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On the k-Boundedness for Existential Rules

Stathis Delivorias, Michel Leclère, Marie-Laure Mugnier, and Federico Ulliana

University of Montpellier, LIRMM, CNRS, Inria

Montpellier, France

Abstract. The chase is a fundamental tool for existential rules. Several chase

variants are known, which differ on how they handle redundancies possibly caused

by the introduction of nulls. Given a chase variant, the halting problem takes as

input a set of existential rules and asks if this set of rules ensures the termination

of the chase for any factbase. It is well-known that this problem is undecidable for

all known chase variants. The related problem of boundedness asks if a given set

of existential rules is bounded, i.e., whether there is a predefined upper bound on

the number of (breadth-first) steps of the chase, independently from any factbase.

This problem is already undecidable in the specific case of datalog rules. How-

ever, knowing that a set of rules is bounded for some chase variant does not help

much in practice if the bound is unknown. Hence, in this paper, we investigate

the decidability of the k-boundedness problem, which asks whether a given set of

rules is bounded by an integer k. We prove that k-boundedness is decidable for

three chase variants, namely the oblivious, semi-oblivious and restricted chase.

This report is a revised version of the paper published at RuleML+RR 2018.

1 Introduction

Existential rules (see [CGK08,BLMS09,CGL09] for the first papers and

[GOPS12,MT14] for introductory courses) are a positive fragment of first-

order logic that generalizes the deductive database query language Datalog and

knowledge representation formalisms such as Horn description logics (see e.g.

[CGL+05,KRH07,LTW09]). These rules offer the possibility to model the existence of

unknown individuals by means of existentially quantified variables in rule heads, which

enables reasoning on incomplete data with the open-domain assumption. Existential

rules have the same logical form as database constraints known as tuple-generating

dependencies, which have long been investigated [AHV95]. Reborn under the names of

existential rules, Datalog∃ or Datalog+, they have raised significant interest in the last

years as ontological languages, especially for the ontology-mediated query-answering

and data-integration issues.

A knowledge base (KB) is composed of a set of existential rules, which typically en-

codes ontological knowledge, and a factbase, which contains factual data. The forward

chaining, also known as the chase in databases, is a fundamental tool for reasoning on

rule-based knowledge bases and a considerable literature has been devoted to its anal-

ysis. Its ubiquity in different domains comes from the fact it allows one to compute a

http://arxiv.org/abs/1810.09304v1
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universal model of the knowledge base, i.e., a model that maps by homomorphism to

any other model of the knowledge base. This has a major implication in problems like

answering queries with ontologies since it follows that a (Boolean) conjunctive query

is entailed by a KB if and only if it maps by homomorphism to a universal model.

Several variants of the chase have been defined: oblivious or naive chase (e.g.

[CGK08]), skolem chase [Mar09], semi-oblivious chase [Mar09], restricted or standard

chase [FKMP05], core chase [DNR08] (and its variant, the equivalent chase [Roc16]).

All these chase variants compute logically equivalent results. 1 Nevertheless, they differ

on their ability to detect the redundancies that are possibly caused by the introduction

of unknown individuals (often called nulls). Note that, since redundancies can only be

due to nulls, all chase variants output exactly the same results on rules without exis-

tential variables (i.e., Datalog rules, also called range-restricted rules [AHV95]). Then,

for rules with existential variables the chase produces iteratively new information until

no new rule application is possible. The (re-)applicability of rules is depending on the

ability of each chase variant to detect redundancies. Evidently this has a direct impact

on the termination. Of course, if a KB has no finite universal model then none of the

chase variants will terminate. This is illustrated by Example 1.

Example 1. Take the KB K = (F,R), whereR contains the ruleR = ∀x
(

Human(x) →

∃y (parentOf(y, x) ∧ Human(y))
)

and F = {Human(Alice)}. The application of the

rule R on the initial factbase F , entails the existence of a new (unknown) individual

y0 (a null) generated by the existential variable y in the rule. This yields the factbase

{Human(Alice), parentOf(y0,Alice),Human(y0)}, which is logically translated into an

existentially closed formula: ∃y0
(

Human(Alice) ∧ parentOf(y0,Alice) ∧ Human(y0)
)

.

Then, R can be applied again by mapping x to y0 thereby creating a new individual y1.

It is easy to see that in this case the forward chaining does not halt, as the generation of

each new individual enables a novel rule application. This follows from the fact that the

universal model of the knowledge base is infinite. △

However, for the case of KBs which have a finite universal model, all chase variants can

be totally ordered with respect to the inclusion of the sets of factbases on which they

halt: oblivious < semi-oblivious = skolem < restricted < core. Here, X1 < X2 means

that when X1 halts on a KB, so does X2, and there are KBs for which the reciprocal

is false. The oblivious chase is the most redundant kind of the chase as it performs all

possible rule applications, without checking for redundancies. The core chase is the

less redundant chase as it computes a minimal universal model by reducing every inter-

mediate factbase to its core. In between, we find the semi-oblivious chase (equivalent

to the skolem-chase) and the restricted chase. The first one does not consider isomor-

phic facts that would be generated by consecutive applications of a rule according to

the same mapping of its frontier variables (i.e, variables shared by the rule body and

head). The second one discards all rule applications that produce “locally redundant”

facts. The chase variants are illustrated by Example 2 (for better presentation, universal

quantifiers of rules will be omitted in the examples):

1 In addition, the parsimonious chase was introduced in [LMTV12]. However, this chase vari-

ant, aimed towards responding at atomic queries, does not compute a universal model of the

KB, hence it is outside the family of chase variants studied here.
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Example 2. Consider the knowledge bases K1 = (F, {R1}),K2 = (F, {R2}), and

K3 = (F ′, {R3}) built from the facts F = {p(a, a)} and F ′ = {∃w p(a, w)}
and the rules R1 = p(x, y)→∃z p(x, z), R2 = p(x, y)→∃z p(y, z) and R3 =
p(x, y)→∃z (p(x, x)∧p(y, z)). Then, the oblivious chase does not halt on K1 while the

semi-oblivious chase does. Indeed, there are infinitely many different rule applications

on the atoms p(a, z0), p(a, z1), . . . that can be generated with R1; yet, all rule appli-

cations map the frontier variable x to the same constant a, and are therefore filtered by

the semi-oblivious chase. In turn, the semi-oblivious chase does not halt on K2 while

the restricted chase does. Here again, there are infinitely many rule applications on the

atoms p(a, z0), p(z0, z1), . . . that can be generated with R2; since each of them maps

the frontier variables to new existentials, they are all performed by the semi-oblivious

chase. However, all generated atoms are redundant with the initial atom p(a, a) and the

restricted chase deems the first (and then all successive) rule applications as redundant.

On the other hand, the restricted chase does not halt on K3 while the core chase does.

In this case, the first rule application yields ∃w∃z0(p(a, w) ∧ p(a, a) ∧ p(w, z0)). This

is logically equivalent to p(a, a) i.e., its core, which leads to the core-chase termination

at the next step. However, the restricted chase checks only for redundancy of the newly

added atoms with respect to the previous factbase, and does not take into account that

the addition of new atoms can cause redundancies elsewhere in the factbase (in this

example, the previous atom p(a, w) together with the new atom p(w, z0) are redundant

with respect to the new atom p(a, a)). So with the restricted chase, R3 will be always

applicable. Finally, note that p(a, a) is a (finite) universal model for all knowledge bases

K1,K2, and K3. △

The termination problem, which asks whether for a given set of rules the chase will ter-

minate on any factbase, is undecidable for all chase variants [DNR08,BLM10,GM14].

Following previous work on Datalog, we study the related problem of boundedness

in a breadth-first setting, i.e., the chase performs rule applications that correspond to

a certain breadth-first level before any rule application that corresponds to a higher

breadth-first level. Then, given a chase variant X, we call a set of rules X-bounded if

there is k (called the bound) such that, for any factbase, the X-chase stops after at most

k breadth-first steps. Of course, since chase variants differ with respect to termination,

they also differ with respect to boundedness.

Boundedness ensures several semantic properties. Indeed, if a set of rules is X-

bounded with k the bound, then, for any factbase F , the saturation of F at rank k (i.e.,

the factbase obtained from F after k X-chase breadth-first steps) is a universal model of

the KB; the reciprocal also holds true for the core chase. Moreover, boundedness also

ensures the UCQ-rewritability property (also called the finite unification set property

[BLMS11]): any (Boolean) conjunctive query q can be rewritten using the set of rules

R into a (Boolean) union of conjunctive queries Q such that for any factbase F , q is

entailed by (F,R) if and only if Q is entailed by F . It follows that many interesting

static analysis problems such as query containment under existential rules become de-

cidable when a ruleset is bounded. Note that the conjunctive query rewriting procedure

can be designed in a such a way that it terminates within k breadth-first steps with k the

bound for the core chase [LMU16]. Finally, from a practical viewpoint, the degree of

boundedness can be seen as a measure of the recursivity of a ruleset, and most likely,
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this is reflected in the actual number of breadth-first steps required by the chase for a

given factbase or the query rewriting process for a given query, which is expected to be

much smaller than the theoretical bound.

As illustrated by Example 1, the presence of existential variables in the rules can

make the universal model of a knowledge base infinite and so the ruleset unbounded,

even for the core chase. However, the importance of the boundedness problem has

been recognized already for rules without existential variables. Indeed, the problem

has been first posed and studied for Datalog, where it has been shown to be undecid-

able [HKMV95,Mar99]. Example 3 illustrates some cases of bounded and unbounded

rulesets in this setting.

Example 3. Consider the rulesets R1 = {R} and R2 = {R,R′} where R = p(x, y) ∧
p(y, z) → p(x, z) and R′ = p(x, y) ∧ p(u, z) → p(x, z). The set R1 contains a single

transitivity rule for the predicate p. This set is clearly unbounded as for any integer k
there exists a factbase F = {p(ai, ai+1) | 0 ≤ i < 2k} that requires k chase steps. On

the other hand, R2 also contains a rule that joins individuals on disconnected atoms. In

this case, we have that i) if R generates some facts then R′ generates these same facts

as well and ii) R′ needs to be applied only at the first step, for any F , as it does not

produce any new atom at a later step. Therefore, R2 is bounded with the bound k = 1.

Note that since these examples are in Datalog, the specificities of the chase variants do

not play any role. △

Finally, the next example illustrates boundedness for non-Datalog rules.

Example 4. Consider the ruleset R = {p(x, y) → ∃z(p(y, z) ∧ p(z, y))} and

the fact F = {p(a,b)}. With all variants, the first chase step yields F1 =
{p(a, b), p(b, z0), p(z0, b)}. Then, two new rule applications are possible, which map

p(x, y) to p(b, z0) and p(z0, b), respectively. The oblivious and semi-oblivious chases

will perform these rule applications and go on forever. Hence, the chase on R is not

bounded for these two variants. On the other hand, the restricted chase does terminate.

It will not perform any of these rule applications on F1. Indeed, the first application

would add the facts {p(z0, z1), p(z1, z0)}, which can “folded” into F1 by a homomor-

phism that maps z1 to b (while leaving z0 fixed), and this is similar for the second rule

application. We can check that actually the restricted chase will stop on any factbase,

and is bounded with k = 1. The same holds here for the core chase. △

Despite the relatively negative results on boundedness, knowing that a set of rules is

bounded for some chase variant does not help much in practice anyway, if the bound

is unknown or even very large. Hence, the goal of this paper is to investigate the k-

boundedness problem, which asks, for a given chase variant, whether for any factbase,

the chase stops after at most k breadth-first steps.

Our main contribution is to show that k-boundedness is indeed decidable for the

oblivious, semi-oblivious and restricted chases. Actually, we obtain a stronger result by

exhibiting a property that a chase variant may fulfill, namely consistent heredity, and

prove that k-boundedness is decidable as soon as this property is satisfied. We show
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that it is the case for all the known chase variants except for the core chase. Hence, the

decidability of k-boundedness for the core chase remains an open question.

2 Preliminaries

We consider a first-order setting with constants but no other function symbols. A term

is either a constant or a variable. An atom is of the form r(t1, . . . , tn) where r is a

predicate of arity n and the ti are terms. Given a set of atoms A, we denote by vars(A)
and terms(A) the set of its variables and terms. A factbase is a set of atoms, logically

interpreted as the existentially closed conjunction of these atoms. A homomorphism

from a set of atoms A to a set of atoms B (notation: π : A → B), is a substitution

π : vars(A) → terms(B) such that π(A) ⊆ B. In this case, we also say that A maps

to B (by π). A homomorphism from A to B is an isomorphism if its inverse is also

a homomorphism. A set of atoms A is a core if there is no homomorphism from A
to one of its strict subsets. We denote by |= the classical logical consequence and by

≡ the logical equivalence. It is well-known that, given sets of atoms A and B seen as

existentially closed conjunctions, there is a homomorphism from A to B if and only if

B |= A. When A and B are cores, A ≡ B if and only if there is an isomorphism from

A to B.

An existential rule (or simply rule), denoted by R, is a formula ∀x̄∀ȳ
(

B(x̄, ȳ) →

∃z̄ H(x̄, z̄)
)

where B and H , called the body and the head of the rule, are conjunctions

of atoms, x̄ and ȳ are sets of universally quantified variables, and z̄ is a set of existen-

tially quantified variables. We call frontier the variables shared by the body and head of

the rule, that is frontier(R) = x̄. In the following we will refer to a rule as a pair of sets

of atoms (B,H) by interpreting their common variables as the frontier. A knowledge

base (KB) K = (F,R) is a pair where F is a factbase and R is a set of existential rules.

We implicitly assume that all the rules as well as the factbase employ disjoint sets of

variables, even if, for convenience, we reuse variable names in examples.

Let F be a factbase and R = (B,H) be an existential rule. We say that R is ap-

plicable on F via π if there exists a homomorphism π from its body B to F . We call

the pair (R, π) a trigger. We denote by πs a safe extension of π which maps all ex-

istentially quantified variables in H to fresh variables as follows : for each existential

variable z we have that πs(z) = z(R,π)
2. The factbase F ∪ πs(H) is called an imme-

diate derivation from F through (R, π). Given a factbase F and a ruleset R we define

a derivation from F and R, denoted by D, as a (possibly infinite) sequence of triples

D0 = (∅, ∅, F0), D1 = (R1, π1, F1), D2 = (R2, π2, F2), . . . where F0 = F and every

Fi (i > 0) is an immediate derivation from Fi−1 through a new trigger (Ri, πi), that

is, (Ri, πi) 6= (Rj , πj) for all i 6= j. The sequence of rule applications associated with

a derivation is simply the sequence of its triggers (R1, π1), (R2, π2), . . . A subderiva-

2 This fixed way to choose a new fresh variable allows us to always produce the same atoms for

a given trigger and that is without loss of generality since each trigger appears at most once on

a derivation.
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tion of a derivation D is any derivation D′ whose sequence of rule applications is a

subsequence3 of the sequence of rule applications associated with D.

We will introduce four chase variants, namely oblivious (O), semi-oblivous (SO),

restricted (R), equivalent chase (E). As explained later, some pairs of chase variants

introduced in the literature have similar behavior, in which case we chose to focus on

one of the two. All the chase variants are derivations that comply with some condition

of applicability of the triggers.

Definition 1. Let D be a derivation of length n from a factbase F and a ruleset R, and

Fn the factbase obtained after the n rule applications of D. A trigger (R, π) is called:

1. O-applicable on D if R is applicable on Fn via π.

2. SO-applicable on D if R is applicable on Fn via π and for every trigger (R, π′)
in the sequence of triggers associated with D, the restrictions of π and π′ to the

frontier of R are not equal.

3. R-applicable on D if R = (B,H) is applicable on Fn via π and π cannot be

extended to a homomorphism π′ : B ∪H → Fn.

4. E-applicable on D if R = (B,H) is applicable on Fn via π and it does not hold

that Fn ≡ Fn ∪ πs(H). ⊣

Note that for X ∈ {O,R,E}, the applicability of the trigger only depends on Fn (hence

we can also say the trigger is X-applicable on Fn), while for the SO-chase we have to

take into account the previous triggers. Note also that the definitions of O- and SO-

trigger applicability allow one to extend a derivation with a rule application that does

not add any atom, i.e., Fn+1 = Fn; however, this is not troublesome since no derivation

can contain twice the same triggers.

Given a derivation D, we define the rank of an atom as follows: rank(A) = 0 if

A ∈ F0, otherwise let R = (B,H) and (R, π) be the first trigger in the sequenceD such

that A ∈ πs(H), then rank(A) = 1 + maxA′∈π(B){rank(A′)}. When we consider a

breadth-first chase, the rank of an atom intuitively corresponds to the chase step at which

it has been generated. This notion is naturally extended to triggers: rank((R, π)) =
1 +maxA′∈π(B){rank(A′)}.

The depth of a finite derivation is the maximal rank of one of its atoms. Finally, a

derivation D is X-breadth-first (where X ∈ {O,SO,R,E}) if it satisfies the following

two properties:

– (1) rank compatibility: for all elements Di and Dj in D with i < j, the rank of the

trigger of Di is smaller or equal to the rank of the trigger of Dj , and

– (2) rank exhaustiveness: for every rank k of a trigger in D, let Di = (Ri, πi, Fi) be

the last element in D such that rank((Ri, πi)) = k. Then, every trigger which is

X-applicable on the subderivation D1, ..., Di is of rank k + 1.

Definition 2 (Chase variants). Let F be a factbase and R be a ruleset. We define four

variants of the chase:

3 A sequence S is a subsequence of a sequence S
′ if S′ can be obtained from S by inserting

some (or no) elements in S.
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1. An oblivious chase is any derivation D from F and R.

2. A semi-oblivious chase is any derivation D from F and R such that for every

element Di = (Ri, πi, Fi) of D, the trigger (Ri, πi) is SO-applicable on the sub-

derivation D0, D1, ..., Di−1 of D.

3. A restricted chase is any derivation D from F and R such that for every element

Di = (Ri, πi, Fi) of D, the trigger (Ri, πi) is R-applicable to on the subderivation

D0, D1, ..., Di−1 of D.

4. An equivalent chase is any E-breadth-first derivation D from F and R such that

for every element Di = (Ri, πi, Fi) of D, the trigger (Ri, πi) is E-applicable on

the subderivation D0, D1, ..., Di−1 of D. ⊣

We will abbreviate the above chase variants with O-chase, SO-chase, R-chase, and E-

chase, respectively. Unless otherwise specified, when we use the term X-chase deriva-

tion, we will be referring to any of the four chase variants. Furthermore, with breadth-

first X-chase derivation we will always imply X-breadth-first X-chase derivation.

An X-chase derivation D from F and R is exhaustive if for all i ≥ 0, if a trigger

(R, π) is X-applicable on the subderivation D1, ..., Di, then there is a k ≥ i such that

one of the two following holds:

1. Dk = (R, π, Fk) or

2. (R, π) is not X-applicable on D1, ..., Dk.

Exhaustivity is also known as fairness. An X-chase derivation is terminating if it is both

exhaustive and finite.

It is well-known that for X ∈ {O,SO,E}, if there exists a terminating derivation

for a given KB, then all exhaustive derivations on this KB are terminating. This does

not hold for the restricted chase, because the order in which rules are applied matters,

as illustrated by the next example:

Example 5. We assume two rules R1 = p(x, y) → ∃z p(y, z) and R2 = p(x, y) →
p(y, y) and F = {p(a, b)}. Let π = {x 7→ a, y 7→ b}. Then (R1, π) and (R2, π)
are both R-applicable. If (R2, π) is applied first, then the derivation is terminating.

However if we apply (R1, π) first, and (R2, π) second we produce the factbase F2 =
{p(a, b), p(b, z(R1,π)), p(b, b)} and with π′ = {x 7→ b, y 7→ z(R1,π)} we have that

(R1, π
′) as well as (R2, π

′) are again both R-applicable. Consequently, if we always

choose to apply R1 before R2 then the corresponding derivation will be infinite. △

Let us now link the four previous chase variants to some other known chase variants.

The semi-oblivious and skolem chases, both defined in [Mar09], lead to similar deriva-

tions. Briefly, the skolem chase consists of first skolemizing the rules (by replacing

existentially quantified variables with skolem functions whose arguments are the fron-

tier variables) then running the oblivious chase. Both chase variants yield isomorphic

results, in the sense that they generate exactly the same sets of atoms, up to a bijective

renaming of nulls by skolem terms. Therefore, we chose to focus on one of the two,

namely the semi-oblivious chase. The core chase [DNR08] and the equivalent chase
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[Roc16] have similar behaviors as well. We remind that a core of a set of atoms is one

of its minimal equivalent subsets, and that two equivalent sets of atoms have isomorphic

cores. The core chase proceeds in a breadth-first manner and, at each step, performs in

parallel all rule applications according to the restricted chase criterion, then computes

a core of the resulting factbase. Hence, the core chase may remove at some step atoms

that were introduced at a former step. After i breadth-first steps, the equivalent chase

and the core chase yield logically equivalent factbases, and they terminate on the same

inputs. This follows from the facts that computing the core after each rule application

or after a sequence of rule applications gives isomomorphic results, and that Fi ≡ Fi+1

if and only if core(Fi) is isomorphic to core(Fi+1). However, it is sometimes more

convenient to handle the equivalent chase from a formal point of view because of its

monotonicity (in the sense that within a derivation Fi ⊆ Fi+1).

We now introduce some notions that will be central for establishing our results on k-

boundedness for the different chase variants.

Definition 3 (Restriction of a derivation). Let D be a derivation from F and R.

For any G ⊆ F , the restriction of D induced by G denoted by D|G, is the maximal

derivation from G and R obtained by a subsequence of the trigger sequence of D. ⊣

The following example serves to demonstrate how a subset of the initial factbase in-

duces the restriction of a derivation:

Example 6. Take F = {p(a, a), p(b, b)}, R = p(x, y) → ∃z p(y, z) and

D = (∅, ∅, F ), (R, π1, F1), (R, π2, F2), (R, π3, F3), (R, π4, F4)

with π1 = {x/y 7→ a}, π2 = {x/y 7→ b}, π3 = {x 7→ a, y 7→ z(R,π1)}, and

π4 = {x 7→ z(R,π1), y 7→ z(R,π3)}.

The derivation D produces the factbase

F4 = F ∪ {p(a, z(R,π1)), p(b, z(R,π2)), p(z(R,π1), z(R,π3)), p(z(R,π3), z(R,π4))}

Then, if G = {p(a, a)}, we haveD|G = (∅, ∅, G), (R, π1, G1), (R, π3, G2), (R, π4, G3)
is the restriction of D induced by G where

G3 = G ∪ {p(a, z(R,π1)), p(z(R,π1), z(R,π3)), p(z(R,π3), z(R,π4))}

△

Definition 4 (Ancestors). Let Di = (Ri, πi, Fi) be an element of a derivation D.

Then every atom in πi(Bi) is called a direct ancestor of every atom in (Fi \ Fi−1).
The (indirect) ancestor relation between atoms is defined as the transitive closure of

the direct ancestor relation. The direct and indirect ancestor relations between atoms

are extended to triggers: let Dj = (Rj , πj , Fj) where j < i. Then (Rj , πj) is a direct

ancestor of (Ri, πi) if there is an atom in (Fj \ Fj−1) which is a direct ancestor of

the atoms in (Fi \ Fi−1). We will denote the ancestors of sets of atoms and triggers

as Anc(F,D) and Anc((R, π),D), respectively. The inverse of the ancestor relation is

called the descendant relation. ⊣
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There is an evident correspondence between the notion of ancestors and the notions

of rank and depth. Suppose a ruleset with at most b atoms in the rules’ bodies. The

following lemma results from the fact that each atom has at most b direct ancestors and

the length of a chain of ancestors cannot exceed the depth of a derivation.

Lemma 1 (The ancestor clue). Let D be an X-chase derivation from F and R. Then

for any atom A of rank k in D, |F ∩ Anc
(

A,D
)

| ≤ bk; also for any trigger (R, π) of

rank k in D, |F ∩Anc
(

(R, π),D
)

| ≤ bk.

This lemma will be instrumental for proving our results on k-boundedness as it allows

one to characterize the maximal number of atoms that are needed to produce a new

atom at a given chase step.

In the next section, we turn our attention to the properties of the derivations that are

key to study k-boundedness.

3 Breadth-first Boundedness

As already mentioned, the concept of boundedness was first introduced for Datalog

programs. A Datalog program is said to be bounded if the number of breadth-first steps

of a bottom-up evaluation of the program is bounded independently from any database

(this notion being more precisely called uniform boundedness to distinguish it from

the notion of program boundedness that restricts the set of predicates that may occur

in the database) [GMSV93,Abi89,GP94]. Applying this concept to the more general

language of existential rules, and parametrizing it by the considered chase variant, X-

boundedness can be specified as follows:

Definition 5. Let X ∈ {O,SO,R,E}. A ruleset R is X-bounded if there is k ∈ N

such that for every factbase F , every breadth-first X-chase derivation is of depth at

most k. ⊣

This definition may seem natural, however it deserves some comments. First note that

in Datalog all exhaustive derivations have the same length but not necessarily the same

depth, as illustrated by the following example.

Example 7. Let F = {p(a)} and R = {R1, R2, R3} where R1 = p(x) → q(x),
R2 = q(x) → r(x), R3 = p(x) → r(x). Here are two exhaustive derivations:

D1 = (∅, ∅, F ), (R1, π, F1), (R2, π, F2), (R3, π, F2)

D2 = (∅, ∅, F ), (R1, π, F1), (R3, π, F2), (R2, π, F2)

where π = {x 7→ a}. We can see that both derivations are exhaustive, however the

depth of D1 is 2 whereas the depth of D2 is 1. △

However, among all exhaustive derivations with Datalog rules, the class of breadth-first

derivations are of minimal depth. This remains true for the oblivious and semi-oblivious

chase derivations with existential rules:
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Proposition 1. For each terminating O-chase derivation (resp. SO-chase derivation)

from F and R there exists a breadth-first terminating O-chase derivation (resp. SO-

chase derivation) from F and R of smaller or equal depth.

Proof: If D is a terminating O-chase derivation, we can reorder the sequence of triggers

associated with D in such a way as to create a rank compatible O-chase derivation

D′ (we know that the applicability condition is not affected if we perform some rule

applications earlier). Then D′ is also exhaustive since the resulting factbase is the same.

Moreover D′ has to be rank exhaustive, since if a trigger is O-applicable on a factbase

at some step of the derivation, it is always O-applicable (unless it has already been

applied). So D′ is breadth-first.

Let us now consider SO-chase derivations. For convenience in the following proof,

given a trigger (R, π), we slightly modify the definition of the safe extension πs: for

each existential variable z in H (the head of R), we define πs(z) = zfR(π(x1),...π(xn))
where fR is a fresh symbol assigned to R, and (x1, ..., xn) is a fixed ordering of the

frontier variables in R. For brevity, we say that two triggers (R, π) and (R, π′) such

that π and π′ have the same restriction to the frontier of R are “frontier-equal”. With the

new definition, two frontier-equal triggers produce exactly the same set of atoms, i.e.,

πs(H) = π′s(H). Since a SO-chase derivation does not have frontier-equal triggers,

this modification of the names of fresh variables can be done without loss of generality.

Let D be a terminating SO-chase derivation from a factbase F . We build a deriva-

tion Dbf fromD by increasing rank as follows. Let D0 = D\(∅, ∅, F ), D0
bf = (∅, ∅, F ).

Starting from i = 1, we iteratively perform the following steps:

1) Let T be the set of all triggers (R, π) from Di−1 such that there is a frontier-equal

trigger (R, π′) applicable on Di−1
bf , and let T ′ be the set composed of one trigger (R, π′)

for each (R, π) in T .

2) If T = ∅, Dbf = Di−1
bf .

3) Otherwise, Di
bf is obtained by extending Di−1

bf with the triples corresponding to the

triggers in T ′ (in any order), and Di is obtained from Di−1 by removing the triples

corresponding to the triggers in T .

We can easily check that the following conditions are fulfilled at each step of the

algorithm: (a) Di
bf .Di is a well-formed derivation (b) there is a bijection between the

triggers in D and those in Di
bf .Di, such that corresponding triggers are frontier-equal;

(c) the depth of Di
bf is less or equal to the depth of D; (d) Di

bf is a breadth-first deriva-

tion. For Point (a), note that replacing (R, π) by (R, π′) has no impact on the name of

the obtained fresh variables, hence no impact on triggers that use atoms produced by

(R, π). For Point (d), note that Di
bf is rank-compatible by construction, and that it is

rank-exhaustive: otherwise, there would be a trigger (R, π) still SO-applicable on D,

which is not possible since D is terminating.

The algorithm terminates since the number of steps is upper bounded by the depth

of D. Let i = d be the last step. Then, Dd−1 = ∅, hence, from (b), there is a bijection

between the triggers in D and those in Dbf = Dd−1
bf , such that corresponding triggers

are frontier-equal. It follows that Dbf is terminating. �

The equivalent chase, which is inspired from the core chase, is breadth-first by defi-

nition. The case of the restricted chase is more complex, since, for a given factbase,
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some exhaustive derivations may terminate, while others may not. It may happen that

all breadth-first derivations terminate (with depth less than a predefined number k), but

there is an exhaustive non-breadth-first derivation that does not terminate. It may also

be the case that no breadth-first derivation terminates, but there is a non-breadth-first

derivation that terminates (with predefined depth less than k), as illustrated by the next

example.

Example 8. Let F = {p(a, b)} andR = {R1, R2, R3}withR1 = p(x, y) → ∃z p(y, z),
R2 = p(x, y) → ∃z q(y, z) and R3 = q(y, z) → p(y, y). It is easy to see that a breadth-

first R-chase derivation in this knowledge base cannot be terminating. However by ap-

plying only R2 on F and then R3 on the new atom, we obtain a terminating R-chase

derivation. Note also that, for any factbase, there is a terminating R-chase derivation of

depth at most 2. △

Hence, in the case of the restricted chase, breadth-first derivations may not be deriva-

tions of minimal depth. More generally, one cannot exclude that other classes of deriva-

tions behave better with respect to depth. Moreover, it would be interesting to parametrize

boundedness with respect to a specific kind of derivation that would be computed by

some restricted chase algorithm. Therefore, a more general definition of boundedness

could be based on the maximal depth of a class of derivations of interest. Then, bound-

edness based on breadth-first settings, as studied in this paper, could be seen as depth-

based boundedness applied to breadth-first X-chase variants.

Finally, the following property gives more insight on the relationships between R-

chase derivations and rank-compatible R-chase derivations (we recall that breadth-first

derivations are rank-compatible derivations that are moreover rank-exhaustive).

Proposition 2. For each terminating R-chase derivation from F and R there exists

a terminating rank-compatible R-chase derivation from F and R of smaller or equal

depth.

Proof: Let D be a terminating R-chase derivation from F and R. Let TD be its se-

quence of associated triggers and let T be a sorting of TD such that the rank of each

element is greater or equal to the rank of its predecessors. Note that T contains exactly

the same triggers as TD, only the order has changed. Let D′ be the derivation defined

by applying, when R-applicable, the triggers using the order of T . Because of the re-

ordering, some of the triggers in T may no longer be R-applicable in D′. However,

D′ respects the rank compatibility property. We will show that it is a terminating R-

chase derivation. Suppose that there is a new trigger (R, π) (not present in T ) which

is R-applicable on D′ (with R = (B,H)). Let F̂ be the resulting factbase from D′.

So we can say that (R, π) is R-applicable on F̂ . Let F̃ be the resulting factbase from

D. Then, since F̂ ⊆ F̃ , we have that (R, π) is O-applicable on F̃ . But because D is

a terminating R-chase derivation, we know that (R, π) in not R-applicable on F̃ . Let

(R1, π1), ..., (Rm, πm) be the triggers of TD that do not appear in D′ (i.e., were not

R-applicable when constructing D′). So

F̃ = F̂ ∪ πs
1(H1) ∪ · · · ∪ πs

m(Hm) (1)
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where H1, ..., Hm are the heads of the rules R1, ..., Rm respectively. Since (R, π) is

not R-applicable on F̃ we conclude that there is a homomorphism from πs(H) to F̃ ,

i.e., a substitution σ : vars(πs(H)) → terms(F̃ ) such that σ(πs(H)) ⊆ F̃ , while

σ is the identity on π(B). Since (R1, π1), ..., (Rm, πm) are not R-applicable in D′

we know that there are substitutions σ1, ..., σm such that for every i ∈ {1, ...,m} we

have σi : vars(πs
i (Hi)) → terms(F̂ ) and σi(π

s
i (Hi)) ⊆ F̂ (i.e., homomorphisms

from πs
i (Hi) to F ), where σi is the identity on πi(Bi). Since with σ1, ..., σm, only

new variables are mapped to different terms (and all other variables are mapped to

themselves), we can define the substitution σ̇ =
m
⋃

i=1

σi which has the property that

σ̇
(

F̂ ∪ πs
1(H1) ∪ · · · ∪ πs

m(Hm)
)

= F̂ (2)

Moreover, the set of variables that are not identically mapped from σ̇ is disjoint with

the variable set vars(F̂ ), because the new variables created from (R1, π1), ..., (Rm, πm)
are not present in F̂ . Therefore the composition σ̇ ◦ σ retains the set of new variables

in πs(H) as its set of variables mapped to different terms. So by 1 and σ(πs(H)) ⊆ F̃
we can write

σ̇ ◦ σ
(

πs(H)
)

⊆ σ̇
(

F̂ ∪ πs
1(H1) ∪ · · · ∪ πs

m(Hm)
)

which with 2 becomes

σ̇ ◦ σ
(

πs(H)
)

⊆ F̃

which implies that (R, π) is not R-applicable on D′. That is a contradiction, which

leads us to conclude that no such (R, π) exists, therefore D′ is a terminating R-chase

derivation. �

As already mentioned, boundedness is shown to be undecidable for classes of existential

rules like Datalog. However, the practical interest of this notion lies more on whether

we can find the particular bound k, rather than knowing that there exists one and thus

the ruleset is bounded. Because even if we cannot know whether a ruleset is bounded

or not, it can be useful to be able to check a particular bound k. To this aim, we define

the notion of k-boundedness where the bound is known, and we prove its decidability

for three of the four chase variants.

4 Decidability of k-boundedness for some chase variants

Definition 6 (k-boundedness). Given a chase variant X, a ruleset R is X-k-bounded

if for every factbase F , every breadth-first X-chase derivation is terminating with depth

at most k. ⊣

Note that a ruleset which is k-bounded is also bounded, but the converse is not true. Our

approach for testing k-boundedness is to construct a finite set of factbases whose size

depends solely on k and R, that acts as representative of all factbases for the bound-

edness problem. From this one could obtain the decidability of k-boundedness. Indeed,
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for each representative factbase one can compute all breadth-first derivations of depth

k and check if they are terminating.

For analogy, it is well-known that the oblivious chase terminates on all factbases if

and only if it terminates on the so-called critical instance (i.e., the instance that contains

all possible atoms on the constants occurring in rule bodies, with a special constant

being chosen if the rule bodies have only variables) [Mar09]. However, it can be eas-

ily checked that the critical instance does not provide oblivious chase derivations of

maximal depth, hence is not suitable for our purpose of testing k-boundedness. Also,

to the best of our knowledge, no representative sets of all factbases are known for the

termination of the other chase variants.

In this section, we prove that k-boundedness is decidable for the oblivious, semi-

oblivious (skolem) and restricted chase variants by exhibiting such representative fact-

bases. A common property of these three chase variants is that redundancies can be

checked “locally” within the scope of a rank, while in the equivalent chase, redundan-

cies may be “global”, in the sense by adding an atom we can suddenly make redundant

atoms added by previous ranks.

Following this intuition, we define the notion of hereditary chase.

Definition 7. The X-chase is said to be hereditary if, for any X-chase derivation D
from F and R, the restriction of D induced by F ′ ⊆ F is an X-chase derivation. ⊣

A chase is hereditary if by restricting a derivation on a subset of a factbase we still get a

derivation with no redundancies. This captures the fact that redundancies can be tested

“locally”. This property is fulfilled by the oblivious, semi-oblivious and restricted chase

variants; a counter-example for the equivalent chase is given as the end of this section.

Proposition 3. The X-chase is hereditary for X ∈ {O,SO,R}.

Proof: We assume that D is an X-chase derivation from F and R, and D|F ′ is the

restriction of D induced by F ′ ⊆ F .

Case O By definition, an O-chase derivation is any sequence of immediate derivations

with distinct triggers, so the restriction of a derivation from a subfact of F is an O-chase

derivation.

Case SO The condition for SO-applicability is that we do not have two triggers which

map frontier variables in the same way. As D fulfills this condition its subsequence

D|F ′ also fulfills it.

Case R The condition for R-applicability imposes that for a trigger (R, π) there is no

extension of π that maps the head of R to F . Since D|F ′ generates a factbase included

in the factbase generated by D we conclude that R-applicability is preserved. �

Note however that when D is breadth-first, it not ensured that its restriction induced

by F ′ is still breadth-first (because the rank exhaustivness might not be satisfied). It is

actually the case for the oblivious chase (since all triggers are always applied), but not

for the other variants since some rule applications that would be possible from F ′ have

not been performed in D because they were redundant in D given the whole F . The

next examples illustrate these cases.
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Example 9 (Semi-oblivious chase).

Let F = {p(a, b), r(a, c)} and R = {R1 = p(x, y) → r(x, y);R2 = r(x, y) →
∃z q(x, z);R3 = r(x, y) → t(y)}. Let D be the (non terminating) breadth-first deriva-

tion of depth 2 from F whose sequence of associated triggers is (R1, π1), (R3, π2),
(R2, π2), (R3, π1) with π1 = {x 7→ a, y 7→ b} and π2 = {x 7→ a, y 7→ c} which pro-

duces r(a, b), t(c), q(a, z(R2,π2)), t(b); the trigger (R2, π1) is then O-applicable but not

SO-applicable, as it maps equally the frontier variables as (R2, π2). Let F ′ = {p(a, b)}.

The restriction of D induced by F ′ includes only (R1, π1), (R3, π1) and is a SO-chase

derivation of depth 2, however it is not breadth-first since now (R2, π1) is SO-applicable

at rank 2 (thus the rank exhaustiveness is not satisfied). △

Example 10 (Restricted chase).

Let F = {p(a, b), q(a, c)} and R = {R1 = p(x, y) → r(x, y);R2 = r(x, y) →
∃z q(x, z);R3 = r(x, y) → t(x)}. Let D be the (terminating) breadth-first derivation

of depth 2 from F whose sequence of associated triggers is (R1, π), (R3, π) with π =
{x 7→ a, y 7→ b} which produces {p(a, b), q(a, c), r(a, b), t(a)}; note that the trigger

(R2, π) is SO-applicable but not R-applicable because of the presence of q(a, c) in F .

Let F ′ = {p(a, b)}. The restriction of D induced by F ′ is a restricted chase derivation

of depth 2, however it is not breadth-first since now (R2, π) is R-applicable at rank 2 and

thus has to be applied (to ensure the rank exhaustiveness of a breadth-first derivation).

△

Previous examples illustrate the need for a more appropriate property focusing on

breadth-first derivations. Hence, we define another property, namely consistent hered-

ity, which ensures that the restriction of a breadth-first derivation D induced by F ′ can

be extended to a breadth-first derivation (still from F ′). When we consider breadth-first

X-chases, heredity implies consistent heredity.

Definition 8. The X-chase is said to be consistently hereditary if for any factbase F
and any breadth-first X-chase derivation D from F and R, the restriction of D induced

by F ′ ⊆ F is a subderivation of a breadth-first X-chase derivation D′ from F ′ and R.⊣

Proposition 4. The X-chase is consistently hereditary for X ∈ {O,SO,R}.

Proof: Let D be a breadth-first X-chase derivation from F and R and D|F ′ the restric-

tion of D induced by F ′ ⊆ F .

Case O Since D is breadth-first, it is rank compatible, and since the ordering of triggers

is preserved in D|F ′ we get that D|F ′ is rank compatible. Similarly by the rank exhaus-

tiveness of D, all triggers which are descendants of F ′ appear in D, so D|F ′ is also rank

exhaustive. Hence D|F ′ is breadth-first.

Case SO As in the O case, we can easily see that triggers in D|F ′ are ordered by

rank. Now, suppose that D|F ′ is not rank exhaustive, i.e., there are rule applications

(descendants of F ′) that were skipped in D because they mapped the frontier variables

of a rule R in the same way that earlier rule applications (using atoms from F \F ′) did.

Then new triggers will be applicable in D|F ′ .

Let D′ be a derivation, called the breadth first completion of D|F ′ , constructed as

follows: for every breadth-first level κ, after sequentially applying all triggers of D|F ′ of
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rank κ that are still SO-applicable, we complete this rank by applying all other possible

SO-applicable triggers of rank κ (in any order).

By construction, D′ is a breadth-first SO-chase derivation. We will now show that

it is actually a completion of D|F ′ , in the sense that D|F ′ is a subderivation of D′.

Indeed, suppose that the addition of a new trigger (R, π) at rank κ in D′ cancels the

SO-applicability of a trigger (R, π′) at rank κ′ > κ in D|F ′ . So (R, π) is “frontier-

equal” with (R, π′). Then, since (R, π) is not in D, and D is rank-exhaustive, there

is a “frontier-equal” trigger (R, πD) in D at rank κD ≤ κ; this is not possible since

(R, πD) would also be frontier-equal to (R, π′), which would both belong to D, which

contradicts the fact that D is a SO-chase derivation.

Case R Let D′ be the breadth first completion of D|F ′ constructed similarly as in the

previous case: for every breadth-first level κ, after sequentially applying all triggers

of D|F ′ of rank κ that are still R-applicable, we complete this rank by applying all

other possible R-applicable triggers of rank κ (in any order). By construction, D′ is a

breadth-first R-chase derivation.

We will also show that D|F ′ is a subderivation of D′. We do so by contradiction.

Let (R, π) be the first trigger of D|F ′ that does not appear in D′.

We denote by F̂ ′ the resulting factbase after applying all the triggers that precede

(R, π) in D|F ′ and by G the resulting factbase after applying all triggers of D′ up to

(R, π) (excluding (R, π)). Let (R1, π1), ..., (Rm, πm) be the triggers that were not R-

applicable in D but were R-applicable in D′ and added before (R, π). It holds that

G = F̂ ′ ∪ πs
1(H1) ∪ · · · ∪ πs

m(Hm).

Now, we have assumed that (R, π) is not R-applicable on G, hence not present in

D′. So, by the condition of R-applicability, there exists a homomorphism σ : πs(H) →
G (so also σ(πs(H)) ⊆ G), which behaves as the identity on π(B). We denote with Fi

the factbase produced just before applying (R, π) on D. We have that F̂ ′ ⊆ Fi, hence

we get that G ⊆ Fi ∪ πs
1(H1) ∪ · · · ∪ πs

m(Hm) and therefore we also have

σ(πs(H)) ⊆ Fi ∪ πs
1(H1) ∪ · · · ∪ πs

m(Hm) (3)

Now, because (R1, π1), ..., (Rm, πm) were not R-applicable in D we know that there

exist respective homomorphisms σj : πs
j (Hj) → Fi (so also σj(π

s
j (Hj)) ⊆ Fi), that

behave as the identity on πj(Bj), for all j ∈ {1, ...,m}. As the domains of all σj

restricted to existential variables are disjoint, and σj are the identity on non-existential

variables, we can define the substitution σ̇ :=

m
⋃

i=1

σi. By applying σ̇ to both sides of (3)

we get

σ̇ ◦ σ(πs(H)) ⊆ σ̇
(

Fi ∪ πs
1(H1) ∪ · · · ∪ πs

m(Hm)
)

(4)

which, considering that σ̇
(

Fi ∪ πs
1(H1) ∪ · · · ∪ πs

m(Hm)
)

⊆ Fi, yields

σ̇ ◦ σ(πs(H)) ⊆ Fi (5)

The homomorphism σ̇ ◦ σ can only substitute the set of newly created variables in

πs(H), hence qualifies as an extension of π, and from (5) we conclude that (R, π) is
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not R-applicable in D. That is a contradiction, hence it must be the case that (R, π) is

indeed R-applicable in D′. Therefore we have shown that all triggers of D|F ′ appear in

D′, so indeed D|F ′ is a subderivation of a breadth-first R-chase derivation from F ′. �

The next property exploits the notion of consistent heredity to bound the size of the

factbases that have to be considered.

Proposition 5. Let b be the maximum number of atoms in the bodies of the rules of a

ruleset R. Let X be any consistently hereditary chase. If there exist an F and a breadth-

first X-chase R-derivation from F that is of depth at least k, then there exist an F ′ of

size |F ′| ≤ bk and a breadth-first X-chase R-derivation from F ′ with depth at least k.

Proof: Let D be a breadth-first X-chase derivation from F and R of depth k. Let (R, π)
be a trigger of D of depth k. Let F ′ be the set of ancestors of (R, π) in F , and by

Lemma 1 we know that |F ′| ≤ bk. Since the X-chase is consistently hereditary, the

restriction D|F ′ (which trivially includes (R, π)) is a subderivation of a breadth-first

X-chase derivation D′ from F ′ and R. According to the proof of proposition 4, for

all three consistently hereditary chase variants, D′ was constructed as a breadth-first

completion of D, therefore the ranks of common triggers are preserved from D to D|F ′

and D′. And since D′ includes (R, π) in its sequence of associated rule applications,

we have that (R, π) has also rank k in D′, hence D′ is of depth at least k. �

We are now ready to prove the main result.

Theorem 1. Determining if a set of rules is X-k-bounded is decidable for any con-

sistently hereditary chase variant X. This is in particular the case for the oblivious,

semi-oblivious and restricted chase variants.

Proof: By Proposition 5, to check if all breadth-first X-chase derivations from R (with

any factbase) are of depth at most k, it suffices to verify this property on all factbases

of size less or equal to bk. For a given factbase F , there is a finite number of (breadth-

first) X-chase derivations from F and R of depth at most k, hence we can effectively

compute these derivations, and check if one of them can be extended to a derivation of

depth k + 1. �

Finally, the following example shows that the E-chase (hence the core chase as well) is

not consistently hereditary (hence not hereditary, as it the E-chase is breadth-first).

Example 11 (Equivalent chase). Let F = {s(b), p(a, a), p(a, b), p(b, c)} and R the

following set of rules:

R1 = s(y) ∧ p(y, z) ∧ p(w, z) ∧ r(w) → q(w)
R2 = p(x, y) ∧ p(y, z) → t(y)
R3 = p(x, x) ∧ p(x, y) ∧ p(y, z) → ∃w

(

p(w, z) ∧ r(w)
)

R4 = t(y) → r(y)
R5 = p(x, y) → ∃u p(u, x)

Here we can verify that any exhaustive E-chase derivation from F and R is of depth

3. Consider such a derivation D that adds atoms in the following specific order at each

breadth-first level (for clarity, we do not use standardized names for the nulls):



On the k-Boundedness for Existential Rules 17

0 : s(b), p(a, a), p(a, b), p(b, c)
1 : t(a), t(b), p(w1, c), r(w1), p(w2, b), r(w2), p(w3, a), r(w3)
2 : q(w1), r(a), r(b), p(u1, w1)
3 : q(b)

Below is a graphical representation of this derivation, where nodes are atoms and edges

are colored according to different triggers:

p(a, b) p(b, c)p(a, a)s(b)

r(a) r(b) q(w1) p(u1, w1)

q(b)

t(a) t(b) p(w1, c) r(w1) r(w2)p(w2, b) p(w3, a) r(w3)

(R2, π1)

(R2, π2)

(R3, π3)

(R3, π4)

(R3, π5)

(R4, π6)

(R4, π7)

(R5, π8)

(R1, π9)

(R5, π10)

At step 1, R2 is applied twice, producing t(a) and t(b), and R3 is applied three times,

producing p(w1, c), r(w1), p(w2, b), r(w2), p(w3, a) and r(w3). Note that R1 and R4

are not applicable, and R5 is not E-applicable because it would produce redundant

atoms. At step 2,R1 is applied once (producing q(w1)), R2 andR3 are notE-applicable,

R4 is applied twice, and R5 is applied once (producing p(u1, w1)). Finally, at step 3,

R1 is applied, which makes all further triggers redundant, hence no other rule is E-

applicable.

Let F ′ = F \ {s(b)}. Let DF ′ be the restriction of D induced by F ′. Here is a

graphical representation of DF ′ :
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p(a, b) p(b, c)p(a, a)s(b)

r(a) r(b) q(w1) p(u1, w1)

q(b)

t(a) t(b) p(w1, c) r(w1) r(w2)p(w2, b) p(w3, a) r(w3)

(R2, π1)

(R2, π2)

(R3, π3)

(R3, π4)

(R3, π5)

(R4, π6)

(R4, π7)

(R5, π8)

(R1, π9)

(R5, π10)

At level 2, DF ′ still produces r(a), r(b) and p(u1, w1) but not q(w1), and there is no

step 3 because R1 is not applicable. We can see that DF ′ is not an E-chase derivation

because the application of R5 at step 2 (which produces p(u1, w1)) is now redundant

(this is due to the absence of q(w1)). This already shows that the E-chase is not hered-

itary. Moreover, we can check on DF ′ that no rule application before the application of

R5 is able to add information on w1 that would make R5 E-applicable at step 2. Hence,

DF ′ is not contained in any E-chase derivation from F ′, which shows that the E-chase

is not consistently hereditary. Note also that any exhaustive E-chase derivation from F ′

is of depth 2 and not 3 as from F . △

5 Conclusion

In this paper, we investigated the problem of determining whether a ruleset is k-

bounded, that is when the chase always halts within a predefined number of steps inde-

pendently of the factbase. After discussing the concept of boundedness in breadth-first

derivations, we have shown that k-boundedness is decidable for some important chase

variants by establishing a common property that ensures decidability, namely “consis-

tent heredity”. The complexity of the problem is independent from any data since the

size of the factbases to be checked depends only on k and the size of the rule bodies.

Our results indicate an EXPTIME upper bound for checking k-boundedness for both

the O-chase and the SO-chase. For the R-chase, as the order of the rule applications

matters, one needs to check all possible derivations. This leads to a 2-EXPTIME upper

bound for the R-chase. We leave for further work the study of the precise lower com-

plexity bound according to each kind of chase. Finally, we leave open the question of

the decidability of the k-boundedness for the core (or equivalent) chase.
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