, Detecting opinions in tweets, International Journal Of Data Mining And Emerging Technologies, vol.3, issue.1, pp.23-32, 2013.

J. Blitzer, M. Dredze, and F. Pereira, Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification, Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL'07), pp.187-205, 2007.

W. Kenneth, P. Church, and . Hanks, Word association norms, mutual information, and lexicography, Computational Linguistics, vol.16, pp.22-29, 1990.

B. Daille, Study and implementation of combined techniques for automatic extraction of terminology, The Balancing Act: Combining Symbolic and Statistical Approaches to Language, pp.49-66, 1996.

D. Downey, M. Broadhead, and O. Etzioni, Locating complex named entities in web text, Proceedings of the 20th international joint conference on Artifical intelligence (IJCAI'07), pp.2733-2739, 2007.

B. Duthil, F. Trousset, M. Roche, G. Dray, M. Planti et al., Locating complex named entities in web text, Proceedings of the 22nd International Conference on Database and Expert Systems Applications (DEXA'11), pp.457-465, 2007.

F. Guillet and H. J. Hamilton, Quality Measures in Data Mining, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00445178

S. Guo, S. Sanner, T. Graepel, and W. L. Buntine, Scorebased bayesian skill learning, Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2012, pp.106-121, 2012.

A. Harb, M. Plantie, G. Dray, M. Roche, F. Trousset et al., Web opinion mining: How to extract opinions from blogs?, Proceedings of the 5th International Conference on Soft Computing As Transdisciplinary Science and Technology (CSTST'08), pp.211-217, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00329525

R. Herbrich, T. Minka, and T. Graepel, Trueskill(tm): A bayesian skill rating system, Advances in Neural Information Processing Systems, vol.20, pp.569-576, 2007.

E. Marrese-taylor, J. D. Velsquez, F. Bravo-marquez, and Y. Matsuo, Identifying customer preferences about tourism products using an aspectbased opinion mining approach, Procedia Computer Science, vol.22, issue.0, pp.182-191, 2013.

B. Pang and L. Lee, A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts, Proceedings of the ACL, pp.271-278, 2004.

B. Pang, L. Lee, and S. Vaithyanathan, Thumbs up?: Sentiment classification using machine learning techniques, Proceedings of the ACL-02

, Conference on Empirical Methods in Natural Language Processing (EMNLP'02), pp.79-86, 2002.

M. Roche and V. Prince, Acrodef: A quality measure for discriminating expansions of ambiguous acronyms, Proceedings of the 6th International and Interdisciplinary Conference: Modeling and Using Context (CONTEXT'07), pp.411-424, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00168945

M. Roche and V. Prince, A web-mining approach to disambiguate biomedical acronym expansions, Informatica (Slovenia), vol.34, issue.2, pp.243-253, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00487536

D. Peter and . Turney, Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews, Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL'02), pp.417-424, 2002.

R. Varghese and M. Jayasree, Aspect based sentiment analysis using support vector machine classifier, Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI'13), pp.1581-1586, 2013.

J. Vivaldi, L. Marquez, and H. Rodriguez, Improving term extraction by system combination using boosting, Proceedings of the 12th European Conference on Machine Learning (ECML'01), pp.515-526, 2001.

G. Wang and K. Araki, Modifying so-pmi for japanese weblog opinion mining by using a balancing factor and detecting neutral expressions, Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-Short'07), pp.189-192, 2007.