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Node-Centric Community Detection
in Multilayer Networks with Layer-Coverage
Diversification Bias

R. Interdonato, A. Tagarelli, D. Ienco, A. Sallaberry and P. Poncelet

Abstract The problem of node-centric, or local, community detection in informa-
tion networks refers to the identification of a community for a given input node,
having limited information about the network topology. Existing methods for solv-
ing this problem, however, are not conceived to work on complex networks. In
this paper, we propose a novel framework for local community detection based on
the multilayer network model. Our approach relies on the maximization of the ratio
between the community internal connection density and the external connection den-
sity, according to multilayer similarity-based community relations. We also define a
biasing scheme that allows the discovery of local communities characterized by dif-
ferent degrees of layer-coverage diversification. Experimental evaluation conducted
on real-world multilayer networks has shown the significance of our approach.

1 Introduction

The classic problem of community detection in a network graph corresponds to an
optimization problemwhich is global as it requires knowledge on the whole network
structure. The problem is known to be computationally difficult to solve, while its
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approximate solutions have to cope with both accuracy and efficiency issues that
become more severe as the network increases in size. Large-scale, web-based envi-
ronments have indeed traditionally represented a natural scenario for the development
and testing of effective community detection approaches. In the last few years, the
problem has attracted increasing attention in research contexts related to complex
networks [2, 7–9, 11–14], whose modeling and analysis is widely recognized as a
useful tool to better understand the characteristics and dynamics of multiple, inter-
connected types of node relations and interactions [1, 6].

Nevertheless, especially in social computing, one important aspect to consider is
that we might often want to identify the personalized network of social contacts of
interest to a single user only. To this aim, we would like to determine the expanded
neighborhood of that user which forms a densely connected, relatively small sub-
graph. This is known as local community detection problem [4, 5], whose general
objective is, given limited information about the network, to identify a community
structure which is centered on one or few seed users. Existing studies on this prob-
lem have focused, however, on social networks that are built on a single user relation
type or context [4, 15]. As a consequence, they are not able to profitably exploit the
fact that most individuals nowadays have multiple accounts across different social
networks, or that relations of different types (i.e., online as well as offline relations)
can be available for the same population of a social network [6].

In this work, we propose a novel framework based on the multilayer network
model for the problem of local community detection, which overcomes the afore-
mentioned limitations in the literature, i.e., community detection on a multilayer
network but from a global perspective, and local community detection but limited
to monoplex networks. We have recently brought the local community detection
problem into the context of multilayer networks [10], by providing a preliminary
formulation based on an unsupervised approach. A key aspect of our proposal is
the definition of similarity-based community relations that exploit both internal and
external connectivity of the nodes in the community being constructed for a given
seed, while accounting for different layer-specific topological information. Here we
push forward our research by introducing a parametric control in the similarity-based
community relations for the layer-coverage diversification in the local community
being discovered. Our experimental evaluation conducted on three real-world mul-
tilayer networks has shown the significance of our approach.

2 Multilayer Local Community Detection

2.1 TheML-LCDMethod

We refer to themultilayer networkmodel described in [9].We are given a set of layers
L and a set of entities (e.g., users) V . We denote with GL = (VL , EL ,V ,L ) the
multilayer graph such that VL is a set of pairs v ∈ V , L ∈ L , and EL ⊆ VL × VL
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is the set of undirected edges. Each entity of V appears in at least one layer, but not
necessarily in all layers. Moreover, in the following we will consider the specific
case for which nodes connected through different layers the same entity in V , i.e.,
GL is a multiplex graph.

Local community detection approaches generally implement some strategy that
at each step considers a node from one of three sets, namely: the community under
construction (initialized with the seed node), the “shell” of nodes that are neighbors
of nodes in the community but do not belong to the community, and the unexplored
portion of the network. A key aspect is hence how to select the best node in the shell
to add to the community to be identified. Most algorithms, which are designed to
deal with monoplex graphs, try to maximize a function in terms of the internal edges,
i.e., edges that involve nodes in the community, and to minimize a function in terms
of the external edges, i.e., edges to nodes outside the community. By accounting for
both types of edges, nodes that are candidates to be added to the community being
constructed are penalized in proportion to the amount of links to nodes external to the
community [5].Moreover, as first analyzed in [4], considering the internal-to-external
connection density ratio (rather than the absolute amount of internal and external links
to the community) allows for alleviating the issue of inserting many weakly-linked
nodes (i.e., outliers) into the local community being discovered. In this work we
follow the above general approach and extend it to identify local communities over
a multilayer network.

Given GL = (VL , EL ,V ,L ) and a seed node v0, we denote with C ⊆ V
the node set corresponding to the local community being discovered around node
v0; moreover, when the context is clear, we might also use C to refer to the local
community subgraph.Wedenotewith S = {v ∈ V \ C | ∃((u, Li ), (v, L j )) ∈ EL ∧
u ∈ C} the shell set of nodes outside C , and with B = {u ∈ C | ∃((u, Li ), (v, L j )) ∈
EL ∧ v ∈ S} the boundary set of nodes in C .

Our proposed method, named MultiLayer Local Community Detection (ML-
LCD), takes as input the multilayer graph GL and a seed node v0, and computes
the local community C associated to v0 by performing an iterative search that seeks
to maximize the value of similarity-based local community function for C (LC(C)),
which is obtained as the ratio of an internal community relation LCint (C) to an exter-
nal community relation LCext (C). We shall formally define these later in Sect. 2.2.

Algorithm ML-LCD works as follows. Initially, the boundary set B and the com-
munity C are initialized with the starting seed, while the shell set S is initialized with
the neighborhood set of v0 considering all the layers inL . Afterwards, the algorithm
computes the initial value of LC(C) and starts expanding the node set in C : it evalu-
ates all the nodes v belonging to the current shell set S, then selects the vertex v∗ that
maximizes the value of LC(C). The algorithm checks if (i) v∗ actually increases the
quality of C (i.e., LC(C ∪ {v∗}) > LC(C)) and (ii) v∗ helps to strength the internal
connectivity of the community (i.e., LCint (C ∪ {v∗}) > LCint (C)). If both condi-
tions are satisfied, node v∗ is added to C and the shell set is updated accordingly,
otherwise node v∗ is removed from S as it cannot lead to an increase in the value
of LC(C). In any case, the boundary set B and LC(C) are updated. The algorithm
terminates when no further improvement in LC(C) is possible.
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2.2 Similarity-Based Local Community Function

To account for the multiplicity of layers, we define the multilayer local community
function LC(·) based on a notion of similarity between nodes. In this regard, two
major issues are how to choose the analytical form of the similarity function, and
how to deal with the different, layer-specific connections that any two nodes might
have in the multilayer graph. We address the first issue in an unsupervised fashion,
by resorting to any similarity measure that can express the topological affinity of
two nodes in a graph. Concerning the second issue, one straightforward solution is
to determine the similarity between any two nodes focusing on each layer at a time.
The above points are formally captured by the following definitions. We denote with
EC the set of edges between nodes that belong to C and with EC

i the subset of EC

corresponding to edges in a given layer Li . Analogously, E B refers to the set of edges
between nodes in B and nodes in S, and E B

i to its subset corresponding to Li .
Given a community C , we define the similarity-based local community function

LC(C) as the ratio between the internal community relation and external community
relation, respectively defined as:

LCint (C) = 1

|C |
∑

v∈C

∑

Li ∈L

∑

(u,v)∈EC
i ∧ u∈C

simi (u, v) (1)

LCext (C) = 1

|B|
∑

v∈B

∑

Li ∈L

∑

(u,v)∈E B
i ∧ u∈S

simi (u, v) (2)

In the above equations, function simi (u, v) computes the similarity between any
two nodes u, v contextually to layer Li . In this work, we define it in terms of Jaccard
coefficient, i.e., simi (u, v) = |Ni (u)∩Ni (v)|

|Ni (u)∪Ni (v)| , where Ni (u) denotes the set of neighbors
of node u in layer Li .

2.3 Layer-Coverage Diversification Bias

When discovering a multilayer local community centered on a seed node, the iter-
ative search process in ML-LCD that seeks to maximize the similarity-based local
community measure, explores the different layers of the network. This implies that
the various layers might contribute very differently from each other in terms of edges
constituting the local community structure. In many cases, it can be desirable to con-
trol the degree of heterogeneity of relations (i.e., layers) inside the local community
being discovered.

In this regard, we identify two main approaches:

• Diversification-oriented approach. This approach relies on the assumption that
a local community is better defined by increasing as much as possible the number
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of edges belonging to different layers. More specifically, we might want to obtain
a local community characterized by high diversification in terms of presence of
layers and variability of edges coming from different layers.

• Balance-oriented approach. Conversely to the previous case, the aim is to pro-
duce a local community that shows a certain balance in the presence of layers,
i.e., low variability of edges over the different layers. This approach relies on the
assumption that a local community might be well suited to real cases when it is
uniformly distributed among the different edge types taken into account.

Following the above observations, here we propose a methodology to incorporate
a parametric control of the layer-coverage diversification in the local community
being discovered. To this purpose, we introduce a bias factor β in ML-LCD which
impacts on the node similarity measure according to the following logic:

β =

⎧
⎪⎨

⎪⎩

(0, 1], diversification-oriented bias

0, no bias

[−1, 0), balance-oriented bias

(3)

Positive values ofβ push the community expansion process towards a diversification-
oriented approach, and, conversely, negative β lead to different levels of balance-
oriented scheme. Note that the no bias case corresponds to handling the node sim-
ilarity “as is”. Note also that, by assuming values in a continuous range, at each
iterationML-LCD is enabled to make a decision by accounting for a wider spectrum
of degrees of layer-coverage diversification.

Given a node v ∈ B and a node u ∈ S, for any Li ∈ L , we define the β-biased
similarity simβ,i (u, v) as follows:

simβ,i (u, v) = 2simi (u, v)

1 + e−b f
, (4)

b f = β[ f (C ∪ {u}) − f (C)] (5)

where b f is a diversification factor and f (C) is a function that measures the current
diversification between the different layers in the community C ; in the following, we
assume it is defined as the standard deviation of the number of edges for each layer
in the community. The difference f (C ∪ {u}) − f (C) is positive when the insertion
of node u into the community increases the coverage over a subset of layers, thus
diversifying the presence of layers in the local community. Consequently, when β

is positive, the diversification effect is desired, i.e., there is a boost in the value of
simβ,i (and vice versa for negative values of β). Note that β introduces a bias on the
similarity between two nodes only when evaluating the inclusion of a shell node into
a community C , i.e., when calculating LCext (C).
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3 Experimental Evaluation

We used three multilayer network datasets, namely Airlines (417 nodes correspond-
ing to airport locations, 3588 edges, 37 layers corresponding to airline companies) [3],
AUCS (61 employees as nodes, 620 edges, 5 acquaintance relations as layers) [6],
and RealityMining (88 users as nodes, 355 edges, 3 media types employed to com-
municate as layers) [8]. All network graphs are undirected, and inter-layer links are
regarded as coupling edges.

Size and structural characteristics of local communities. We first analyzed the
size of the local communities extracted byML-LCD for each node. Table1 reports on
the mean and standard deviation of the size of the local communities by varying of β.
As regards the no bias solution (i.e., β = 0.0), largest local communities correspond
to Airlines (mean 11.33± 14.78), while medium size communities (7.90± 2.74) are
found for AUCS and relatively small communities (3.37 ± 1.77) for RealityMining.
The impact of β on the community size is roughly proportional to the number of
layers, i.e., high on Airlines, medium on AUCS and low on RealityMining. For Air-
lines and AUCS, smallest communities are obtained with the solution corresponding
to β = −1.0, thus suggesting that the discovery process becomes more xenophobic
(i.e., less inclusive) while shifting towards a balance-oriented scheme. Moreover, on
Airlines, the mean size follows a roughly normal distribution, with most inclusive
solution (i.e., largest size) corresponding to the unbiased one. A near normal distri-
bution (centered on 0.2 ≤ β ≤ 0.4) is also observed for RealityMining, while mean
size values linearly increase with β for AUCS.

To understand the effect of β on the structure of the local communities, we ana-
lyzed the distributions of per-layer mean average path length and mean clustering
coefficient of the identified communities (results not shown). One major remark is
that on the networks with a small number of layers, the two types of distributions
tend to follow an increasing trend for balance-oriented bias (i.e., negative β), which
becomes roughly constant for the diversification-oriented bias (i.e., positive β). On
Airlines, variability happens to be much higher for some layers, which in the case of
mean average path length ranges between 0.1 and 0.5 (as shown by a rapidly decreas-
ing trend for negative β, followed by a peak for β = 0.2, then again a decreasing
trend).

Distribution of layers over communities. We also studied how the bias factor
impacts on the distribution of number of layers over communities, as shown in Fig. 1.
This analysis confirmed that using positive values of β produces local communities
that lay on a higher number of layers. This outcome can be easily explained since
positive values of β favor the inclusion of nodes into the community which increase
layer-coverage diversification, thus enabling the exploration of further layers also in
an advanced phase of the discovering process. Conversely, negative values of β are
supposed to yield a roughly uniform distribution of the layers which are covered by
the community, thus preventing the discovery process from including nodes coming
fromunexplored layers once the local community is already characterized by a certain
subset of layers.
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(a) Airlines (b) AUCS

(c) RealityMining

Fig. 1 Distribution of number of layers over communities by varying β. Communities are sorted
by decreasing number of layers

As regards the effects of the bias factor on the layer-coverage diversification, we
analyzed the standard deviation of the per-layer number of edges by varyingβ (results
not shown, due to space limits of this paper). As expected, standard deviation values
are roughly proportional to the setting of the bias factor for all datasets. Considering
the local communities obtained with negative β, the layers on which they lay are
characterized by a similar presence (in terms of number of edges) in the induced
community subgraph. Conversely, for the local communities obtained using positive
β, the induced community subgraphmay be characterized by a small subset of layers,
while other layers may be present with a smaller number of relations.

Similarity between communities. The smooth effect due to the diversification-
oriented bias is confirmed when analyzing the similarity between the discovered
local communities. Figure2 shows the average Jaccard similarity between solutions
obtained by varying β (i.e., in terms of nodes included in each local community). Jac-
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(b) AUCS(a) Airlines

Fig. 2 Average Jaccard similarity between solutions obtained by varying β

card similarities vary in the range [0.75, 1.0] for AUCS and Airlines, and in the range
[0.9, 1.0] for RealityMining (results not shown). For datasets with a lower number
of layers (i.e., AUCS and RealityMining), there is a strong separation between the
solutions obtained for β > 0 and the ones obtained with β < 0. On AUCS, the local
communities obtained using a diversification-oriented bias show Jaccard similarities
close to 1, while there is more variability among the solutions obtained with the
balance-oriented bias. Effects of the bias factor are lower on RealityMining, with
generally high Jaccard similarities. On Airlines, the effects of the bias factor are still
present but smoother, with gradual similarity variations in the range [0.75, 1.0].

4 Conclusion

We addressed the novel problem of local community detection in multilayer net-
works, providing a greedy heuristic that iteratively attempts tomaximize the internal-
to-external connection density ratio by accounting for layer-specific topological
information. Our method is also able to control the layer-coverage diversification
in the local community being discovered, by means of a bias factor embedded in the
similarity-based local community function. Evaluation was conducted on real-world
multilayer networks. As future work, we plan to study alternative objective func-
tions for the ML-LCD problem. It would also be interesting to enrich the evaluation
part based on data with ground-truth information. We also envisage a number of
application problems for which ML-LCD methods can profitably be used, such as
friendship prediction, targeted influence propagation, and more in general, mining
in incomplete networks.
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