CATEGORIAL PROOF NETS AND DEPENDENCY LOCALITY

A NEW METRIC FOR LINGUISTIC COMPLEXITY

Mehdi Mirzapour Jean-Philippe Prost Christian Retoré

August 31, 2018 LAComLing2018 Department of Mathematics University of Stockholm

Content:

PART I : The Problem of Linguistic Difficulty Measurement

PART II: Review of Gibson's Psycholinguistic Theories

PART III: Linguistic Difficulty Metrics using Categorial Proof Nets

PART I: The Problem of Linguistic Difficulty Measurement

The Problem

A (quantitative) computational linguistic account of why a sentence is harder to be comprehended (by human) than some other one?

Examples: [Gibson, 91]

- The reporter disliked the editor.
- The reporter [who the senator attacked] disliked the editor
- The reporter [who the senator [who John met] attacked] disliked the editor].

PART II: Review of Gibson's Psycholinguistic Theories

Gibson's Psycholinguistic Theories

- Incomplete Dependency Theory [Gibson, 1991]
- Dependency Locality Theory [Gibson, 2000]

Incomplete Dependency Theory [Gibson, 1991]

- IDT is based on the idea of counting missing incomplete dependencies during the incremental processing of a sentence when a new word attaches to the current linguistic structure.
- The main parameter in IDT is the number of incomplete dependencies when the new word integrates to the existing structure.

Incomplete Dependency Theory [Gibson, 1991]

Example: The reporter [who the senator [who John met] attacked] disliked the editor].

- Five incomplete dependencies at the point of processing "John".
- 1. the NP the reporter is dependent on a verb that should follow it;
- 2. the NP the senator is dependent on a different verb to follow;
- 3. the pronoun who (before the senator) is dependent on a verb to follow
- 4. the NP John is dependent on another verb to follow
- 5. the pronoun who (before John) is dependent on a verb to follow.
- These are five unsaturated or incomplete or unresolved dependencies.

Dependency Locality Theory [Gibson, 2000]

- DLT is a distance-based referent-sensitive linguistic complexity measurement put forward by Gibson to supersede the predictive limitations of the incomplete dependency theory.
- The linguistic complexity is interpreted as the locality-based cost of the integration of a new word to the dependent word in the current linguistic structure which is the number of the intervened new discourse-referents.

Dependency Locality Theory [Gibson, 2000]

Example:

- The reporter [who the senator [who John met] attacked] disliked the editor].
- The reporter [who the senator [who | met] attacked] disliked the editor].

PART III: Linguistic Difficulty Metrics using Categorial Proof Nets

Lambek Categorial Grammar [Lambek, 1958]

Definition 2.1. The category formulas (L_p) are freely generated from a set of usual syntactical primitive types $P = \{S, np, n, pp, \dots\}$ by directional divisions, namely the binary infix connectives \ (over), / (under) and • (product) as follows:

 $Lp ::= P \mid (L_p \setminus L_p) \mid (L_p / L_p) \mid (L_p \bullet L_p)$

	Introduction rules	Elimination rules				
Intuitionistic	$\frac{\begin{bmatrix} A \end{bmatrix}^n}{\stackrel{\vdots}{B}}{\xrightarrow{B}} \to I_n$	$\frac{A A \to B}{B} \to E$				
Lambek	$[A]^{n} \dots$ \vdots $\frac{B}{A \setminus B} \setminus I_{n}$ $\dots [A]^{n}$ \vdots $\frac{B}{B/A} / I_{n}$	$\frac{A A \setminus B}{B} \setminus E$ $\frac{B/A A}{B} / E$				

Examples:

Sequent Calculus Rules for LC

$$\frac{\Gamma, B, \Gamma' \vdash C \quad \Delta \vdash A}{\Gamma, \Delta, A \setminus B, \Gamma' \vdash C} \setminus h \qquad \frac{A, \Gamma \vdash C}{\Gamma \vdash A \setminus C} \setminus i \quad \Gamma \neq \epsilon$$

$$\frac{\Gamma, B, \Gamma' \vdash C \quad \Delta \vdash A}{\Gamma, B/A, \Delta, \Gamma' \vdash C} / h \qquad \frac{\Gamma, A \vdash C}{\Gamma \vdash C/A} / i \quad \Gamma \neq \epsilon$$

$$\frac{\Gamma, A, B, \Gamma' \vdash C}{\Gamma, A \bullet B, \Gamma' \vdash C} \bullet h \qquad \qquad \frac{\Delta \vdash A \quad \Gamma \vdash B}{\Delta, \Gamma \vdash A \bullet B} \bullet i$$

 $\frac{\Gamma \vdash A \quad \Delta_1, A, \Delta_2 \vdash B}{\Delta_1, \Gamma, \Delta_2 \vdash B} \ cut \qquad \frac{A \vdash A}{A \vdash A} \ axiom$

Examples

Definitions:

Definition of \ and /: $A \setminus B \equiv A^{\perp} \wp B$ $B/A \equiv B \ \mathcal{B} A^{\perp}$ De Morgan equivalences $(A^{\perp})^{\perp} \equiv A$ $(A \ \mathcal{B} B)^{\perp} \equiv B^{\perp} \otimes A^{\perp}$ $(A \otimes B)^{\perp} \equiv B^{\perp} \ \mathcal{B} A^{\perp}$

A polar category formula is a Lambek categorial type labeled with positive (°) or negative (•) polarity recursively definable as follows:

$$\begin{split} L^{\circ} &\coloneqq P \mid (L^{\bullet} \,\mathfrak{N} \, L^{\circ}) \mid (L^{\circ} \,\mathfrak{N} \, L^{\bullet}) \mid (L^{\circ} \otimes L^{\circ}) \\ L^{\bullet} &\coloneqq P^{\perp} \mid (L^{\circ} \otimes L^{\bullet}) \mid (L^{\circ} \otimes L^{\bullet}) \mid (L^{\circ} \,\mathfrak{N} \, L^{\bullet}) \end{split}$$

Based on the previous inductive definitions, we can have an easy decision procedure to check whether a formula F is in L° or L^{\bullet} :

\otimes	•	0
٠	undefined	•
0	•	0

z	•	0
•	•	0
0	0	undefined

Definition:

A polar category formula tree is a binary ordered tree in which the leaves are labeled with polar atoms and each local tree is one of the following logical links:

Example

The polar categorial tree of $((np \setminus S)/(np \setminus S))^{\perp}$

Categorial Proof Nets [Moot, Retoré, 2012]

Definition A proof frame is a finite sequence of polar category formula trees with one positive polarity corresponding to the unique succedent of sequent.

Definition A proof structure is a proof frame with axiom linking which corresponds to the axiom rule in the sequence calculus. Axioms are a set of pairwise disjoint edges connecting a leaf z to a leaf z^{\perp} , in such a way that every leaf is incident to some axiom link.

Definition A proof net is a proof structure satisfying the following conditions:

Acyclicity: every cycle contains the two edges of the same \wp branching.

Enumerate: there is a path not involving the two edges of the same \wp branching between any two vertices.

Intuitionism: every conclusion can be assigned some polarity.

Non commutativity: the axioms do not cross (are well bracketed).

the

the

horse

the

horse

raced

IDT-based Complexity Profiling [Morrill, 2000]

Definition 1: Let π be a syntactic analysis of w_1, \dots, w_n with categories C_1, \dots, C_n — that is a categorial proof net with conclusions $(C_n)^{\perp}, \dots, (C_1)^{\perp}, S$. Let C_{i_0} be one of the C_i $(i \in [1, n])$. The incomplete dependency number of C_{i_0} in π , written as $ID_{\pi}(C_{i_0})$, is the count of axioms c - c' in π such that $c \in (C_{i_0-m} \cup S)$ $(m \ge 0)$ and $c' \in C_{i_0+n+1}$ $(n \ge 0)$.

Definition 2: Let π be a syntactic analysis of w_1, \dots, w_n with categories C_1, \dots, C_n — that is a categorial proof net with conclusions $(C_n)^{\perp}, \dots, (C_1)^{\perp}, S$. We define the IDT-based linguistic complexity of π , written $f_{idt}(\pi)$ by $(1 + \sum_{i=1}^n ID_{\pi}(C_i))^{-1}$.

Definition 3: Given two syntactic analyses π_i and π_j , not necessarily of the same words and categories, we say that π_i is IDT-preferred to π_j whenever $f_{idt}(\pi_i) > f_{idt}(\pi_j)$.

27

28

DLT-based Complexity Profiling

Definition 4: A word w is said to be a discourse referent whenever it is a *proper* noun, common noun or verb.

Definition 5: Let π be a syntactic analysis of w_1, \dots, w_n with categories C_1, \dots, C_n — that is a categorial proof net with conclusions $(C_n)^{\perp}, \dots, (C_1)^{\perp}, S$. Let c - c' be an axiom in π such that $c \in C_i$ and $c' \in C_j$ $(i, j \in [1, n])$. We define the **length** of axiom c - c' as the integer i + 1 - j.

Definition 6: Let π be a syntactic analysis of w_1, \dots, w_n with categories C_1, \dots, C_n — that is a categorial proof net with conclusions $(C_n)^{\perp}, \dots, (C_1)^{\perp}, S$. Let C_{i_0} be one of the C_i , and let consider axioms c - c' with c in C_{i_0} and c' in some C_{i_0-k} . Let us consider the largest k for which such an axiom exists — this is the longest axiom starting from C_{i_0} with the previous definition. The dependency locality number of C_{i_0} in π , written $DL_{\pi}(C_{i_0})$ is the number of discourse referent words between $w_{i_0} : C_{i_0}$ and $w_{i_0-k} : C_{i_0-k}$. The boundary words, i.e. $w_{i_0} : C_{i_0}$ and $w_{i_0-k} : C_{i_0-k}$ should also be counted. Alternatively, it may be viewed as k+1 minus the number of non-discourse references among those k + 1 words.

DLT-based Complexity Profiling

Definition 7: Let π be a syntactic analysis of w_1, \dots, w_n with categories C_1, \dots, C_n — that is a categorial proof net with conclusions $(C_n)^{\perp}, \dots, (C_1)^{\perp}, S$. We define the DLT-based linguistic complexity of π , written $f_{dlt}(\pi)$ by $(1 + \sum_{i=1}^n DL_{\pi}(C_i))^{-1}$.

Definition 8: Given two syntactic analyses π_i and π_j , not necessarily of the same words and categories, we say that π_i is DLT-preferred to π_j whenever $f_{dlt}(\pi_i) > f_{dlt}(\pi_j)$.

Subject/Object-extracted Relative Clauses [Gibson, 2000]

31

34

Center Embedding Clauses [Johnson, 1998]

Center Embedding Clauses

_		x	The	reporter	who	the	senator	who	John	met	attacked	disliked	the	editor
	5.4a	DL(x)	0	0	1	0	0	1	0	2	4	6	0	0
_		AccSum(x)	0	0	1	1	1	2	2	4	8	14	14	14
		у	The	reporter	who	the	senator	who	Ι	met	attacked	disliked	the	editor
	5.4b	DL(y)	0	0	1	0	0	1	0	1	3	5	0	0
		AccSum(y)	0	0	1	1	1	2	2	3	6	11	11	11

Nested Subject/Object Relativization [Chomsky, 1965]

41

Nested Subject/Object Relativization

Adverbial Attachment [Kimball, 1973]

Adverbial Attachment

Wrong Parse Preference [Morrill, 2000]

45

Wrong Parse Preference

Passive Paraphrases [Morrill, 2000]

47

Big Picture:

Limitations:

- DLT-based Complexity Profiling cannot correctly predict ranking the quantifier scoping problem.
- In fact, both IDT-based and DLT-based Complexity Profiling have this problem. [Catta, Mirzapour, 2017]
- DLT-based motivated approaches are not applicable cross-linguistically for human parsing processes. [Vasishth, 2005]
- It does not support all linguistic preference phenomenon such as *Heavy* Noun Phrase Shift while IDT-based Complexity Profiling does.

On-going Work for Overcoming the Limitations:

- Quantifier Scoping Problem. [Mirzapour, PhD, Chapter 3]
- Cross-linguistically Applicability [?, No Idea]
- Scale-up Problem
 [Mirzapour, PhD, Chapter 7]

Conclusion:

- DLT-based Complexity Profiling can successfully predict some linguistic phenomena such as structures with embedded pronouns, garden paths, unacceptability of center embedding, preference for lower attachment, and passive paraphrases acceptability.
- It is a kind of psycholinguistics motivated preference modeling along with the formal/lexical constructions of meaning.

Reference 1/2:

Blache, P.: A computational model for linguistic complexity. In: Proceedings of the first International Conference on Linguistics, Biology and Computer Science (2011)

Blache, P.: Evaluating language complexity in context: New parameters for a constraint- based model. In: CSLP-11, Workshop on Constraint Solving and Language Processing (2011)

Catta, D., Mirzapour, M.: Quantifier scoping and semantic preferences. In: Proceedings of the Computing Natural Language Inference Workshop (2017)

Chatzikyriakidis, S., Pasquali, F., Retore, C.: Fromlogical and linguistic generics to hilbert's tau and epsilon quantifiers. If CoLog Journal of Logics and their Applications 4(2), 231–255 (2017)

Gibson, E., Ko, K.: An integration-based theory of computational resources in sentence comprehension. In: Fourth Architectures and Mechanisms in Language Processing Conference, University of Freiburg, Germany (1998)

Gibson, E.: Linguistic complexity: Locality of syntactic dependencies. Cognition 68(1), 1–76 (1998)

Gibson, E.: The dependency locality theory: A distance-based theory of linguistic complex-ity. Image, language, brain pp. 95–126 (2000)

Gibson, E.A.F.: Acomputational theory of human linguistic processing: Memory limitations and processing breakdown. Ph.D. thesis, Carnegie Mellon University Pittsburgh, PA (1991)

Reference 2/2:

Girard, J.Y.: Linearlogic. Theoretical Ccomputer Science 50, 1–102 (1987)

Johnson, M.E.: Proofnets and the complexity of processing center-embedded constructions.

In: Retore', C. (ed.) Special Issue on Recent Advances in Logical and Algebraic Approaches to Grammar. Journal of Logic Language and Information, vol. 7(4), pp. 433–447. Kluwer (1998)

Lambek, J.: The mathematics of sentence structure. The American Mathematical Monthly 65(3), 154–170 (1958) Mirzapour, M.: Findingmissingcategories in incomplete utterances. In: 24eConfé rencesur le Traitement Automatique des Langues Naturelles (TALN). p. 149

Moot, R., Retore, C.: The logic of categorial grammars: a deductive account of natural lan- guage syntax and semantics, vol. 6850. Springer (2012)

Moot, R., Retore', C.: The logic of categorial grammars: a deductive account of natural language syntax and semantics, LNCS, vol. 6850. Springer (2012), http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-31554-1

Morrill, G.: Incremental processing and acceptability. Computational linguistics 26(3), 319-338 (2000)

Retoré, C.: Calcul de Lambek et logique liné aire. Traitement Automatique des Langues 37(2), 39–70 (1996) Roorda,D.:ProofnetsforLambekcalculus.LogicandComputation2(2),211–233(1992)

Shravan Vasishth et al. "Quantifying Processing Difficulty in Human Language Processing". In: In Rama Kant Agnihotri and Tista Bagchi (2005).

THANKS FOR YOUR ATTENTION