30 onwards respectively. Although Virtu-
oso and gStore output results until query size 50, their time performance is still poor.
However, as the query size increases, the percentage of unanswered queries for both
Virtuoso and gStore keeps on increasing from∼0% to 65% and∼45% to 95% respec-
tively. On the other hand AMBER answers >98% of the queries, even for queries of
size 50, establishing its robustness.

Analyzing the results for Complex-Shaped queries, we observe that in Figure 6c,
x-RDF-3X and Jena are the slowest engines; Virtuoso and gStore perform better than
them but nowhere close to AMBER. We further observe that x-RDF-3X and Jena are
the least robust as they don’t output results for size 30 onwards (Fig. 6d); on the other
hand AMBER is the most robust engine as it answers >85% of the queries even for
size 50. The percentage of unanswered queries for Virtuoso and gStore increase from
0% to ∼80% and 25% to ∼70% respectively, as we increase the size from 10 to 50.

The results for YAGO are reported in Figure 7. For Star-Shaped queries, the time
performance of AMBER is 1-2 order of magnitude better than its nearest competitor
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(a) Time performance (Star queries) (b) % Unanswered queries (Star queries)

(c) Time performance (Complex queries) (d) % Unanswered queries (Complex queries)

Figure 7 – Evaluation of time performance and robustness for YAGO.

Virtuoso as observed in (Fig. 7a), and the performance remains stable even with in-
creasing query size (Fig. 7b). x-RDF-3X, Jena are not able to output results for size 20
onwards. As observed for DBPEDIA, Virtuoso seems to become less robust with the
increasing query size. For size 20-40, time performance of gStore seems better than
Virtuoso; the reason seems to be the fewer queries that are being considered. Con-
versely, AMBER is able to supply answers most of the time (>98%). Coming to the
results for Complex-Shaped queries, we observe that AMBER is still the best in time
performance as seen in Figure 7c; Virtuoso and gStore are the closest competitors.
Only for size 10 and 20, Virtuoso seems more robust than AMBER. Jena, x-RDF-3X
do not answer queries for size 20 onwards, as seen in Figure 7d.

To summarise, we observe that Virtuoso is robust for Complex-Shaped smaller
queries (10-20), but fails for bigger (>20) queries. x-RDF-3X fails for queries with
size bigger than 10. Jena has reasonable behavior until size 20, but fails to deliver
from size 30 onwards. gStore has a reasonable behavior for size 10, but its robustness
deteriorates from size 20 onwards. AMBER clearly outperforms the state-of-the-art
approaches in terms of time performance and robustness.
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0.8. Conclusion

In this chapter, a multigraph based engine AMBER has been proposed in order
to answer SPARQL queries. The multigraph representation has bestowed us with
two advantages: on one hand, it enables us to construct lightweight indexing struc-
tures, that ameliorate the time performance of AMBER; on the other hand, the graph
representation itself motivates us to exploit recent graph management techniques.The
proposed engine AMBER has been tested over large RDF triplestores. We have ob-
served that AMBER outperforms its state-of-the-art competitors on two main aspects:
its robustness with respect to the query size; it stands out for its time performances.
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