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A Compiler-Centric Infra-Structure for Whole-Board Energy
Measurement on Heterogeneous Android Systems

Junio Cezar Ribeiro da Silva1, Fernando Magno Quintão Pereira1,2, Michael Frank3 and Abdoulaye Gamatié2

Abstract— A heterogeneous architecture combines, within the
same hardware, different kinds of processors, with the goal
of delivering fast execution at lower energy budgets. Because
energy is such an important parameter of the efficiency of these
architectures, much effort has been put into the implementation
of techniques to measure the power dissipated by programs
that they run. Yet, a vast majority of publications reporting
experimental results produced on heterogeneous architectures
either resort to simulations or rely on hardware counters;
physical measurements are rare. In this paper, we introduce an
apparatus – hardware and software – that we have been using
to measure energy consumption in Odroid-based big.LITTLE
architectures running the Android execution environment. This
infra-structure is affordable and reliable. To demonstrate its
viability, we show how we can use it to build oracles, i.e., a
map that assigns different parts of a program to the hardware
configuration that minimizes its energy consumption.

I. INTRODUCTION

Modern computer architectures are becoming each day
more heterogeneous [1]. Heterogenity emerges through the
combination, within the same hardware, of several different
processors, such as big/LITTLE multi-core Central Pro-
cessing Units (CPUs) [2], [3], Graphics Processing Units
(GPUs) [4] and Digital Signal Processors (DSPs) [5]. The
heterogenous hardware design allies two opposing goals:
time and power efficiency. To run faster, processors tend to
spend more power. In a homogeneous architecture, the rate
of power dissipation remains high, even when the processor
is doing work that is not computationally intensive. On the
other hand, in a heterogeneous system, we can allocate to
each job the hardware configuration that best fits it, in terms
of time and energy. This observation has motivated much
work to reduce the energy consumed by programs [6], [7].

Yet, measuring the power/energy consumption of these
processors with regard to the execution of a given code
segments is a nontrivial task. The use of industrial power
measurement tools for the energy evaluation of fine-grained
code segments is a tedious job. The use of such tools
requires careful synchronization to match energy results
with segments of code. To circumvent this shortcoming,
some hardware development boards provide developers with
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embedded power sensors, allowing them to extract the power
profile of programs. As an example, the Odroid XU-E
board, which integrates the Exynos5 Octa big.LITTLE chip,
contains four separate current sensors to probe in real-
time the power consumption of big cores, LITTLE cores,
GPU and DRAM. Nevertheless, such sensors also have
shortcomings of their own. First, they are not available
in every processor. For instance, the Odroid XU4, which
descends from the XU-E, does not provide them. Second,
said sensors, when present, do not account for the entire
board, but to individual components of it. Depending on the
intention of the experimentalist, such compartimentalization
can be an advantage; however, many researchers and users
are concerned about the total energy budget of the board,
including its peripherals.

This paper describes a reliable methodology to measure
energy in embedded boards, with a focus on big.LITTLE
architectures running Android systems. We describe the hard-
ware and software components necessary to measure energy
in programs that execute in the Android Runtime Environ-
ment. These programs can be written either in Java or Kotlin
programming languages. Our methodology lets us measure
the energy consumption of very small code segments. To
this end, we use a circuit that can be activated via signals
produced by the program. Such signals are triggered by
instrumentation that we can insert automatically at particular
program points, using the Soot bytecode analyzer [8], or that
we can insert manually, at the discretion of the programmer.
We focus on Android because we perceive a lack of infra-
structure to carry out fine-grained energy measurement in this
platform. Typical experiments report energy for the entire
program [9], [10]. Attempts to get around this limitation tend
to sacrifice precision. For instance, Leal et al. [11] resort to a
combination of power meter, camera and image recognition
to measure the energy spent by specific methods within an
application.

To demonstrate the benefits that emerge with this new
apparatus, in Section III, we show how to build a Time-
Energy Oracle for a typical Android application that finds
routes on a map. This application has different phases, which
include network access, memory initialization and parallel
processing. A time-energy oracle is a map that associates
each program phase with the hardware configuration that best
serves it in terms of time, energy, or the ratio time/energy. As
we shall discuss in Section III, such an oracle brings several
insights on the nature of the big.LITTLE architecture, and
its relation with the programs that it supports. The ability
to instrument programs, and relate code parts with energy



and time numbers, allow us to take syntax into consideration
when carrying out optimizations. This is in contrast with
several previous work [6], [7], in which programs are treated
as a black box, and only the state of the hardware is taken
into consideration in energy minimization efforts.

II. THE MEASUREMENT APPARATUS

The technology described in this paper, henceforth called
AndroidLeap, is based on the JetsonLeap framework [12],
[13], which, in turn, expands the AtomLeap framework [14].
JetsonLeap measures energy consumed by programs writ-
ten in C, and running on the Nvidia Tegra TK1 board.
The AtomLeap framework is a hardware-only apparatus to
carry out energy measurements in the Intel Atom board.
AndroidLeap works in commodity Odroid boards, for pro-
grams written in Java or Kotlin, running on the Android
Runtime Environment. The physical measurement apparatus
used by AndroidLeap, i.e., power meter and circuitry, is the
same as in the JetsonLeap framework. On the other hand,
the software stack, which includes the library to interface
with the hardware and the instrumentation framework, is
substantially different, as it is adapted to Android.

In this section, we explain briefly how AndroidLeap
works. To this end, we shall use the program in Figure 1. This
program is a rather artificial example; nevertheless, it lets
us introduce the notion of an oracle – something that shall
be done in Section III. Moreover, the proposed exampled is
divided into five parts whose the power behavior of each part
will be analyzed:

1) Function readMap reads a set of queries, which are
data-structures describing geographic maps;

2) Function buildGraph transforms such queries into
graphs, via the method buildGraph;

3) in a third phase, Function minimumSpanningTree
finds the minimum spanning tree for each graph;

4) Function Network.write offloads this tree to a network;
5) finally, Function IO.write records the tree in persistent

storage.
We have interposed short sleeping periods between each of
these phases, to make it easier to study their time and energy
behaviors.

A. Hardware

The AndroidLeap apparatus consists of two parts: a
hardware and a software stack. The hardware, which Figure 2
shows, has tree components: (a) the Odroid XU4 board;
(b) the measurement circuitry; and (c) a power meter. The
combination of these components lets us run Android ap-
plications, collect and analyze power profiles, like the one
illustrated in Figure 1. The next four paragraphs describe
each one of these components, showing how we can couple
all of them together.

a) Odroid XU4: This board is manufactured by Hard-
Kernel1. It is equipped with the Samsung Exynos 5422 CPU,
an heterogeneous unit containing four ARM Cortex A15

1http://www.hardkernel.com/main/products/prdt info.php
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for (query in queries) {

  Leap.rec{map = readMap(query)}

  Thread.sleep(1000)

  Leap.rec{graph = map.buildGraph()}

  Thread.sleep(2000)

  Leap.rec{tree = graph.minimumSpanningTree()}

  Thread.sleep(2000)

  Leap.rec{ack = Network.write(tree, server)}

  Thread.sleep(2000)

  when (ack) {

    OK -> Leap.rec{IO.write(backup_fe, tree)}

    ERROR -> err.print("wrong connection")

  }
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Fig. 1: Example of data produced by the AndroidLeap
apparatus.

cores running at up to 2.0GHz and four ARM Cortex A7
cores running at up to 1.4GHz. The board also comes with
a 30-pin General Purpose I/O (GPIO) port. We use specific
pins of the GPIO port to send signals to our measurement cir-
cuit, which may enable or disable the measurement process
in the power meter. The device is also capable of running the
Android operating system. Given the present importance of
energy optimization in the smartphone ecosystem, Android
becomes an important requirement.

b) Power meter: The AndroidLeap setup uses the
data acquisition (DAQ) device USB-6009 from National
Instruments2 to measure the power consumed by the Odroid
XU4 board. This power meter offers two terminal blocks,
one for digital I/O signals and another for handling analog
I/O signals. In our apparatus, analog I/O is used to probe the
voltage between the two leads of the shunt resistor present
in the measurement circuit. Once we collect such value,
we can read the instantaneous current flowing through the
resistor. Additionally, we can derive the instantaneous power
consumed by the board, and we can calculate the energy
spent during a period of time.

c) Measurement Circuit: This component, displayed in
the center of Figure 2 and diagrammed in Figure 3, works as
a bridge between the program under evaluation and the power
meter. This circuit contains a relay, which we can switch via
signals produced by a special library of our own craft (see

2http://www.ni.com/en-us/support/model.usb-6009.html



Fig. 2: AndroidLeap: hardware components.

function Leap.rec in Figure 1). Internally, our library uses
the board’s GPIO pins (#1 #2 and #3) to send such signals
to the circuit. Whenever the relay is in its off position, no
measurement is recorded by the power meter. This state gives
us the valleys in Figure 1’s chart. Thus, a simple integral
on the curves produced by the power-meter gives us the
energy consumed by the events of interest. In the absence
of the switch, the integral can no longer be used, or else
we would capture the energy spent due to actions external to
the program under evaluation. To illustrate the importance of
this switch, Figure 4 shows the power profile of our running
example, with the interference of AndroidLeap. The noise
between the different program phases is clearly visible in
this new curve.

The measurement circuitry lets us use AndroidLeap to
analyze small events within the program’s code. By control-
ling the signals, we can determine the start and the end of
discrete software events without the need to synchronize the
power-meter’s clock with the program’s clock. To control
such signals, we use a library, which we describe in the rest
of this section. The switch time of our relay is approximately
0.5 milliseconds; hence, we estimate that we can measure
reliably events comprising about 106 instructions at the
maximum clocking rate of the Odroid XU4 board (2GHz).

B. The Software Stack

AndroidLeap provides users with a small software library,
which gives them the following functionalities:

• activate and deactivate energy measurement;
• determine a hardware configuration;
• fix the running frequency of a core;
• collect power measurement data.

This library is implemented in Kotlin, and can be used in
code written in this programming language, or in Java. This
library may be used directly by developers who want to
perform interventions in available source code. We have also
used it in tandem with the Soot compilation framework. Soot
lets us instrument every occurrence of specific syntax that
occurs in the program, such as calls to particular functions,

or loops containing such calls, for instance.
d) Energy Measurement and Logging: users determine

the duration of program events by manipulating the state
of the data acquisition device used in our measurement
apparatus. To mark the start and the end of events, users
call specific functions to send signals through the GPIO pins
available in the Odroid board. For example, if developers
want to probe the energy spent by a specific function, they
must perform three actions:

Enable energy measurement

Call target
 function

Choose the GPIO 
pin to be used and 

activate it

Disable energy measurement

Switch the GPIO pin to its 
off state again

1                                    2                                   3

Lines 4 to 6 in Figure 5-(b) illustrate this sequence of actions.
Due to interactions between the client application and the
Android operating system, the target function might not
transfer the control back to the caller. It is the responsibility
of users to be aware of the application’s lifecycle. In case
of such “loss of control”, energy measurement will not be
disabled at the end of the event of interest, a fact that
will prevent users from obtaining accurate results. In other
words, the use of our apparatus fosters a programming style
that is close to the well-known “Resource Acquisition is
Initialization” (RAII) principle [15]. The Android program-
ming API provides users with hooks that let them interpose
checks along the lifecycle of an application to ensure that
energy measurement resources are liberated, when no longer
needed. Such resources can be released by calling the up-
dateGPIOPin function whenever the state of an application
is updated.

To generate energy reports, we have implemented a tool in
C++ called CMeasure. This is the only part of our software
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Fig. 3: Diagram of the measurement circuit of AndroidLeap.
This circuit follows the design in JetsonLeap [13].
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Fig. 4: Power profile with background interference.

stack that is not implemented in Kotlin or Java. CMeasure
provides developers with an interface to communicate with
the data acquisition device. It reads instantaneous power
values, and performs an integral over these samples to
yield final energy results. From this information, CMeasure
produces tables that give us the energy profile of either
specific program events, or the whole application.

e) The Interface with the Operating System: Our expe-
rience with different big.LITTLE systems tells us that inter-
ferences from the operating system complicate substantially
the setup of reproducible experiments. Thus, to circumvent
this problem, our software stack provides routines to fix the
hardware configuration, i.e., the set of visible/hidden cores,
and to switch on and off the operating system’s scheduler.
Figure 5 illustrates this capability. The code in the figure
is an alternative version of the program seen in Figure 1.
In Figure 5 we show how the user may define the set of
visible cores on which the target function map.buildGraph
is allowed to run.

Figure 5 (b) shows the body of the rec function, illustrat-
ing what our library does. Such library lets us collect the
identification of the caller’s thread, which is defined as tid
in line 1. Using this value, we bind the caller’s thread and
its potential children threads to the set of cores specified
by the user. This binding is made possible through system
calls to the Linux kernel tool taskset3. The CPU affinity
that we set up via the routine setAffinity will be honored
by the Linux scheduler. In other words, it will not allow
the thread to run on any other CPU. In line 4 of Figure 5
(b), power measurement is enabled by means of a signal
sent to the GPIO #31 (pin 22, according to the Odroid XU4
block diagram4). After user-defined code is executed in line
5, power measurement is disabled via a new signal to the
GPIO port, seen in line 6 of Figure 5 (b).

f) Automatic Instrumentation: In order to support the
automatic instrumentation of programs, an extension to the
Soot framework has also been implemented [8]. Soot allows
us to remove from the developer the burden of manually
determining which parts of the code should be monitored.
As a result, our extension enables the task of automatically
selecting program events and generating energy usage pro-

3http://man7.org/linux/man-pages/man1/taskset.1.html
4http://odroid.com/dokuwiki/doku.php?id=en:xu4 hardware

Leap.rec(“F0”, {graph = map.buildGraph()})

for (query in queries) {
  Leap.rec{map = readMap(query)}
  Thread.sleep(1000)

  Thread.sleep(2000)
  ...
}

1. fun rec(config: String, stms: () -> Unity) {
2.   val tid = android.os.Process.myTid()
3.   setAffinity(threadId = tid, cc = config)
4.   updateGPIOPin(gpio = 31, state = ”0”)
5.   stms()
6.   updateGPIOPin(gpio = 31, state = ”1”)  
7. }

(a)

  (b)

  Get caller’s thread id  

 Bind thread to the core 
configuration

       Enable energy      
  measurement 

     Run user-defined     
code

       Disable energy       
measurement

  Pre-defined core configuration. 
 F0 defines the configuration 4B0L

 Target user-defined code

Fig. 5: (a) Running statements with AndroidLeap measure-
ment interface. (b) Steps followed by our library in order to
run code snippets on specific cores. The configuration format
4B0L (xByL) is introduced in Definition 3.3.

files based on pre-defined criteria. For example, we can use
Soot to automatically instrument a target program to collect
energy results for particular function calls or other set of
instructions, such as loops, regardless of where they are
present in the program’s source code.

III. TIME-POWER ORACLES

In this section, we demonstrate how AndroidLeap can be
effectively used. To this end, we chose to apply it in the
construction of an oracle for the program earlier seen in
Figure 1. The definition of oracle requires another concept,
which we shall call Program Phase, and that we state below:

Definition 3.1 (Program Phase): A program phase is a
continuous sequence of events, observed during the program
execution, sharing common power and time behaviours, and
corresponding to a fixed text within the program code.

As an example, we can recognize five program phases
within the loop in the program seen in Figure 1. If this loop
runs for N iterations, then we shall observe 5×N different
phases. Power and runtime behavior tend to be homogeneous
within a program phase, and might differ among different
phases. As an example, Figure 6 shows the power profile
of the program in Figure 1, when executing under different
configurations (see Definition 3.3). We have highlighted the
different phases that we have observed in the execution of
one iteration of the main loop in the program. We emphasize
that this notion – program phases – has been left loose
on purpose: we do not enforce any minimum degree of
uniformity or heterogeneity to characterize phases, as this
precision is immaterial to the application of AndroidLeap
that we introduce in this section. From this rather loose
definition of phases, we introduce the notion of oracle:

Definition 3.2 (Oracle): An oracle is a function that maps
program phases to hardware configurations, to minimize
either power consumption or runtime of the whole program.

Definition 3.2 asks for the notion of a hardware configu-
ration. This concept is stated in Definition 3.3. Our notion
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Fig. 6: Power consumption details for 4B4L, 0B4L, 4B0L
and oracle. Circled numbers 1 to 5 indicate the same program
phases as described in Figure 1

of hardware configuration does not account for the mapping
between processes and cores. In our context, only the relation
between visible and hidden cores is important.

Definition 3.3 (Hardware Configuration): Given a big.
LITTLE architecture formed by B big cores and L LITTLE
cores, a hardware configuration is an element in the (B×L)
space, which we denote by xByL, meaning that we have x
big cores and y LITTLE cores visible to a target process or
program phase.

The Odroid XU4 board contains 24 possible hardware
configurations, which are formed by the set {xByL|x, y ∈
{0, 1, 2, 3, 4}} − 0B0L. Notice that we remove, from the
universe of possible configurations, the setting 0B0L, which
has no visible core. Continuing with our example, Figure 6
(d) shows the power profile for an oracle built for one
iteration of the loop in the program in Figure 1. This oracle
minimizes energy, i.e., the integral of the power outline.
Visual inspection of the four different outlines in Figure 6
reveal that the area under the power curve seems, indeed,
smaller in the oracle. In the rest of this section, we explain
how we have used AndroidLeap to build such an oracle.

A. Constellations

In the rest of this paper we shall rely on the concept of a
execution constellation as a useful tool to build oracles. We
define constellations as follows:

Definition 3.4 (Constellation): Given a program P , its
input I , and a big.LITTLE architecture A with B × L − 1
possible configurations, a constellation for the triple (P, I,A)
is a function that maps each possible configuration xByL
of A onto a pair (J, T ). This pair consists of the energy
J and runtime T observed during the execution of P , fed
with input I , in the configuration xByL. When convenient,
we can also consider mappings from configurations to pairs
(W,T ), involving time T and average power W .

Figure 7 shows two different constellations from running
the program in Figure 1 with all possible 24 hardware
configurations of the Odroid board. The constellation on the
top relates time and the average power spent by the program,
while the one on the bottom relates time and the total
amount of energy consumed during that execution. These
charts are generated automatically by AndroidLeap. To this
end, we instrument the loop in Figure 1, so as to acquire
the power profile of its entire execution. Instrumentation
also lets us change the current configuration automatically;
hence, repeating the experiment as many times as we deem
it necessary to obtain results with high confidence. In this
example, results are averages of ten executions. We never re-
peat the same configuration between samples to ensure a fair
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Fig. 7: (Top) Power vs. execution time for program seen in
Figure 1. (Bottom) Energy vs. time for the same program.
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Fig. 8: The arrows show how average power increases, if we
fix the number of LITTLE cores, and vary the number of
big cores.

comparison. The numbers reported in Figure 7 correspond
exclusively to the code regions of interest; i.e., program
events, other than those produced within the loop in Figure 1,
bear no influence in the constellation that we have built.

Figure 8 shows how power and time evolve when the
number of big cores increases, given a fixed number of
LITTLE cores. We use arrows to highlight this trend. As
an example, let us consider the configuration 0B2L. If we
keep adding cores; hence, gradually moving from 0B2L
towards 4B4L, we see that we tend to reduce runtime at
the expense of a steep increase in energy consumption. This
steep increase in energy is due to the nature of big cores,
which are time efficient, but power-hungry. If we consider
configurations composed of only a single LITTLE core, then
increasing the number of big cores reduces the execution
time without a noticeable boost in power consumption.

Sometimes, the best configuration in terms of time is
not necessarily the best configuration in terms of energy.
To demonstrate this statement, Figure 7 (right) shows a
constellation relating the time and the energy consumed
during that time, for the region of interest in our example.
The arrows show how this relation, energy vs time, varies
as we vary the number of LITTLE cores available in each
configuration. The fastest configuration, in our example, was
4B4L, which uses every core available. However, the most
energy efficient was 0B4L, which uses only the LITTLE
cores. Therefore, in this example, the rush-to-idle approach
does not reduce energy consumption, as it is usually the case,
in DVFS-based systems [16].

B. The Construction of an Oracle

The constellations in Figure 7 show the runtime and the
power (or energy) for the entire program. To build an oracle,
we need to perform a similar analysis, but restrict it to pro-
gram regions, instead of the entire program. AndroidLeap
enables us to carry out such study, whose goal is to select,
for each region of interest, the most energy-efficient config-
uration for it. This process is interesting as long as the best
configuration varies among regions. Intuitively, this is the
case. For instance, the execution of compute-intensive code
regions will be achieved on the high-performance big cores,
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Fig. 9: Power vs. Execution time: oracle versus three other
configurations.

while IO-intensive code regions should rather be executed
on LITTLE cores, since CPUs are likely to be under-used.

In our example, the best configurations, in terms of energy,
for different program phases, were 1B0L and 0B4L. The
former configuration fits regions 1, 2, 4 and 5 in Figure 1.
The latter suits region 3, which runs in parallel. This ob-
servation leads to the following oracle: r1 7→ 1B0L, r2 7→
1B0L, r3 7→ 0B4L, r4 7→ 1B0L, r5 7→ 1B0L. The oracle
is more energy efficient than 0B4L, which was shown
to be the best configuration in the constellation seen in
Figure 7. This efficiency remains, even when we consider
the overhead of the instrumentation necessary to change the
hardware configuration. Figure 9 shows this result, consider-
ing the four configurations earlier seen in Figure 6: 4B4L
(the most performance-efficient), 0B4L (the most power-
efficient), 4B0L (the most power-hungry) and the oracle.

Figure 6 helps us to analyze how power dissipation varies
over time. The 4B4L configuration (Figure 6a) is the fastest;
however, it is also the one that dissipates the most power.
The 0B4L configuration (Figure 6b) is the one that dissipates
least power, yet, it takes the longest time to terminate. The
4B0L configuration (Figure 6c) shows degradation in both
execution time and power consumption; hence, bringing no
gain compared to the previous two configurations. The oracle
leads to a better compromise between power and time, as it
leverages core heterogeneity (Figure 6d).

Figure 6 also shows a rather surprising fact: the 4B0L
configuration dissipates more power, not only because the big
cores run at a higher frequency, but also because its overall
execution time is longer than the other scenarios. In this case,

TABLE I: Results for the three core configurations 4B4L,
4B0L, and 0B4L running the toy applications A, B and C.

Config. Time (s) Energy (J) Prog.
min max mean min max mean

4B0L 4.9 5.09 4.98 57.77 60.56 59.21
0B4L 9.98 10.13 10.06 41.93 42.95 42.66 A
4B4L 4.08 4.41 4.26 50.75 52.96 51.68

4B0L 9.04 9.27 9.16 96.42 96.94 96.75
0B4L 8.8 9.40 8.98 60.28 61.84 61.38 B
4B4L 13.83 17.84 15.08 113.58 121.11 123.8

4B0L 1.57 1.85 1.69 10.17 14.36 13.08
0B4L 2.9 2.99 2.95 16.38 28.00 18.79 C
4B4L 1.45 1.79 1.60 9.30 12.22 10.33
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1.  fun applicationA() {      
2.     val cc = getCoreConfiguration()
3.     val exec = Executors.newFixedThreadPool(cc)    
4.     val tasks = (0..32).map { id -> ThreadA(id) }      
5.     Leap.rec(cc, {exec.invokeAll(tasks)} )
6.     exec.shutdown()
7.  }
8.
9.  private inner class ThreadA(private val seed: Long)
10.                 : Callable<Boolean> {
11.    var sum: Long = 0
12.    val iter: Long = 300000    
13.    var rand: Random = Random(seed)
14.
15.    @Throws(Exception::class)
16.    override fun call(): Boolean? {
17.       for (i in 0..iter) {  
18.          sum += rand.nextInt() + rand.nextInt()
19.       }
20.       return true
21.     }
22.  }

1.     var map = Collections.synchronizedMap(
2.                                            HashMap<Int, Int>())
3.     fun applicationB() {      
4.        val cc = getCoreConfiguration()
5.        val exec = Executors.newFixedThreadPool(cc)    
6.        val tasks = (0..50000).map { id -> ThreadB(id) }      
7.        Leap.rec(cc, {exec.invokeAll(tasks)} )
8.        exec.shutdown()
9.     }
10.
11.    private inner class ThreadB(private val seed: Long)
12.                    : Callable<Boolean> {        
13.           val insertions: Int = 3
14.           var rand: Random = Random(seed)
15.
16.           @Throws(Exception::class)
17.           override fun call(): Boolean? {
18.               for (ins in 0..insertions) {                
19.                   map[rand.nextInt()] = rand.nextInt()
20.               }
21.               return true
22.           }
23.       }

Read core configuration to be 
used in current execution

Initialize tasks to be
processed in the thread pool

Activate AndroidLeap 
by invoking all tasks

sum is private to each thread. 
No thread synchronization is 
required. Cache usage is low

map is shared among the threads
Operations need thread 

synchronization and  use of cache

Fig. 10: Constellations for programs A (left) and B (right) from Table I. The code of each application is reproduced below
its respective constellation.

the culprit is synchronization: in a scenario marked by heavy
synchronization among threads, the extra speed of the big
cores does not pay off for the power that they dissipate. To
further investigate this concern, we analyzed the execution
of three different parallel programs, whose time vs energy
behavior is reported in Table I:

• In program A, each thread is assigned the task of sum-
ming up randomly generated numbers. In this program,
no thread synchronization is required. In addition, cache
memory usage is very low, as each thread generates
random numbers on the fly and sums them up.

• In program B, each thread inserts elements in random
positions of a single shared hash-table. Here, there is
an evident need for thread synchronization, as many
of them will try to concurrently update the same data-
structure. Cache usage is also heavy.

• In the last program, C, each thread inverts large lists.
In this case, we see heavy use of cache memory;
however, there is no thread synchronization, as each
thread operates on individual lists.

We have used the AndroidLeap apparatus to analyze
the time and power profiles of these three programs. Ta-
ble I shows the result of this experiment, and Figure 10
shows time-energy constellations for programs A and B.
For program A, the 4B4L configuration is on average the

fastest, as it is the most parallel. Yet, the 0B4L configuration
provides the lowest energy consumption. For program B,
the synchronization overhead between faster big cores and
slower LITTLE cores penalizes both the runtime and energy
consumption of the 4B4L configuration. In this case, 0B4L
appears as the most energy-efficient configuration in this
synchronization-intensive program. Finally, for program C,
which is more compute- and cache-intensive, configurations
with big cores (associated with bigger cache size for higher
locality) provide the best results.

IV. RELATED WORK

The main inspiration of this work is JetsonLeap, an ap-
paratus used to perform power measurements on the Nvidia
Tegra TK1 board. JetsonLeap, in turn, was inspired by
AtomLeap. The main contribution of JetsonLeap on top of
AtomLeap is the ability to record precisely power consumed
in very fine-grained events. As mentioned in Section II,
AndroidLeap departs from JetsonLeap in the choice of
platform, including board and operating system. None of
the results presented in this paper could be produced with
the original JetsonLeap approach. Nevertheless, in all these
“Leap-systems”, power is measured via physical devices,
instead of estimated via analytical models. Notice that this
fact –acquisition of physical power– is not a contribution per
se, as different research groups have done it consistently. Yet,



in the absence of fine-grained synchronization, researchers
much either focus on peak consumption [17], on large
programming events [18], or resort to power models based
on hardware performance counters.

This last power measurement approach, based on hard-
ware performance counters, seems to be the technique most
adopted among researchers. For instance, Walker et al. [19]
have presented a methodology for defining run-time power
models based on performance monitoring counters (PMCs)
for mobile and embedded devices. They rely on statistical
analysis to derive a limited number of PMC events from a
larger set collected from executions of programs. Events are
carefully selected, so as to avoid using repeated information
in power estimates. Walker et al. reported average errors of
3.8% and 2.8% for ARM Cortex-A7 and Cortex-A15 using
the Exynos 5422 chip. This methodology is as precise as the
hardware counters allow it to be; however, porting it to other
architectures, if at all possible, requires non-negligible effort.

In addition to methodologies based on performance coun-
ters, developers also have access to models that provide
general power consumption estimates for whole architec-
tures, instead of focusing on the execution of individual
programs. A canonical work in this direction is McPAT [20].
This tool relies on several low-level design parameters to
provide power estimates: microarchitecture (frequency, vdd,
in-order/out-of-order CPU, etc), circuit (SRAM / DRAM,
Xbar, etc), technology (device in Low Standby Power or Low
Operating Power modes, etc). However, we emphasize that
while tools like McPAT have been used as part of the infra-
structure to measure the energy consumed by programs [21],
this usage is not its focus, in contrast to AndroidLeap.
Finally, energy consumption estimation based on McPAT
may present some limitation in accuracy [22].

V. CONCLUSION

This paper has presented AndroidLeap, a performance
and power measurement methodology that targets the Odroid
XU4 board, a system featuring eight ARM big.LITTLE
cores. AndroidLeap consists of a hardware and a software
stack that let us measure power consumption and execution
time of programs running on the Android Environment. Our
technique works at the granularity of program regions; that is
to say, it lets developers analyze small program events such
as loops and function calls. This is in contrast with compet-
ing approaches, often restricted to the granularity of entire
programs. We demonstrated the benefits of our infrastructure
by building a Time-Energy Oracle for a typical Android
application with different computation phases. Such an oracle
associates different phases within a program with the most
energy-efficient hardware configuration for that phase. The
fine-grained measurements enabled by AndroidLeap open
several opportunities for the design and test of energy-
efficient optimizations. In particular, the ability of assessing
the impact of architecture configurations on the performance
of code regions is key to resource allocation in energy-
constrained devices.
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