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Abstract. This paper provides a quantitative computational account of why a
sentence has harder parse than some other one, or that one analysis of a sen-
tence is simpler than another one. We take for granted Gibson’s results on human
processing complexity, and we provide a new metric which uses (Lambek) Cate-
gorial Proof Nets. In particular, we correctly model Gibson’s account in his De-
pendency Locality Theory. The proposed metric correctly predicts some perfor-
mance phenomena such as structures with embedded pronouns, garden pathing,
unacceptability of center embedding, preference for lower attachment and passive
paraphrases acceptability. Our proposal extends existing distance-based propos-
als on Categorial Proof Nets for complexity measurement while it opens the door
to include semantic complexity, because of the syntax-semantics interface in cat-
egorial grammars.

Keywords: Computational Linguistics · Psycholinguistics · Human Processing ·
Categorial Grammar · Linear Logic · Lambek Calculus

1 Introduction

Linguistics and especially generative grammar à la Chomsky makes a distinction be-
tween competence and performance in the human processing of natural language [5].
The competence is, roughly speaking, our ideal ability without time and resource con-
straints to parse a sentence, i.e. to decide that it is grammatical or not. Competence is
formally described by a formal grammar. The performance is how we actually parse
a sentence; whether we succeed in achieving that and how much the sentence resists
to our attempt to analyze it. Computing the space and time algorithmic complexity is a
fake solution because no one knows the algorithm being used by human if it depends on
the individual and on the kind of conversation; even if it were so, nothing guarantees that
space and time algorithmic complexity matches the degree of difficulty we experience
when processing sentences. So this paper, as well as some earlier work by others[14,
21], try to provide a formal and computable account of the results of psycholinguis-
tics experiences regarding linguistic complexity. We focus on syntactic complexity as
studied in a number of linguistic processing phenomena such as garden paths, unac-
ceptability of center embedding, preference for lower attachment, passive paraphrases
acceptability, and structures with embedded pronouns.

Regarding the psycholinguistics aspects, we mainly follow the studies by Gibson of
linguistic complexity of human parsing. Gibson first studied the notion of the linguistic
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difficulty [10] through the maximal number of incomplete syntactic dependencies that
the processor has to keep track of during the course of processing a sentence. We refer
to this theory as Incomplete Dependence Theory (IDT) as coined by Gibson. IDT had
some limitations for referent-sensitive linguistic phenomena, which justified the later
introduction of the Syntactic Prediction Locality Theory [8]. A variant of this theory,
namely Dependency Locality Theory (DLT), was introduced later [9] to overcome the
limitations with respect to the new linguistic performance phenomena. In the origi-
nal works, both IDT and DLT use properties of linguistic representations provided in
Government-Binding Theory [6].

On the formal side, in order to compute the complexity of a sentence — in a way
that matches Gibson’s results — we use Lambek Categorial Grammar [16] by means
of proof nets construction [19, Chap 6]. Proof nets were originally introduced by Gi-
rard [12] as the mathematical structures of proof in linear logic. Categorial proof nets
are to categorial grammar what parse trees are to phrase structure grammar. This kind
of approach was initiated by Johnson [14], who defines a measure of the instantaneous
complexity when moving from a word to the next one (in particular for center embedded
relative clauses) in a way that matches Gibson’s and Thomas’ analysis [11]. To define
the complexity of a sentence, Johnson considers the maximum complexity between the
words in a given sentence. This approach was refined by Morrill [21], who re-interprets
axiom links in categorial proof nets as incomplete (or unresolved) dependencies. We
rename this technique as IDT-based complexity profiling since it clearly inherits many
aspects of Gibson’s IDT, plus the new notion of profiling that exists in some psycholin-
guistic theories. This technique is quite successful at predicting linguistic performance
phenomena such as garden paths, unacceptability of center embedding, preference for
lower attachment and heavy noun phrase shift. Nevertheless, there is some predictive
limitation for referent-sensitive phenomena such as structures with embedded pronouns.
Our strategy to overcome this issue is to apply DLT instead of IDT on proof nets con-
structions which would lead to introduction of DLT-based complexity profiling. We will
show how this reformulation can improve the predictive power of the existing models
in favor of the referent-sensitive linguistic phenomena.

The purpose of developing our computational psycholinguistic model is not solely
limited to measuring linguistic complexity. It is potentially applicable to some specific
tasks in the domain of the formal compositional semantics. For instance, ranking dif-
ferent possible readings of a given ambiguous utterance, or more generally translating
natural language sentences into weighted logical formulas. The rest of the paper is or-
ganized as follows: Section 2 summarizes Gibson’s ideas on modeling the linguistic
complexity of human sentence comprehension, namely IDT and DLT. In section 3 we
then define proof nets, and recall the success and limitation of IDT-based complexity
profiling. In section 4 we define our DLT-inspired measure, we show how it fixes some
problems in previous work and how it gives a correct account of those phenomena. In
section 5, we would see a limitation of our approach and a possible future study for
solving that limitation. In the last section we conclude our paper and discuss possible
future works.
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2 Gibson’s Theories on Linguistic Complexity

We provide a very quick review of Gibson’s IDT and DLT in order to make the readers
familiar with their underlying concepts. The question of how to automatically compute
linguistic complexity based on both theories with categorial proof nets will be covered
in the sections (3.2) and (4).

Incomplete dependency theory is based on the idea of counting missing incom-
plete dependencies during the incremental processing of a sentence when a new word
attaches to the current linguistic structure. The main parameter in IDT is the number of
incomplete dependencies when the new word integrates to the existing structure. This
gives an explanation for the increasing complexity of the examples (1a)-(1c) which
have nested relative clauses. In (1a), the reporter has one incomplete dependency; in
(1b), the senator has three incomplete dependencies; in (1c) John has five incomplete
dependencies at the point of processing. For the sake of space, we only explain the most
complex case, i.e. (1c) in which the incomplete dependencies at the moment of process-
ing John are: (i) the NP the reporter is dependent on a verb that should follow it; (ii)
the NP the senator is dependent on a different verb to follow; and (iii) the pronoun who
(before the senator) is dependent on a verb to follow; (iv) the NP John is dependent on
another verb to follow; and (v) the pronoun who (before John ) is dependent on a verb to
follow. These are five unsaturated or incomplete or unresolved dependencies. IDT in its
original form suggests to calculate the maximum number of incomplete dependencies
of the words in a sentence. One can observe that the complexity is proportional to the
number of incomplete dependencies.

(1a) The reporter disliked the editor.

(1b) The reporter [who the senator attacked] disliked the editor.

(1c) The reporter [who the senator [who John met] attacked ] disliked the editor].

(1d) The reporter [who the senator [who I met] attacked ] disliked the editor].

Dependency Locality Theory is a distance-based referent-sensitive linguistic com-
plexity measurement put forward by Gibson to supersede the predictive limitations of
the incomplete dependency theory. DLT posits two integration and storage costs. In this
paper, we have only focused on the integration cost. The linguistic complexity is inter-
preted as the locality-based cost of the integration of a new word to the dependent word
in the current linguistic structure which is relied on the number of the intervened new
discourse-referents. By performing a measurement on these referents, we can predict
the relative complexity, such as structures with embedded pronouns, illustrated in ex-
ample (1d). The experiments [24] support the acceptability of (1d) over (1c). According
to the discourse-based DLT structural integration cost hypothesis, referents for the first-
person pronoun I is already present in the current discourse, so, integrating across them
consumes fewer cognitive resources than integrating across the new discourse referents
before John. By means of just two aspects of DLT, namely the structural integration
and the discourse processing cost we would be capable to predict a number of linguistic
phenomena as we will see in details with some examples.
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3 Complexity Profiling in Categorial Grammars

3.1 Proof-nets as parse structures

Our exposition of the henceforth classical material on proof nets for categorial gram-
mar follows [20] — the main original papers on this topic are [16, 12, 22, 23]. Categorial
grammars are defined from a set C of grammatical categories, defined from base cate-
gories (for instance B = {np, n, S}) including a special symbol S (for sentence) and
operators, for instance :

C ::= B | C\C | C/C
The symbols \ and / can be viewed as logical connectives, namely implication(s) of

a logic, namely intuitionistic non-commutative multiplicative linear logic better known
as the Lambek calculus. Such formulas can be viewed as formulas of linear logic, with
conjunction ⊗ disjunction ` and negation ( )⊥ because implications can be defined
from negation and disjunction:

Definition of \ and /: A \B ≡ A⊥ `B B / A ≡ B `A⊥

De Morgan equivalences (A⊥)⊥ ≡ A (A`B)⊥ ≡ B⊥ ⊗A⊥
(A⊗B)⊥ ≡ B⊥ `A⊥

Some formulas have a polarity. Formulas are said to be positive (output) ◦ or nega-
tive (input) • as follows:1

a : ◦, a⊥ : •
⊗ • ◦
• undefined •
◦ • undefined

` • ◦
• undefined ◦
◦ ◦ undefined

So a ` a has no polarity, a⊥ ` b is positive, it is a \ b while b⊥ ⊗ a is negative,
it is the negation of a \ b. Categories are, roughly speaking, analogous to non-terminal
categories in phrase structure grammars. But observe that they are endowed with an
internal structure, i.e. (np \ S) / np is a compound category and the rules make use
of this internal structure, connectors \ and / and subcategories n, np and S. The rules
(of the logic) do not depend on the language generated (or analyzed) by the grammar.
They are the same for every language, and the lexicon makes the difference. The lexicon
maps every word to a finite set of possible categories. A parse structure in a categorial
grammar defined by a lexicon L for a sequence of words w1, . . . , wn simply is a proof
of c1, . . . , cn ` S with ci ∈ L(wi) in some variant of the Lambek calculus. The rules
for the basic (associative) Lambek calculus are:

A ` A
1 Here we are stricter than in other articles, i.e. we neither allow ⊗ of positive formulas nor `

of negative formulas, because we only use the \ and / symbols in categories (and not⊗): only
combining heterogeneous polarities guarantees that a positive formula is a category, and that a
negative formula is the negation of a category.
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H1, H2 . . . , Hn−1, Hn ` C
H1, H2 . . . , Hn−1 ` C / Hn

H1, H2 . . . , Hn−1, Hn ` C
H2 . . . , Hn−1, Hn ` H1 \ C

H1, . . . ,Hi, . . . ,Hn ` C G1, . . . , Gn ` A
H1, . . . ,Hi−1, G1, . . . , Gn, A \Hi, Hi+1, . . . ,Hn ` C

H1, . . . ,Hi−1, Hi, Hi+1 . . . , Hn ` C G1, . . . , Gn ` A
H1, . . . ,Hi−1, Hi / A,G1, . . . , Gn, Hi+1, . . . ,Hn ` C

Since the Lambek sequent calculus enjoys the cut-elimination property whereby a
sequent is provable if and only if it is provable without the cut rule, we do not mention
the cut rule. Categorial grammars are known for providing a transparent and computable
interface between syntax and semantics. The reason is that the categorial parse structure
is a proof in some variant of the Lambek calculus, and that this proof gives a way to
combine semantic lambda terms from the lexicon into a lambda term which encodes
a formula expressing the meaning of the sentence. We cannot provide more details
herein, the reader is referred e.g. to [20, Chapter 3]. For instance, the categorial analysis
of Every barber shaves himself. with the proper semantic lambda terms for each word
in the sentence yields the logical form ∀x.barber(x)⇒ shave(x, x).

It has been known for many years that categorial parse structures, i.e. proof in some
substructural logic, are better described as proof nets [23, 22, 18, 20]. Indeed, catego-
rial grammars following the parsing-as-deduction paradigm, an analysis of a c phrase
w1, , . . . , wn is a proof of c under the hypotheses c1, ..., cn where ci is a possible cate-
gory for the word wi; and proofs in those systems are better denoted by graphs called
proof nets. The reason is that different proofs in the Lambek calculus may represent the
same syntactic structure (constituents and dependencies), but these essentially similar
sequent calculus proofs correspond to a unique proof net. A proof net is a graph, whose
nodes are formulas, and it consists of two parts:

subformula trees of the conclusions, in the right order, whose leaves are the base cat-
egories, and branching are two connectives ` and ⊗—– as we have seen formulas
with \ and / can be expressed from base categories and their negations with ` and
⊗— for nodes that are not leaves the label can be limited to the main connective
of the subformula instead of the whole formula, without loss of information;

axioms that are a set of pairwise disjoint edges connecting a leaf z to a leaf z⊥, in such
a way that every leaf is incident to some axiom link.

However not all such graphs are proof nets, only the one satisfying:2

Acyclicity Every cycle contains the two edges of the same ` branching.
Connectedness There is a path not involving the two edges of the same ` branching

between any two vertices.

2 This list is redundant: for instance intuitionism plus acyclicity implies connectedness.
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Intuitionism Every conclusion can be assigned some polarity.
Non commutativity The axioms do not cross (are well bracketed).

The advantage of proof-nets over sequent calculus is that they avoid the phenomenon
known as spurious ambiguities— that is when different parse structures correspond to
the same syntactic structure (same constituent and dependencies). Indeed proofs (parse
structures) with unessential differences are mapped to the same proof net. A (normal)
deduction of c1, ..., cn ` c (i.e. a syntactic analysis of a sequence of words as a con-
stituent of category c) maps to a (normal) proof net with conclusions (cn)⊥, ..., (c1)⊥, c
[23, 20]. Conversely, every normal proof net corresponds to at least one normal sequent
calculus proof [22, 20].

3.2 Incomplete Dependency-Based Complexity Profiling and its Limitation

In this subsection we recall the IDT-based measure of the linguistic complexity by Mor-
rill [21] which itself improves over a first attempt by Johnson [14]. Both measures are
based on the categorial proof nets. The general idea is simple: to re-interpret the axiom
links as dependencies and to calculate the incomplete dependencies during the incre-
mental processing by counting the incomplete axiom links for each word in a given
sentence. This is almost the same as Gibson’s idea in his IDT, except the fact that he
uses some principles of Chomsky Government-Binding theory [6] instead of the cate-
gorial proof nets. The notion of counting incomplete dependencies for each node, called
complexity profiling, is more effective in terms of prediction than approaches that only
measures maximum number of the incomplete dependencies or the maximum cuts [14].

We can rewrite IDT-based complexity profiling [21] by the following definitions:

Definition 1: Let π be a a syntactic analysis of w1, · · · , wn with categories C1, . . . ,
Cn — that is a categorial proof net with conclusions (Cn)

⊥, ..., (C1)
⊥, S. Let Ci0 be

one of the Ci (i ∈ [1, n]). The incomplete dependency number of Ci0 in π, written as
IDπ(Ci0), is the count of axioms c − c′ in π such that c ∈ (Ci0−m ∪ S) (m ≥ 0) and
c′ ∈ Ci0+n+1 (n ≥ 0).

Definition 2: Let π be a a syntactic analysis of w1, · · · , wn with categories C1, . . . ,
Cn — that is a categorial proof net with conclusions (Cn)

⊥, ..., (C1)
⊥, S. We define

the IDT-based linguistic complexity of π, written fidt(π) by (1 +
∑n
i=1 IDπ(Ci))

−1.

Definition 3: Given two syntactic analyses πi and πj , not necessarily of the same
words and categories, we say that πi is IDT-preferred to πj whenever fidt(πi) >
fidt(πj).

Example: Figure (1) shows the two relevant proof nets for examples (2a) with
subject-extracted relative clause and (2b) with object-extracted relative clause (exam-
ples from [9]). The relevant complexity profiles for (2a) and (2b) are illustrated in the
figure (2). As it can be seen, the total sum of the complexity for (2b) is greater than
(2a), thus, it can predict correctly the preference of (2a) over (2b) which is supported
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Fig. 1. Proof net analyses for (2a) located in top (subject-extracted relative clause) and (2b) in
bottom (object-extracted relative clause).

Fig. 2. IDT-based Complexity Profiles for (2a) and (2b).
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by measuring reading time experiments [7].3

(2a) The reporter who sent the photographer to the editor hoped for a good story.

(2b) The reporter who the photographer sent to the editor hoped for a good story.

Obviously, IDT-based account does not use DLT as its underlying theory. Not sur-
prisingly, the linguistic phenomena that can only be supported by DLT would not be
supported by IDT-based complexity profiling. Figure (3) shows this failure. We can
verify this by applying the definitions on the relevant proof nets as it is illustrated in
the in the figure (4). As one may notice, the corresponding proof nets for the examples
(1c) and (1d) are almost the same. Consequently, IDT-based complexity profiling can-
not discriminate both examples, i.e. it generates the same number for both sentences
in contrast to the experiments [24] as it is shown in the figure (3). This shows the im-
portance of introducing DLT-based complexity profiling for proof nets in order to make
more predictive coverage—as we will do so.

Fig. 3. IDT-based Complexity Profiles for (1c) and (1d).

4 A New Proposal: Distance Locality-Based Complexity Profiling

As we discussed, IDT-based complexity profiling is a distance-based measurement.
However, it is not a referent-sensitive criterion and due to this fact, it cannot support
some of the linguistic phenomena such as structures with embedded pronouns. One
plausible strategy to overcome this lack is introducing DLT-based complexity profiling.
This will allow us to have a referent-sensitive measurement. In this section, we provide
the precise definitions of our DLT-based proposal on the basis of the categorial proof
nets. Here they are:

Definition 4: A word w is said to be a discourse referent whenever it is a proper
noun, common noun or verb.

3 The same procedure, would show the the increasing complexity of the examples (1a)-(1c) by
drawing the relevant proof-nets. This practice is avoided in this paper due the space limitation
and its simplicity comparing to the running examples here.
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Fig. 4. Proof net analyses for both examples (1c) and (1d).

Fig. 5. Accumulative DLT-based Complexity Profiles for (1c) and (1d).
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Definition 5: Let π be a a syntactic analysis of w1, · · · , wn with categories C1, . . . ,
Cn — that is a categorial proof net with conclusions (Cn)

⊥, ..., (C1)
⊥, S. Let c − c′

be an axiom in π such that c ∈ Ci and c′ ∈ Cj (i, j ∈ [1, n]). We define the length of
axiom c− c′ as the integer i+ 1− j.

Definition 6: Let π be a a syntactic analysis of w1, · · · , wn with categories C1, . . . ,
Cn — that is a categorial proof net with conclusions (Cn)

⊥, ..., (C1)
⊥, S. Let Ci0 be

one of the Ci, and let consider axioms c − c′ with c in Ci0 and c′ in some Ci0−k. Let
us consider the largest k for which such an axiom exists — this is the longest axiom
starting from Ci0 with the previous definition. The dependency locality number of Ci0
in π, written DLπ(Ci0) is the number of discourse referent words between wi0 : Ci0
and wi0−k : Ci0−k. The boundary words, i.e. wi0 : Ci0 and wi0−k : Ci0−k should also
be counted. Alternatively, it may be viewed as k+1 minus the number of non-discourse
references among those k + 1 words.

Definition 7: Let π be a a syntactic analysis of w1, · · · , wn with categories C1, . . . ,
Cn — that is a categorial proof net with conclusions (Cn)

⊥, ..., (C1)
⊥, S. We define

the DLT-based linguistic complexity of π, written fdlt(π) by (1 +
∑n
i=1DLπ(Ci))

−1.

Definition 8: Given two syntactic analyses πi and πj , not necessarily of the same
words and categories, we say that πi is DLT-preferred to πj whenever fdlt(πi) >
fdlt(πj).

Examples: We apply our new metric on examples (1c) and (1d). Figure (4) shows
the relevant proof net for (1c) and (1d). The proof nets for both examples are the same
except a difference in one of the lexicons in each example, i.e. John and I.4 Figure (5)
shows the accumulative chart-based representation of our measurement for each exam-
ple. The axis Y shows the accumulative sum of dependency locality function applied to
each category in axis X. The quick analysis of the profiles shows the total complexity
numbers 14 and 11 for (1c) and (1d), respectively. This correctly predicts the preference
of example (1d) over (1c) which was not possible in the IDT-based approaches.

The measurement for dependency locality number is quite straightforward. As an
example, we calculate the dependency locality number for the word attacked in figure
(4) for (1d). We can find the longest axiom link starting from attacked and ended to
its right most category, namely, who. Then, we count the number of discourse referents
intervened in the axiom link, which is actually three; namely, attacked, met and senator.

We can evaluate our proposal for measuring the linguistic complexity against other
linguistic phenomena. Our experiment shows that the new metric supports both referent-
sensitive and some of the non-referent-sensitive phenomena such as garden pathing,
unacceptability of center embedding, preference for lower attachment and passive para-
phrases acceptability. For saving space, we just illustrate Passive Paraphrases Accept-
ability [21] in this paper. This linguistic phenomenon is illustrated by examples (3a)

4 Following Lambek [16], we have assigned the category S/(np\S) to relative pronoun I. Note
that even assigning np, which is not a type-shifted category, would not change our numeric
analysis at all.
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Fig. 6. Proof net analyses for (3a) in the top and (3b) in the bottom.

Fig. 7. Accumulative DLT-based complexity profiles for (3a) and (3b)

and (3b). Notice that the DLT-based complexity profile of the (3a) is lower even though
the number of the sentences and the axiom links are more comparing to (3b). The real
preference is on the syntactic forms in which (3a) is preferred to (3b). The relevant
proof nets and the accumulated complexity profiles are illustrated in the figures (6) and
(7), respectively.

Example 3a: Ingrid was astonished that Jack was surprised that two plus two equals
four.

Example 3b: ?That that two plus two equals four surprised Jack astonished Ingrid.
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5 Limitation

There is a limitation in our approach and it is the problem of ranking valid semantic
meanings of a given multiple-quantifier sentence which cannot be supported by our
proposal. A study [3] has shown the same problem in the IDT-based approach when
dealing with some type of the expressions such as sentence-modifier adverbials and
nested sentences. Thus, both IDT-based and DLT-based complexity profiling cannot
correctly predict ranking the quantifier scoping problem. Hopefully, this can be treated
with the hybrid models [3] in which Hilbert’s epsilon and tau [13, 4] are exploited.

6 Conclusion and Possible Extensions

In this paper we explored how our DLT-based complexity profiling on proof nets can
give a proper account of the complexity of a wide range of linguistic phenomena. We
have also shown that IDT-based method could not support referent-sensitive linguistic
performance phenomena. This was one of the main reasons for introducing the DLT-
based complexity profiling technique within the framework of Lambek calculus. There
are some extensions for our study and research:

- As we mentioned it is possible to bridge our model with other study [3] to over-
come the problem of ranking quantifier scoping, which our proposal already has.
As we discussed, we can exploit Hilbert’s epsilon and tau operators [13, 4] for neu-
tralizing the quantifier effect and making possible the complexity measurement by
the penalty cost of the quantifiers re-ordering.

- Another important direction is to take into account not only the axioms of the proof-
nets but also the logical structure, i.e., par-links, tensor-links and the correctness
criterion. This is important indeed, because this structure is needed to compute the
logical form (semantics) from the syntactic structure given by proof nets. For in-
stance, nesting Lambek slashes (that are linear implications, and therefore par-links
in the proof net) corresponds to higher order semantic constructions (e.g. predicates
of predicates) and consequently this nesting of par-links increases the complexity
of the syntactic and semantic human processing.

- It is possible to combine our method with studies in other directions: One potential
candidate is the task of sentence correction/completion in Lambek Calculus [17].
The other task is measuring semantic gradience in natural language. Some line of
research suggests this feature within lexical/compositional frameworks by creat-
ing and enrichment of the wide-coverage weighted lexical resources from crowd-
sourced data [15].
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