
HAL Id: lirmm-01921718
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01921718

Submitted on 14 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Polyglot Query Processing on Heterogeneous
Cloud Data Stores with LeanXcale

Boyan Kolev, Oleksandra Levchenko, Esther Pacitti, Patrick Valduriez,
Ricardo Vilaça, Rui C. Gonçalves, Ricardo Jiménez-Peris, Pavlos Kranas

To cite this version:
Boyan Kolev, Oleksandra Levchenko, Esther Pacitti, Patrick Valduriez, Ricardo Vilaça, et al.. Par-
allel Polyglot Query Processing on Heterogeneous Cloud Data Stores with LeanXcale. IEEE Inter-
national Conference on Big Data (Big Data 2018), Dec 2018, Seattle, United States. pp.1757-1766,
�10.1109/BigData.2018.8622187�. �lirmm-01921718�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01921718
https://hal.archives-ouvertes.fr

Parallel Polyglot Query Processing on Heterogeneous Cloud Data Stores with
LeanXcale

Boyan Kolev, Oleksandra Levchenko, Esther
Pacitti, Patrick Valduriez

Inria & LIRMM, University of Montpellier
Montpellier, France

e-mail: firstname.lastname@inria.fr

Ricardo Vilaça1, Rui Gonçalves1, Ricardo
Jiménez-Peris1, Pavlos Kranas1,2

1 LeanXcale
2 Distributed Systems Lab UPM

Madrid, Spain
{ricardo.vilaca,rui.goncalves,rjimenez,pavlos}@leanxcale.com

Abstract—The blooming of different cloud data stores has
turned polystore systems to a major topic in the nowadays
cloud landscape. Especially, as the amount of processed data
grows rapidly each year, much attention is being paid on
taking advantage of the parallel processing capabilities of the
underlying data stores. To provide data federation, a typical
polystore solution defines a common data model and query
language with translations to API calls or queries to each data
store. However, this may lead to losing important querying
capabilities. The polyglot approach of the CloudMdsQL query
language allows data store native queries to be expressed as
inline scripts and combined with regular SQL statements in
ad-hoc integration queries. Moreover, efficient optimization
techniques, such as bind join, can still take place to improve
the performance of selective joins. In this paper, we introduce
the distributed architecture of the LeanXcale query engine that
processes polyglot queries in the CloudMdsQL query language,
yet allowing native scripts to be handled in parallel at data
store shards, so that efficient and scalable parallel joins take
place at the query engine level. The experimental evaluation of
the LeanXcale parallel query engine on various join queries
illustrates well the performance benefits of exploiting the
parallelism of the underlying data management technologies in
combination with the high expressivity provided by their
scripting/querying frameworks.

Keywords- polystores; cloud computing; query processing

I. INTRODUCTION
A major trend in cloud computing and data management

is the understanding that there is no “one size fits all”
solution [22]. Thus, there has been a blooming of different
NoSQL cloud data management infrastructures, distributed
file systems (e.g. Hadoop HDFS), and big data processing
frameworks (e.g. Hadoop MapReduce, Apache Spark, or
Apache Flink), specialized for different kinds of data and
tasks and able to scale and perform orders of magnitude
better than traditional relational DBMS. This has resulted in
a rich offering of services that can be used to build cloud
data-intensive applications that can scale and exhibit high
performance. However, this has also led to a wide
diversification of DBMS interfaces and the loss of a common
programming paradigm, which makes it very hard for a user
to efficiently integrate and analyze her data sitting in
different data stores.

For example, let us consider a banking institution that
keeps its operational data in a SQL database, but stores data
about bank transactions in a document database, because
each record typically contains data in just a few fields, so
they make use of the semi-structured nature of documents.
And because of the big volumes of data, both databases are
sharded into multiple nodes in a cluster. On the other hand, a
web application appends data to a big log file, stored in
HDFS. In this context, an analytical query that involves
datasets from both databases and the HDFS file would face
three major challenges. First, in order to execute efficiently,
the query needs to be processed in parallel, taking advantage
of parallel join algorithms. Second, in order to do this, the
query engine must be able to retrieve in parallel the partitions
from the underlying data stores. And third, the query needs
to be expressive enough, so as to combine an SQL subquery
(to the relational database or the HDFS log file through an
SQL engine, e.g. Hive) with an arbitrary code in a scripting
language (e.g. JavaScript) that requests a dataset from the
document database. Existing polystore solutions provide
SQL mappings to document collections. However, this leads
to limitations of important querying capabilities, as the
underlying schema may be very far from relational and data
transformations need to take place before being involved in
relational operations. Therefore, we rather focus our work on
leveraging the underlying data stores’ scripting (querying)
mechanisms.

A number of polystores that have been recently proposed
partially address our problem. In general, they provide
integrated access to multiple, heterogeneous data stores
through a single query engine. Loosely-coupled polystores
[5,9,10,17,18,21,25] typically respect the autonomy of the
underlying data stores and rely on a mediator/wrapper
approach to provide mappings between a common data
model / query language and each particular data store’s data
model. CloudMdsQL [13,15] even allows data store native
queries to be expressed as inline scripts and combined with
regular SQL statements in ad-hoc integration queries.
However, even when they access parallel data stores,
loosely-coupled polystores typically do centralized access,
and thus cannot exploit parallelism for performance. Another
family of polystore systems [1,8,11,16,26] uses a tightly-
coupled approach in order to trade data store autonomy and
query expressivity for performance. In particular, much

attention is being paid on the integration of unstructured big
data (e.g. produced by web applications), typically stored in
HDFS, with relational data, e.g. in a (parallel) data
warehouse. Thus, tightly-coupled systems take advantage of
massive parallelism by bringing in parallel shards from
HDFS tables to the SQL database nodes and doing parallel
joins. But they are limited to accessing only specific data
stores, usually with SQL mappings of the data stores’ query
interfaces. However, according to a recent benchmarking
[14], using native queries directly at the data store yields a
significant performance improvement compared to mapping
native datasets and functions to relational tables and
operators. Therefore, what we want to provide is a hybrid
system that combines high expressivity (through the use of
native queries) with massive parallelism and optimizability.

In this paper, we present a query engine that addresses
the afore-mentioned challenges of parallel multistore query
processing. To preserve the expressivity of the underlying
data stores’ query/scripting languages, we use the polyglot
approach provided by the CloudMdsQL query language,
which also enables the use of bind joins to optimize the
execution of selective queries. And to enable the parallel
query processing, we incorporated the polyglot approach
within the LeanXcale1 Distributed Query Engine (DQE),
which provides a scalable database that operates over a
standard SQL interface.

The rest of this paper is organized as follows. Section 2
gives an overview of the query language and its polyglot
capabilities. Section 3 discusses the distributed architecture
of LeanXcale query engine. Our major contribution is
presented in Section 4, where we describe the architectural
extensions that turn the DQE into a parallel polyglot
polystore system. Section 5 presents the experimental
evaluation of various parallel join queries across data stores
using combined SQL and native queries. Section 6 discusses
related work. Section 7 concludes.

II. LANGUAGE OVERVIEW
The CloudMdsQL language is SQL-based with the

extended capabilities for embedding subqueries expressed in
terms of each data store’s native query interface.

A. Query Language
The design of the query language is based on the

assumption that the programmer has deep expertise and
knowledge about the specifics of the underlying data stores,
as well as awareness about how data are organized across
them. Queries that integrate data from several data stores
usually consist of native subqueries and an integration
SELECT statement. A subquery is defined as a named table
expression, i.e., an expression that returns a table and has a
name and signature. The signature defines the names and
types of the columns of the returned relation. A named table
expression can be defined by means of either an SQL
SELECT statement (that the query compiler is able to
analyze and possibly rewrite) or a native expression (that the

1 http://www.leanxcale.com

query engine considers as a black box and delegates its
processing directly to the data store). For example, the
following simple CloudMdsQL query contains two
subqueries, defined by the named table expressions T1 and
T2, and addressed respectively against the data stores rdb
(an SQL database) and mongo (a MongoDB database):
T1(x int, y int)@rdb = (SELECT x, y FROM A)
T2(x int, z array)@mongo = {*
 return db.A.find({x: {$lt: 10}}, {x:1, z:1});
*}
SELECT T1.x, T2.z FROM T1, T2
WHERE T1.x = T2.x AND T1.y <= 3

The two subqueries are sent independently for execution
against their data stores in order the retrieved relations to be
joined at query engine level. The SQL table expression T1 is
defined by an SQL subquery, while T2 is a native
expression (identified by the special bracket symbols {* *})
expressed as a native MongoDB call. The subquery of
expression T1 is subject to rewriting by pushing into it the
filter condition y <= 3, to increase efficiency.

CloudMdsQL allows named table expressions to be
defined as functions in a scripting language (e.g., Python,
JavaScript), which is useful for querying data stores that
have only API-based query interface. A scripting expression
can either yield tuples to its result set (like a user-defined
table function) or return an iterable object that represents the
result set (like in the MongoDB example above).

B. Bind Join
CloudMdsQL uses bind join as an efficient method for

performing semi-joins across heterogeneous data stores that
uses subquery rewriting to push the join conditions. For
example, the list of distinct values of the join attribute(s),
retrieved from the left-hand side subquery, is passed as a
filter to the right-hand side subquery. To illustrate it, let us
consider the following CloudMdsQL query:
A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a)
B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b)
SELECT a.x, b.y FROM b JOIN a ON b.id = a.id

Let us assume that the optimizer has decided to use the
bind join method and that the join condition will be bound to
the right-hand side of the equi-join operation. First, the
relation B is retrieved from the corresponding data store
using its query mechanism. Then, the distinct values of B.id
are used as a filter condition in the query that retrieves the
relation A from its data store. Assuming that the distinct
values of B.id are b1 … bn, the query to retrieve the right-
hand side relation of the bind join uses the following SQL
approach (or its equivalent according to the data store’s
query language), thus retrieving from A only the rows that
match the join criteria:
SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn)

The way to do the bind join analogue for native queries is
through the use of a JOINED ON clause in the named table
signature, like in the named table A below, defined as a
MongoDB script.

A(id int, x int JOINED ON id
 REFERENCING OUTER AS b_keys)@mongo =
{* return db.A.find({id: {$in: b_keys}}); *}

Thus, when A.id participates in an equi-join, the values
b1,…,bn are provided to the script code through the
iterator/list object b_keys (in this context, we refer to the
table B as the “outer” table, and b_keys as the outer keys).

III. LEANXCALE ARCHITECTURE OVERVIEW
The LeanXcale database has derived its OLAP query

engine from Apache Derby, a Java-based open-source SQL
database. Apache Derby is a centralized OLTP database.
LeanXcale database is a scalable distributed Full ACID Full
SQL database with OLTP and OLAP support. LeanXcale
has three main subsystems: the query engine, the
transactional engine and the storage engine, all three
distributed and highly scalable (i.e. to 100s of nodes). The
query engine is a distributed MPP engine that process OLAP
workloads over the operational data, so that analytical
queries are answered over real-time data. LeanXcale, thus,
enables to avoid ETL processes to migrate data from
operational databases to data warehouses by providing both
functionalities in a single database manager. The parallel
implementation of the query engine for OLAP queries
follows the single-program multiple data (SPMD) approach
[6], where multiple symmetric workers (threads) on different
query instances execute the same query/operator, but each of
them deals with different portions of the data. In this section
we provide a brief overview of the query engine distributed
architecture.

Figure 1 illustrates the architecture of LeanXcale’s
Distributed Query Engine (DQE). Applications connect to
one of the multiple DQE instance running, which exposes a
typical JDBC interface to the applications, with support for
SQL and transactions. The DQE executes the applications'
requests, handling transaction control, and updating data, if
necessary. The data itself is stored on a proprietary relational
key-value store, KiVi, which allows for efficient horizontal
partitioning of LeanXcale tables and indexes, based on the
primary key or index key. Each table is stored as a KiVi
table, where the key corresponds to the primary key of the
LeanXcale table and all the columns are stored as they are
into KiVi columns. Indexes are also stored as KiVi tables,
where the index keys are mapped to the corresponding
primary keys. This model enables high scalability of the
storage layer by partitioning tables and indexes across KiVi
Data Servers (KVDS).

This architecture scales by allowing analytical queries to
execute in parallel, in this way supporting intra-query and
intra-operator parallelism. For parallel query execution,
the initial connection (which creates the master worker) will
start additional connections (workers), all of which will
cooperate on the execution of the queries received by the
master.

When a parallel connection is started, the master worker
starts by determining the available DQE instances, and it
decides how many workers will be created on each instance.
For each additional worker needed, the master then creates a

thread, which initiates a JDBC connection to the worker.
Each JDBC connection is initialized as a worker, creating a
communication end-point for an overlay network to be used
for intra-query synchronization and data exchange. After the
initialization of all workers the overlay network is connected.
After this point, the master is ready to accept queries to
process.

Figure 1. DQE distributed architecture.

As queries are received, query plans are broadcast and
processed by all workers. For parallel execution, an
optimization step is added, which transforms the generated
sequential query plan into a parallel one. This transformation
involves replacing table scans with parallel table scans, and
adding shuffle operators to make sure that, in stateful
operators (such as Group By, or Join), related rows are
handled by the same worker. Parallel table scans will divide
the rows from the base tables among all workers, i.e., each
worker will retrieve a disjoint subset of the rows during table
scans. This is done by dividing the rows and scheduling the
obtained subsets to the different DQE instances. Each worker
then processes the rows obtained from subsets scheduled to
its DQE instance, exchanging rows with other workers as
determined by the shuffle operators added to the query plan.

Let us consider the query Q1 below, which we will use as
a running example throughout the paper to illustrate the
different query processing modes. The query assumes a
TPC-H [24] schema.
Q1: SELECT count(*)
 FROM LINEITEM L, ORDERS O
 WHERE L_ORDERKEY = O_ORDERKEY
 AND L_QUANTITY < 5

This query is parsed into a query execution plan, where
leaf nodes correspond to tables or index scans. The master
worker then broadcasts to all workers the generated query
plan, with the additional shuffle operators (Figure 2a). Then,
the DQE scheduler assigns evenly all database shards across
all workers. To handle the leaf nodes of the query plan, each
worker will do table/index scans only at the assigned shards.
Let us assume for simplicity that the DQE launches the same
number of workers as KVDS servers, so each worker
connects to exactly one KVDS server and reads the partition
of each table that is located in that KVDS server. Then
workers execute in parallel the same copy of the query plan,
exchanging rows across each other at the shuffle operators
(marked with an S box).

in
de

pe
nd

en
t s

ca
le

 o
ut

in
de

pe
nd

en
t s

ca
le

 o
ut

KV Store
(KiVi)

KV Master
Server

KV Data
Server

KV Data
Server

KV Data
Server

Query Engine

QE
KVClient

QE
KVClient

QE
KVClient

QE
KVClient

OLAP
Application

App
Elastic Drv

JDBC Drv

App
Elastic Drv

JDBC Drv

Txn Engine Txn Txn Txn

(a) with shuffles

(b) with broadcasts

Figure 2. Query processing in parallel mode.

To process joins, the query engine may use different
strategies. First, to exchange data across workers, shuffle or
broadcast methods can be used. The shuffle method is
efficient when both sides of a join are quite big; however, if
one of the sides is relatively small, the optimizer may decide
to use the broadcast approach, so that each worker has a full
copy of the small table, which is to be joined with the local
partition of the other table, thus avoiding the shuffling of
rows from the large table (Figure 2b). Apart from the data
exchange operators, the DQE supports various join methods
(hash, nested loop, etc.), performed locally at each worker
after the data exchange takes place.

IV. PARALLEL POLYGLOT QUERY PROCESSING ACROSS
DATA STORES

LeanXcale DQE is designed to integrate with arbitrary
data management clusters, where data resides in its natural
format and can be retrieved (in parallel) by running specific
scripts or declarative queries. These can range from
distributed raw data files, through parallel SQL databases, to
sharded NoSQL databases (such as MongoDB, where
queries can be expressed as JavaScript programs). This turns
LeanXcale DQE into a powerful “big data lake” polyglot
query engine that can process data from its original format,
taking full advantage of both expressive scripting and
massive parallelism. Moreover, joins across any native
datasets, including LeanXcale tables, can be applied,
exploiting efficient parallel join algorithms. Here we
specifically focus on parallel joins between a relational table
and the result of a JavaScript subquery to MongoDB, but the
concept relies on an API that allows its generalization to
other script engines and data stores as well. To enable ad-hoc
querying of an arbitrary data set, using its scripting
mechanism, and then joining the retrieved result set at DQE
level, DQE processes queries in the CloudMdsQL query
language, where scripts are wrapped as native subqueries.

To better illustrate the necessity of enabling user-defined
scripts to MongoDB as subqueries, rather than defining SQL
mappings to document collections, let us consider the
following MongoDB collection orders that has a highly
non-relational structure:
{order_id: 1, customer: "ACME", status: "O",
 items: [
 {type: "book", title: "Book1", author: "A.Z."},
 {type: "phone", brand: "Samsung", os: "Android"}

] }, ...

Each record contains an array of item objects whose
properties differ depending on the item type. A query that
needs to return a table listing the title and author of all books
ordered by a given customer, would be defined by means of
a flatMap operator in JavaScript, following a MongoDB
find() operator. The example below wraps such a subquery
as a CloudMdsQL named table:
BookOrders(title string, author string)@mongo = {*
 return db.orders.find({customer: "ACME"})
 .flatMap(function(v) {
 var r = [];
 v.items.forEach(function(i){
 if (i.type == "book")
 r.push({title:i.title, author:i.author});
 });
 return r; });
*}

And if this table has to be joined with a LeanXcale table
named authors, this can be expressed directly in the main
SELECT statement of the CloudMdsQL query:
SELECT B.title, B.author, A.nationality
FROM BookOrders B, Authors A
WHERE B.author = A.name

Furthermore, we aim at processing this join in the most
efficient way, i.e. in parallel, by allowing parallel handling of
the MongoDB subquery and parallel retrieval of its result set.

By processing such queries, DQE takes advantage of the
expressivity of each local scripting mechanism, yet allowing
for results of subqueries to be handled in parallel by DQE
and involved in operators that utilize the intra-query
parallelism. The query engine architecture is therefore
extended to access in parallel shards of the external data
store through the use of DataLake distributed wrappers that
hide the complexity of the underlying data stores’
query/scripting languages and encapsulate their interfaces
under a common DataLake API to be interfaced by the query
engine.

Figure 3. Generic architecture extension for accessing external data

stores.

A. DataLake API
For a particular data store, each DQE worker creates an

instance of the DataLake wrapper that is generally used for
querying and retrieval of shards of data. Each wrapper
typically uses the client API of the corresponding data
management cluster and implements the following DataLake

KV Data
Server

W1

App

KV Data
Server

W2

KV Data
Server

Wn

Q1

KV Data
Server

W1

App

KV Data
Server

W2

KV Data
Server

Wn

Q1

in
de

pe
nd

en
t s

ca
le

 o
ut

in
de

pe
nd

en
t s

ca
le

 o
ut

External
Data
Store DS

Shard
DS

Shard
DS

Shard

Query Engine

QE

Wrapper

DSClient

QE

Wrapper

DSClient

QE

Wrapper

DSClient

QE

Wrapper

DSClient

OLAP
Application App

JDBC Drv

App
JDBC Drv

DataLake API

API methods to be invoked by the query engine in order to
provide parallel retrieval of shards (Figure 3).

The method init(ScriptContext) requests the execution of
a script to retrieve data from the data store. It provides
connection details to address the data store and the script as
text. It may also provide parameter values, if the
corresponding named table is parameterized. Normally, the
wrapper does not initiate the execution of the script before a
shard is assigned by the setShard method (see below).

After the initialization, the DQE selects one of the
wrapper instances (the one created by the master worker) as
a master wrapper instance. The method Object[] listShards()
is invoked by the DQE only to the master wrapper to provide
a list of shards where the result set should be retrieved from.
Each of the returned objects encapsulates information about
a single shard, which is implementation-specific, therefore
transparent for the query engine. Such an entry may contain,
for example, the network address of the database shard, and
possibly a range of values of the partition key handled by
this shard. Since the query engine is unaware of the structure
of these objects, the wrapper provides additional methods for
serializing and deserializing shard entries, so that DQE can
exchange them across workers.

Having obtained all the available shards, the DQE
schedules the shard assignment across workers and invokes
the method setShard(Object shard) to assign a shard to a
particular wrapper instance. Normally, this is the point where
the connection to the data store shard takes place and the
script execution is initiated. This method might be invoked
multiple times to a single wrapper instance, in case there are
more shards than workers.

Using the method boolean next(Object[] row), the query
engine iterates through a partition of the result set, which is
retrieved from the assigned shard. When this iteration is
over, the DQE may assign another shard to the wrapper
instance.

By interfacing wrappers through the DataLake API, the
DQE has the possibility to retrieve in parallel disjoint subsets
of the result set, much like it does with LeanXcale tables. A
typical wrapper implementation should use a scripting
engine and/or a client library to execute scripts (client- or
server-side) against the data store.

B. Implementation for MongoDB
In this section, we introduce the design of the distributed

MongoDB wrapper. The concept of parallel querying against
a MongoDB cluster is built on the assumption that each DQE
worker can access directly a MongoDB shard, bypassing the
MongoDB router in order to sustain parallelism. This,
however, forces the DQE to define certain constraints for
parallel processing of document collection subqueries, in
order to guarantee consistent results, which is normally
guaranteed by the MongoDB router. The full scripting
functionality of MongoDB JavaScript library is still
provided, but in case parallel execution constraints fail, the
execution falls back to a sequential one. First, the wrapper
verifies that the MongoDB balancer is not running in
background, because otherwise it may be moving chunks of
data across MongoDB shards at the same time the query is

being executed, which may result in inconsistent reads. For
an optimal operation of the parallel analytics engine, for
example, the database administrator may schedule the
balancer to be active only in not intensive for the analytics
engine hours. Second, the subquery should use only stateless
operators (Op) on document collections, as they are
distributive over the union operator. In other words, for any
disjoint subsets (shards) S1 and S2 of a document collection
C, Op(S1)∪Op(S2) = Op(S1∪S2) must hold, so that the
operator execution can be parallelized over the shards of a
document collection while preserving the consistency of the
resulting dataset. In our current work, we specifically focus
on enabling the parallel execution of filtering, projection
(map), and flattening operators with user-defined as
JavaScript functions transformations.

The distributed wrapper for MongoDB comprises a
number of instances of a Java class that implements the
DataLake API, each of which embeds a JavaScript scripting
engine that uses MongoDB’s JavaScript client library. To
support parallel data retrieval, we further enhance the client
library with JavaScript primitives that wrap standard
MongoCursor objects (usually returned by a MongoDB
JavaScript query) in ShardedCursor objects, which are aware
of the sharding of the underlying dataset. In fact,
ShardedCursor implements all DataLake API methods and
hence serves as a proxy of the API into the JavaScript
MongoDB client library. The client library is therefore
extended with the following document collection methods
that return ShardedCursor and provide the targeted operators
(find, map, and flat map) in user scripts.

The findSharded() method accepts the same
arguments as the native MongoDB find() operator, in
order to provide the native flexible querying functionality,
complemented with the ability to handle parallel iteration on
the sharded result set. Note that, as opposed to the behavior
of the original find() method, a call to findSharded()
does not immediately initiate the MongoDB subquery
execution, but only memorizes the filter condition (the
method argument), if any, in the returned ShardedCursor
object. This delayed iteration approach allows the DQE to
internally manipulate the cursor object before the actual
iteration takes place, e.g. to redirect the subquery execution
to a specific MongoDB shard. And since an instance of
ShardedCursor is created at every worker, this allows for the
parallel assignment of different shards.

In order to make a document result set fit the relational
schema required by a CloudMdsQL query, the user script
can further take advantage of the map() and flatMap()
operators. Each of them accepts as argument a JavaScript
mapper function that performs a transformation on each
document of the result set and returns another document
(map) or a list of documents (flatMap). Thus, a composition
of findSharded and map/flatMap (such as in the
BookOrders example above) makes a user script
expressive enough, so as to request a specific MongoDB
dataset, retrieve the result set in parallel, and transform it in
order to fit the named table signature and further be
consumed by relational operators at the DQE level.

Let us consider the following modification Q1
ML of query

Q1, which assumes that the LINEITEM table resides as a
sharded document collection in a MongoDB cluster and the
selection on it is expressed by means of the
findSharded() JavaScript method, while ORDERS is
still a LeanXcale table, the partitions of which are stored in
the KV storage layer.
Q1

ML: LINEITEM(L_ORDERKEY int, …)@mongo = {*
 return db.lineitem.findSharded(
 {l_quantity: {$lt: 5}});
 *}

 SELECT count(*)
 FROM LINEITEM L, ORDERS O
 WHERE L_ORDERKEY = O_ORDERKEY

Let us assume for simplicity the same number of DQE
workers, KVDS servers, and MongoDB shards, so each
worker gets exactly one partition of both tables by
connecting to one MongoDB shard (through a wrapper
instance) and one KVDS (Figure 4).

Figure 4. Parallel join between sharded datasets: LeanXcale table and

MongoDB collection.

The DQE initiates the subquery request by passing the
script code to each wrapper instance through a call to its
init() method. At this point, the ShardedCursor object
does not yet initiate the query execution, but only memorizes
the query filter object. Assuming that W1 is the master
worker, it calls the listShards() method of its wrapper
instance WR1 to query the MongoDB router for a list of
MongoDB shards (database instances identified by host
address and port), where partitions of the lineitem
collection are stored. The list of shards is then reported to the
DQE scheduler, which assigns one MongoDB shard to each
of the workers by calling the setShard() method. Each
worker then connects to the assigned shard and invokes the
find() method to a partition of the lineitem collection
using the memorized query condition, thus retrieving a
partition of the resulting dataset (if a flatMap or map
follows, it is processed for each document of that partition
locally at the wrapper). The dataset partition is then
converted to a partition of an intermediate relation, according
to the signature of the LINEITEM named table expression.
At this point, the DQE is ready to involve the partitioned

intermediate relation LINEITEM in the execution of a
parallel join with the native LeanXcale partitioned table
ORDERS.

C. Implementation for HDFS Files
The distributed HDFS wrapper is designed to access in

parallel tables stored as HDFS files, thus providing the
typical functionality of a tightly-coupled polystore, but
through the use of the DataLake API. We assume that each
accessed HDFS file is registered as table in a Hive metastore.
Therefore, a wrapper instance can use the Hive metastore
API to get schema and partitioning information for the
subqueried HDFS table and hence to enable iteration on a
particular split (shard) of the table. Note that Hive is
interfaced only for getting metadata, while the data rows are
read directly from HDFS. To better illustrate the flow, let us
consider another modification Q1

HL of query Q1, which
assumes that the LINEITEM table is stored as file in a
Hadoop cluster.
Q1

HL: SELECT count(*)
 FROM LINEITEM@hdfs L, ORDERS O
 WHERE L_ORDERKEY = O_ORDERKEY

Figure 5. Parallel join between LeanXcale and HDFS tables.

To schedule parallel retrieval of the LINEITEM table,
the DQE redirects the subquery to the HDFS wrapper,
preliminarily configured to associate the @hdfs alias with
the URI of the Hive metastore, which specifies how the file
is parsed and split. This information is used by the master
wrapper, which reports the list of file splits (instances of
Hive API’s InputSplit class) to the DQE scheduler
upon a call to the listShards() method. Then, the
scheduler assigns a split to each of the workers, which
creates a record reader on it in order to iterate through the
split’s rows (Figure 5).

V. EXPERIMENTAL EVALUATION
The goal of our experimental validation is to assess the

scalability of the query engine when processing integration
(join) queries across diverse data sources, as our major
objective is to be able to fully exploit both the massive
parallelism and high expressivity, provided by the underlying
data management technologies and their scripting
frameworks. We evaluate the scalability of processing a

W1

App

W2

KVDS

Wn

Q1

WR1 WR2 WRn

Mongo
Shard

KVDSMongo
Shard

KVDSMongo
Shard

Mongo
Router

listShards()

db.lineitem.find(…)

W1

App

W2

KVDS

Wn

Q1

WR1 WR2 WRn

HDFS
Split

KVDSHDFS
Split

KVDSHDFS
Split

Hive
metastore

getSplits()

createRecordReader(split)

particular query by varying the volume of queried data and
the level of parallelism and analyzing the corresponding
execution times. In particular, we strive to retain similar
execution times of a particular query when keeping the level
of parallelism (in number of data shards and workers)
proportional to the scale of data.

The experimental evaluation was performed on a cluster
of the GRID5000 platform2. Each node in the cluster runs on
two Xeon E5-2630 v3 CPUs at 2.4GHz, 16 logical cores per
CPU (i.e. 32 per node), 128 GB main memory, and the
network bandwidth is 10Gbps. The highest level of
parallelism is determined by the total number of cores in the
cluster. We performed the experiments varying the number
of nodes from 2 to 16 and the number of workers from 32 to
512 (several workers per node). All the three data stores and
the query engine are evenly distributed across all the nodes,
i.e. shards of each data store are collocated at each node. For
each experiment, the level of parallelism determines the
number of data shards, as well as the highest number of
workers, in accordance with the total number of cores in the
cluster. As the number of nodes did not show significance
compared to the number of workers, our experimental
conclusions refer only to the number of workers.

We performed our experiments in three general groups of
test cases, each having a distinct objective. All the queries
were run on a cluster of LeanXcale DQE instances, running
the distributed wrappers for MongoDB and Hive. For
comparison with the state of the art, the large scale test case
queries were also performed on a Spark SQL cluster, where
we used the MongoDB Spark connector to access MongoDB
shards in parallel.

A. Generic Scalability
The first group of test cases aims at generic evaluation of

the performance and scalability of joins across any pair of
the three involved data stores. The data used was based on
the TPC-H benchmark schema [24], particularly for the
tables LINEITEM, ORDERS, and CUSTOMER. All the
generated datasets were: loaded in LeanXcale as tables;
loaded in MongoDB as document collections; copied to the
HDFS cluster as raw CSV files, to be accessed through Hive
as tables. To perform the tests on different volumes of data,
the datasets were generated with three different scale factors
– 60GB, 120GB, and 240GB. Note that here we focus just
on the evaluation of joins; therefore, our queries involve only
joins over full scans of the datasets, without any filters.

The six queries used for this evaluation are variants of the
following:
Q1: SELECT count(*)
 FROM LINEITEM L, ORDERS O
 WHERE L_ORDERKEY = O_ORDERKEY

We will refer to them with the notation Q1XY, where X is
the first letter of the data store, from which LINEITEM is
retrieved, while Y refers to the location of ORDERS. For
example, Q1ML joins LINEITEM from MongoDB with
ORDERS from LeanXcale. Subqueries to MongoDB are

2 http://www.grid5000.fr

expressed natively in JavaScript and intermediate result sets
from MongoDB and HDFS retrieved in parallel, as described
in Section 4.

Figure 6. Execution times (in seconds) of Q1 queries on TPC-H data with

different scales of data (60, 120, and 240 GB) and different levels of
parallelism (32, 64, 128, 256, and 512 workers).

Figure 6 shows the performance measurements on
queries of the first test case, executing joins between
LINEITEM and ORDERS tables in any configuration of
pairs between the three data stores.

In general, the execution speed is determined by the
performance of processing the LINEITEM side of the join,
as this table is much larger than ORDERS. When
LINEITEM resides at LeanXcale, the performance is
highest, as the query engine processes it natively. For HDFS
tables, some overhead is added, due to data conversions,
communication with the Hive metastore, and possibly
accessing HDFS splits through the network. MongoDB
subqueries show lowest performance as data retrieval passes
through the embedded at each worker JavaScript interpreter.

All the graphs show reasonable speedup with increase of
the parallelism level. Moreover, the correspondence between
scale of data and parallelism level is quite stable. For
example, quite similar execution times are observed for
60GB with 64 workers, 120GB with 128 workers, and
240GB with 256 workers. This means that, as the volume of
data grows, performance can be maintained by simply
adding a proportional number of workers and data shards.

B. High Expressivity and Scalability
The second test case aims at the evaluation of highly

expressive JavaScript subqueries, such as the BookOrders
example from Section 4. The goal is to show that even with
more sophisticated subqueries, scalability is not
compromised. For the purpose, we created a MongoDB
nested document collection named Orders_Items, where
we combined the ORDERS and LINEITEM datasets as
follows. For each ORDERS row we created a document that
contains an additional array field items, where the
corresponding LINEITEM rows were added as
subdocuments. Each of the item subdocuments was assigned
a type field, the value of which was randomly chosen
between “book” and “phone”. Then, “title” and “author” fields
were added for the “book” items and “brand” and “os” – for
the “phone” items, all filled with randomly generated string
values. Thus, the following BookOrders named table was
used in the test queries:
BookOrders(custkey int, orderdate date,
 title string, author string)@mongo =
{*
 return db.orders_items.findSharded()
 .flatMap(function(doc) {
 var r = [];
 doc.items.forEach(function(i){
 if (i.type == "book")
 r.push({custkey: doc.custkey,
 orderdate: doc.orderdate,
 title: i.title, author: i.author});
 });
 return r; });
*}

We ran two queries under the same variety of conditions
– three different scale factors for the volume of data and
varying the level of parallelism from 32 to 512. Query Q2M
evaluates just the parallel execution of the BookOrders
script, while Q2ML involves a join with the CUSTOMER table
from the LeanXcale data store:
Q2

M: SELECT count(*) FROM BookOrders

Q2
ML: SELECT count(*)

 FROM BookOrders O, CUSTOMER C
 WHERE O.CUSTKEY = C.C_CUSTKEY

Figure 7. Execution times (in seconds) of Q2 queries on more

sophisticated JavaScript MongoDB subqueries with scales of data from 60
to 240 GB and levels of parallelism from 32 to 512.

Figure 7 shows the performance measurements of Q2
queries that stress on the evaluation of the parallel processing

of highly expressive JavaScript queries, with and without
join with a LeanXcale table. Similar conclusions on
performance and scalability can be done, like for the Q1
queries.

C. Large Scale and Bind Joins
The third test case evaluates the parallel polyglot query

processing in the context of much larger data. Q3 performs a
join between a 600GB version of the Orders_Items
collection (containing ~770 million documents and ~3
billion order items) and a LeanXcale table CLICKS of size
1TB, containing ~6 billion click log records.
Q3: SELECT O.CUSTKEY, O.TITLE, C.URL, O.ORDERDATE
 FROM CLICKS C, BookOrders O
 WHERE C.UID = O.CUSTKEY
 AND C.CLICKDATE = O.ORDERDATE
 AND C.IPADDR BETWEEN a AND b

The query assumes a use case that aims to find orders of
books made on the same day the customers visited the
website. The predicate C.IPADDR BETWEEN a AND b filters a
range of source IP addresses for the web clicks, which results
in selecting click data for a particular subset of user IDs. This
selectivity makes significant the impact of using bind join
within the native table BookOrders. The definition of the
named table is hence slightly modified, to allow for the bind
join to apply early filtering to reduce significantly the
amount of data processed by the MongoDB JavaScript
subquery:
BookOrders(custkey int, orderdate date,
 title string, author string
 JOINED ON custkey
 REFERENCING OUTER AS uids)@mongo =
{*
 return db.orders_items.findSharded(
 {custkey: {$in: uids}})
 .flatMap(function(doc) {...});
*}

The query executes by first applying the filter and
retrieving intermediate data from the CLICKS table, which is
not indexed, therefore a full scan takes place. The
intermediate data are then cached at the workers and a list of
distinct values for the UID column is pushed to the
MongoDB wrapper instances, to form the bind join
condition. We use the parameters a and b to control the
selectivity on the large table, hence the selectivity of the bind
join. We ran experiments varying the selectivity factor SF
between 0.02%, 0.2%, and 2%. Smaller values of SF result in
shorter lists of outer keys for the bind join condition and
hence faster execution of the BookOrders subquery.
However, when not using bind join, the predicate selectivity
does not affect significantly the query execution time, as full
scans take place on both datasets anyway.

For comparison with Spark SQL, the CLICKS dataset was
loaded as an HDFS file in order to be accessible by Spark.
To run an analogue of the BookOrders subquery through
the MongoDB connector for Spark SQL, we used the
MongoDB aggregation framework against the same sharded
collection in our MongoDB cluster as follows:

db.orders_items.aggregate([{$unwind: "$items"},
 {$match: {"items.type": "BOOK"}}, ...])

Figure 8 shows the times for processing Q3 queries with
Spark SQL, with LeanXcale without using bind join, and
with LeanXcale using bind join. The level of parallelism for
both storing and querying data is 512. Without bind join,
Spark SQL shows a slight advantage compared to LeanXcale
DQE, which is explainable by the overhead of the JavaScript
interpreting that takes place at DQE wrappers for MongoDB.
However, the ability for applying bind join that cannot be
handled with Spark SQL gives our approach a significant
advantage for selective queries, which is very useful in a
wide range of industrial scenarios.

Figure 8. Execution times (in seconds) of Q3 queries joining an expressive

JavaScript MongoDB subquery on a 600GB document collection with a
1TB click logs dataset. The level of parallelism was set to 512, i.e. 512

MongoDB shards, 512 LeanXcale DQE instances, and 512 Spark
executors. To assess bind join, SF varied between 0.02%, 0.2%, and 2%.

VI. COMPARISON WITH RELATED WORK
The problem of accessing heterogeneous data sources has

long been studied in the context of multidatabase and data
integration systems [19,23]. More recently, with the advent
of cloud databases and big data processing frameworks,
multidatabase solutions have evolved towards polystore
systems that provide integrated access to a number of
RDBMS, NoSQL, NewSQL, and HDFS data stores through
a common query engine. Early polystores [17,18,21]
typically mediate heterogeneous data stores through a single
common data model. The polystore BigDAWG [9,10] goes
one step further by defining “islands of information”, where
each island corresponds to a specific data model and its
language and provides transparent access to a subset of the
underlying data stores through the island’s data model. The
system enables cross-island queries (across different data
models) by moving intermediate datasets between islands in
an optimized way. Myria [25] is another recent polystore,
built on a shared-nothing parallel architecture, that efficiently
federates data across diverse data models and query
languages. Its extended relational model and the imperative-
declarative hybrid language MyriaL span well all the
underlying data models, where rewrite rules apply to
transform expressions into specific API calls, queries, etc.
for each of the data stores. In addition to typical loosely-
coupled systems, some polystore solutions [5,7,12] consider

the problem of optimal data placement and/or selection of
data source, mostly driven by application requirements.

Hybrid polystore systems support data source autonomy
as in loosely-coupled systems, and preserve parallelism by
exploiting the local data source interface as in tightly-
coupled systems. They usually serve as parallel query
engines with parallel connectors to external sources. As our
work fits in this category, we will briefly discuss some of the
existing solutions, focusing on their capabilities to integrate
with MongoDB as a representative example of a non-
relational data store. However, although they enable parallel
integration with data clusters (like MongoDB), none of these
systems support the combination of massive parallelism with
native queries and the optimizability of bind joins, the way
the LeanXcale engine does.

Spark SQL [4] is a parallel SQL engine built on top of
Apache Spark and designed to provide tight integration
between relational and procedural processing through a
declarative API that integrates relational operators with
procedural Spark code, taking advantage of massive
parallelism. Spark SQL provides a DataFrame API that can
map to relations arbitrary object collections and thus enables
relational operations across Spark’s RDDs and external data
sources. Spark SQL can access a MongoDB cluster through
its MongoDB connector that maps a sharded document
collection to a DataFrame, partitioned as per the collection’s
sharding setup. Schema can be either inferred by document
samples, or explicitly declared.

Presto [20] is a distributed SQL query engine, running on
a cluster of machines, and designed to process interactive
analytic queries against data sources of any size. Presto
follows the classical MPP (massively parallel processing)
DBMS architecture, which, similarly to LeanXcale, consists
of a coordinator, multiple workers and connectors (storage
plugins that interface external data stores and provide
metadata to the coordinator and data to workers). To access a
MongoDB cluster, Presto uses a connector that allows the
parallel retrieval of sharded collections, which is typically
configured with a list of MongoDB servers. Document
collections are exposed as tables to Presto, keeping schema
mappings in a special MongoDB collection.

Apache Drill [2] is a distributed query engine for large-
scale datasets, designed to scale to thousands of nodes and
query at low latency petabytes of data from various data
sources through storage plugins. The MPP architecture runs
a so called “drillbit” service at each node. The drillbit that
receives the query from a client or application becomes the
foreman for the query and compiles the query into an
optimized execution plan, further parallelized in a way that
maximizes data locality. The MongoDB storage allows
running Drill and MongoDB together in distributed mode, by
assigning shards to different drillbits to exploit parallelism.
Since MongoDB collections are used directly in the FROM
clause as tables, the storage plugin translates relational
operators to native MongoDB queries.

Impala [3] is an open-source MPP SQL engine operating
over Hadoop data processing environment. As opposed to
typical batch processing frameworks for Hadoop, Impala
provides low latency and high concurrency for analytical

queries. Impala can access MongoDB collections through a
MongoDB connector for Hadoop, designed to provide the
ability to read MongoDB data into Hadoop MapReduce jobs.

VII. CONCLUSIONS
In this paper, we introduced a parallel polyglot polystore

system that builds on top of LeanXcale’s distributed query
engine and processes queries in the CloudMdsQL query
language. This allows data store native subqueries to be
expressed as inline scripts and combined with regular SQL
statements in ad-hoc integration statements.

We contribute by adding polyglot capabilities to the
distributed data integration engine that takes advantage of the
parallel processing capabilities of underlying data stores. We
introduced architectural extensions that enable specific
native scripts to be handled in parallel at data store shards, so
that efficient and scalable parallel joins take place at query
engine level. We focused on parallel joins between a
relational table and the result of a JavaScript subquery to
MongoDB, but the concept relies on an API that allows its
generalization to other script engines and data stores as well.

Our experimental validation evaluated the scalability of
the query engine by measuring the performance of various
join queries. In particular, even in the context of
sophisticated JavaScript subqueries, parallel join processing
shows good speedup with increase of the parallelism level.
This means that, as the volume of data grows, performance
can be maintained by simply extending the parallelism to a
proportional number of workers and data shards. This
evaluation illustrates the benefits of combining the massive
parallelism of the underlying data management technologies
with the high expressivity of their scripting frameworks and
optimizability through the use of bind join, which is the
major strength of our work.

ACKNOWLEDGMENT
This research has been partially funded by the European

Union's Horizon 2020 Programme, project
CloudDBAppliance, grant 732051. The research performed
by LeanXcale authors has been also partially funded by the
Madrid Regional Council, FSE and FEDER, project
Cloud4BigData (S2013TIC2894) and industrial doctorate
grant for Pavlos Kranas (IND2017/TIC-7829) and the
Ministry of Economy and Competitiveness (MINECO)
under projectCloudDB (TIN2016-80350). Prof. Jose Pereira
contributed to this work when he was with LeanXcale.

REFERENCES
[1] A. Abouzeid, K. Badja-Pawlikowski, D. Abadi, A. Silberschatz, A.

Rasin. HadoopDB: An Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical Workloads. PVLDB, vol. 2, 922-
933, 2009.

[2] Apache Drill – Schema-free SQL Query Engine for Hadoop, NoSQL
and Cloud Storage, https://drill.apache.org/

[3] Apache Impala, http://impala.apache.org/
[4] M. Armbrust, R. Xin, C. Lian, Y. Huai, D. Liu, J. Bradley, X. Meng,

T. Kaftan, M. Franklin, A. Ghodsi, M. Zaharia. Spark SQL:
Relational Data Processing in Spark. ACM SIGMOD, 1383-1394,
2015.

[5] F. Bugiotti, D. Bursztyn, A. Deutsch, I. Ileana, I. Manolescu.
Invisible Glue: Scalable Self-Tuning Multi-Stores. In Conference on
Innovative Data Systems Research (CIDR), 2015.

[6] Darema, F. The SPMD model: Past, present and future. In Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, volume 2131. Springer Berlin Heidelberg, 2001.

[7] S. Dasgupta, K. Coakley, A. Gupta. Analytics-driven data ingestion
and derivation in the AWESOME polystore. IEEE International
Conference on Big Data, 2555-2564, 2016.

[8] D. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit,
A. Avanes, M. Flasza, J. Gramling, Split query processing in
Polybase, ACM SIGMOD, 1255-1266, 2013.

[9] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J.
Kepner, S. Madden, D. Maier, T. Mattson, S. Zdonik, “The
BigDAWG polystore system”, SIGMOD Record, vol. 44, no. 2, pp.
11-16, 2015.

[10] V. Gadepally, P. Chen, J. Duggan, A. J. Elmore, B. Haynes, J.
Kepner, S. Madden, T. Mattson, M. Stonebraker. The BigDawg
polystore system and architecture. In IEEE High Performance
Extreme Computing Conference (HPEC), 1-6, 2016.

[11] H. Hacigümüs, J. Sankaranarayanan, J. Tatemura, J. LeFevre, N.
Polyzotis. Odyssey: A Multi-Store System for Evolutionary
Analytics. PVLDB, vol. 6, 1180-1181, 2013.

[12] Y. Khan, A. Zimmermann, A. Jha, D. Rebholz-Schuhmann, R. Sahay.
Querying web polystores. IEEE International Conference on Big
Data, 2017.

[13] B. Kolev, C. Bondiombouy, P. Valduriez, R. Jimenez-Peris, R. Pau, J.
Pereira. The CloudMdsQL Multistore System. ACM SIGMOD, 2113-
2116, 2016.

[14] B. Kolev, R. Pau, O. Levchenko, P. Valduriez, R. Jimenez-Peris, J.
Pereira. Benchmarking Polystores: the CloudMdsQL Experience.
IEEE International Conference on Big Data, 2574-2579, 2016.

[15] B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, J.
Pereira. CloudMdsQL: querying heterogeneous cloud data stores with
a common language. Distributed and Parallel Databases, vol. 34, pp.
463-503. Springer, 2015.

[16] J. LeFevre, J. Sankaranarayanan, H. Hacıgümüs, J. Tatemura, N.
Polyzotis, M. Carey, “MISO: souping up big data query processing
with a multistore system”, ACM SIGMOD, 1591-1602, 2014.

[17] Z. Minpeng, R. Tore. Querying Combined Cloud-based and
Relational Databases. Int. Conf. on Cloud and Service Computing
(CSC), 330-335, 2011.

[18] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ Semi-
structured Data Model and Query Language: A Capabilities Survey of
SQL-on-Hadoop, NoSQL and NewSQL Databases. CoRR,
abs/1405.3631, 2014.

[19] T. Özsu, P. Valduriez. Principles of Distributed Database Systems. 3rd
ed. Springer, 2011, 850 pages.

[20] Presto – Distributed Query Engine for Big Data, https://prestodb.io/
[21] A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal. Optimizing

Analytic Data Flows for Multiple Execution Engines. ACM SIGMOD,
829-840, 2012.

[22] M. Stonebraker, U. Cetintemel, One size fits all: An idea whose time
has come and gone (abstract). ICDE, 2-11, 2005.

[23] A. Tomasic, L. Raschid, P. Valduriez. Scaling Access to
Heterogeneous Data Sources with DISCO. IEEE Trans. On
Knowledge and Data Engineering, vol. 10, 808-823, 1998.

[24] TPC-H. http://www.tpc.org/tpch/
[25] J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes, B. Howe,

D. Hutchison, S. Jain, R. Maas, P. Mehta, D. Moritz, B. Myers, J.
Ortiz, D. Suciu, A. Whitaker, S. Xu. The Myria big data management
and analytics system and cloud service. In Conference on Innovative
Data Systems Research (CIDR), 2017

[26] T. Yuanyuan, T. Zou, F. Özcan, R. Gonscalves, H. Pirahesh. Joins for
Hybrid Warehouses: Exploiting Massive Parallelism in Hadoop and
Enterprise Data Warehouses. EDBT/ICDT Conf., 373-384, 2015.

