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Abstract. Routing problems appear in many practical applications. In
the context of Constraint Programming, circuit constraints have been
successfully developed to handle problems like the well-known Traveling
Salesman Problem or the Vehicle Routing Problem. These kind of con-
straints are linked to the search for a Hamiltonian circuit in a graph. In
this paper we consider a more general multiple tour problem that consists
in covering a part of the graph with a set of minimal cost circuits. We
define a new global constraint WeightedSubCircuits that generalizes
the WeightedCircuit constraint by releasing the need to obtain a Hamil-
tonian circuit. It enforces multiple disjoint circuits of bounded total cost
to partially cover a weighted graph, the subsets of vertices to be covered
being induced by external constraints. We show that enforcing Bounds
Consistency for WeightedSubCircuits is NP-hard. We propose an in-
complete but polynomial filtering method based on the search for a lower
bound of a weighted Steiner circuit.

1 Introduction

Many real problems can be modeled as a tour problem, the best known is the
Travelling Salesman Problem (TSP). It consists in finding a Hamiltonian cycle
(i.e., passing by each vertex of a graph once) with a minimum weight. Many
works coming from Integer Linear Programming (ILP) or dynamic programming
allow to quickly solve large instances of TSP. In addition, some variations of the
TSP, such as the Vehicle Routing problem (VRP), have been the subject of
numerous studies proposing effective solving methods [18].

In this context, Constraint Programming has for a long time offered its ex-
pressiveness to address variations of TSP. Initially limited to small instances,
the most recent filtering algorithms allow to compete with ILP approaches on
complex problems where complementary constraints restrict TSP solutions.

These good results are related to the definition of global constraints and
the associated filtering algorithms: the constraint Cycle (or Circuit) enforces
covering the graph with one circuit visiting all vertices once; the constraint
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WeightedCircuit imposes, in addition, that the sum of the costs of the edges
of the circuit is lower than a cost variable. As enforcing arc consistency for these
constraints is generally NP-hard, the filterings used are inevitably incomplete but
in practice relatively efficient. For instance, the WeightedCircuit constraint
propagator can incorporate different methods based on TSP relaxation from
literature.

However, all these constraints are linked to the search for a Hamiltonian
cycle. Many real problems require searching for one or more cycles covering all
or part of the vertices of the graph. These problems correspond to two kinds
of relaxation in the definition of the Hamiltonian cycle. The classical relaxation
is the VRP where some vertices (depots) can be visited several times. This
problem is generally modeled by duplicating a few vertices in order to return to a
Hamiltonian cycle. The second relaxation consists in not covering all the vertices
of the graph, the set of the discarded vertices depending on external constraints.
In this case, the Cycle constraint can eventually be used by artificially adding
the discarded vertices to the end of the Hamiltonian cycle. However, it becomes
impossible to integrate them into a weighted cycle without disrupting the cost
of the solution. It is then impossible to benefit from all the filtering power of
constraint WeightedCircuit.

In this paper, we aim to generalize the WeightedCircuit constraint in case
some vertices can be discarded. We consider a more general multiple tour prob-
lem that consists in covering a part of the graph by a set of minimal cost circuits.
We define a new global constraint, called WeightedSubCircuits, that enforces
multiple disjoint circuits of bounded cost to partially cover a weighted graph.
This is a generalization of constraint WeightedCircuit where the Hamilto-
nian circuit can be divided into several disjointed subcircuits, with an additional
subset of discarded vertices.

The remainder of this paper is structured as follows. Section 2 surveys the
necessary preliminaries. Section 3 covers related work on global constraints for
tour problems. Section 4 gives the definition of WeightedSubCircuits con-
straint and proposes a decomposition of the constraint with standard constraints
and a cycle constraint adapted to multiple tours. Section 5 deals with the filter-
ing of this NoSubTours constraint and that of the WeightedSubCircuits
constraint. Finally, Section 6 presents some preliminary experimental results.

2 Preliminaries

We consider a weighted graph G = (V,E, c) where V is a set of vertices, E a set
of edges and a weight function c : E → Q+.

When the graph G respects triangle inequality, the weight of any edge (i, j)
is smaller or equal to the cost of any path from i to j.

Graphs are considered from an oriented point of view. In this context, the
term circuit should be used rather than cycle. However, a cycle is generally
described by a sequence of vertices or by defining, for each vertex i, the Nexti
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vertex that follows i in the cycle. In both cases, the cycle is oriented and then it
is a circuit.

An elementary circuit of G is a circuit where no vertex appears more than
once. A Hamiltonian circuit is an elementary circuit of length |V |.

For any subset W ⊆ V , G[W ] is the subgraph of G induced by W .
For any set variable Set, the lower (respectively upper) bound of Set, denoted

by lb(Set) (respectively ub(Set)), is the set of required (respectively possible)
values in Set.

In the following, we will note OPTTSP (G) the cost of an optimal solution for
TSP (G).

3 Related work

The Constraint Programming research community has long been interested in
the search for Hamiltonian circuits, which were already part of the Alice language
constraints [12]. A configurable Cycle constraint was also part of the global
constraints introduced in the CHIP solver [1].

The most common model is to define a variable Nexti for each vertex i of
the graph, where Nexti represents the vertex which follows i in the Hamilto-
nian circuit. To ensure that each vertex is visited only once, an AllDifferent
constraint can be posted on the Nexti and enforcing GAC for this constraint is
polynomial [17]. Conversely, checking that there is a Hamiltonian circuit is NP-
complete. The filtering used in solvers for the Circuit constraint is, therefore,
naturally incomplete. Two subconstraints are mainly used for this filtering on
the edges composing the circuit: the NoSubTour constraint which prohibits
the presence of subcircuits and the Connected constraint which ensures the
strong connectivity of the circuit. Other works have proposed a filtering based
on graph separators [11] or investigated how to add explanations to the Circuit
constraint in a lazy clause generation solver [9].

The NoSubTour constraint [3,14] is posted on graph G = (V,E). It ensures
that the Nexti variables do not form a subtour of length strictly smaller than
|V |. Combined with constraint AllDifferent, the NoSubTour constraint
enforces Nexti variables to form a Hamiltonian circuit of G.

The filtering generally associated with the NoSubTour constraint consists
in removing from Nexti any value that could close a path to form a subcircuit
strictly smaller than |V |. This is based on the following rule (Figure 1) applied
when Nexti is instantiated with j:

Nexti = j ∧ (L(β(i)) + L(j) + 1) < |V | − 1 ⇒ Nextε(j) 6= β(i) (1.1)

where, for any vertex z, β(z), ε(z) and L(z) are respectively the begining, the end
and the length of the path induced by the Nexti variables and passing through
z. Due to constraint AllDifferent, we must have ε(i) = i and β(j) = j when
Nexti is instantiated with j.

The values of β(z), ε(z) and L(z) can be easily managed with backtrackable
variables and updated in O(1) for each instantiation of Nextz.
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β(j)β(i)

i j

ε(i) ε(j)

L(β(i)) L(j)1+ + < |V | − 1

Fig. 1. Illustration of the filtering rule for the NoSubTour constraint.

The Connected constraint has been less studied in literature. The simplest
approach is to use a O(|V |+ |E|) search algorithm (like Tarjan’s) to find strong
connected components [6]. It is also possible to limit the number of searches by
maintaining a spanning tree [15].

Whatever the filtering used for the Circuit constraint, it is only concerned
with the connectivity of the graph without taking into account the edge weights.
However, the cost of the circuit is a key element in the optimization of a TSP
or VRP. Therefore, constraint WeightedCircuit(Next1, . . . , Nextn, Cost) has
been defined to enforce the rule that the circuit defined by the variables Nexti
has a lower cost than the variable Cost.

The filtering algorithms used for constraint WeightedCircuit are based
on TSP relaxations. This consists in reducing the TSP to a polynomial opti-
mization problem whose optimal cost is a lower bound of the initial TSP cost.
This bound can be used directly to update lb(Cost). It also filters the Nexti
variables by eliminating the edges which are not part of the optimal solution
and which, if they replace an edge of this solution, generate an additional cost
beyond ub(Cost).

Several relaxations can be used to filter the constraint WeightedCircuit
[3,14,8,2] and most of them are incomparable [7]. The Minimum Spanning Tree
(MST) and even better the Minimum Spanning Arborescence (MSA) directly
provide a lower bound to the TSP. In Assignment Problem (AP) relaxation,
the solution can be composed of several disjointed cycles. With Held and Karp
1-tree relaxation, the solution is a Minimum Spanning Tree of G[V \ {1}] plus
two edges connecting vertex 1 to this spanning tree.

4 The WeightedSubCircuits Constraint

The WeightedSubCircuits (WSC) constraint aims to generalize the Weight-
edCircuit constraint. Instead of imposing a single Hamiltonian circuit on the
whole graph, it enforces a Hamiltonian circuit for each subgraph induced by one
or more subsets of vertices.

For the sake of simplicity, we assume that these subsets are defined by K+ 1
set variables Set1,...,SetK , Setdummy, the last subset being the set of discarded
vertices. However, it is possible to adapt the definition with other representations
of these subsets, for example with integer variables.
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The WeightedSubCircuits constraint is intended to be combined with
other constraints controlling the distribution of vertices in subsets Set1,..., SetK ,
Setdummy which must form a partition of the set of vertices. The number K of
subsets is an upper bound as some subsets may be empty. In addition, non-
empty subsets must contain at least 2 vertices since the isolated vertices must
belong to Setdummy.

4.1 Definition

Definition 1. (WeightedSubCircuits)
Given a weighted graph G = (V,E, c), the constraint

WSC[G]([Set1, ..., SetK ], Setdummy, [Next1, ..., Nextn], [Cost1, ..., CostK ], Z)

holds on the set variables Set1, ...SetK , Setdummy and the integer variables Next1,
. . . , Nextn, Z and Cost1, ..., CostK if and only if:

1. the subsets Set1, . . . , SetK , Setdummy form a partition of V ;
2. ∀k ∈ 1..K, the set Ek = {(i,Nexti) | i ∈ Setk} defines a Hamiltonian circuit

of G[Setk] and
∑

(i,j)∈Ek

c(i, j) ≤ Costk;

3. ∀i ∈ V , i ∈ Setdummy ⇔ Nexti = i ;

4.
K∑
k=1

Costk ≤ Z ;

This definition is illustrated by Figure 2. The set Setdummy contains all
discarded vertices. As in Minizinc [13] subcircuit constraint, we set Nexti = i
for all discarded vertices. This allows constraint AllDifferent to be applied
to all Nexti variables.

Because of the third rule, any subset Setk must be empty or contains at least 2
vertices. WhenK = 1, the constraint can be simplified since Setdummy = V \Set1
and Z is an upper bound of Cost1.
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Set1 = {1, 2, 6, 4}
Set2 = {3, 5, 8}
Setdummy = {7, 9}
Cost1 = 10 Cost2 = 9
Z = 20
Next1 = 2 Next2 = 4 Next3 = 8
Next4 = 6 Next5 = 3 Next6 = 1
Next7 = 7 Next8 = 5 Next9 = 9

Fig. 2. An example of a weighted graph and a set of variables for which the constraint
WSC[G]([Set1, Set2], Setdummy, [Next1, ..., Next9], [Cost1, Cost2], Z) holds.

In the definition of the WeightedSubCircuits constraint we have assumed
that the subsets are represented by set variables. This can facilitate the ad-
dition of external constraints on the subsets, such as a maximum cardinality
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to limit the number of vertices in each circuit. However, the constraint could
also be defined with subsets represented by n membership integer variables
{memberi}i∈V . Moreover, the two representations can be combined thanks to
channeling constraints ∀i ∈ V,∀k ∈ 1..K, i ∈ Setk ⇔ memberi = k and
i ∈ Setdummy ⇔ memberi = K + 1.

The WeightedSubCircuits constraint is clearly a generalization of the
WeightedCircuit constraint:

WeightedCircuit[G](Next1, ..., Nextn, Z) ≡
WSC[G]([V ], ∅, [Next1, ..., Nextn], [Z], Z)

Moreover, the WeightedSubCircuits constraint can also be used to im-
plement some (but not all) variants of the generic Cycle constraint of CHIP [1].
For instance, one variant of the CHIP Cycle constraint holds for K cycles with p
incompatible nodes (p ≤ K) that must belong to disjoint cycles with total cost
constrained by two bounds. This cycle constraint is equivalent to a Weight-
edSubCircuits constraint with additional unary constraints on the Costk and
Setk variables.

Since WeightedSubCircuits is a generalisation of WeightedCircuit, it
is not surprising that filtering WeightedSubCircuits is NP-hard:

Theorem 1. Achieving Bounds Consistency (BC) on WSC is NP-hard.

Proof. Deciding if a graph G = (V,E, c) has a Hamiltonian circuit of cost less
or equal to a given value p is NP-complete. Consider the constraint

WSC[G]([Set1], Setdummy, [Next1, ..., Nextn], [Cost1], Z)
where lb(Set1) = V and for each variable Nexti, dom(Nexti) = {j | (i, j) ∈ E}
and D(Cost1) = D(Z) = {0, ..., p}. BC empties the domain of Z if and only if
G does not admit a Hamiltonian circuit of cost less or equal than p �

4.2 Decomposition

Before considering the development of specific propagators, we can try to decom-
pose the WSC constraint into a set of standard constraints. Except for line 1.6,
the WSC constraint can be decomposed into standard constraints as follows:

Proposition 1.

WSC[G]( Set1, ...SetK , Setdummy, Next1, ..., Nextn, Cost1, ..., CostK , Z)⇔

AllDifferent(Next1, ..., Nextn) (1.2)

∧ Partition(Set1, ..., SetK , Setdummy) (1.3)

∧ ∀i ∈ V, i ∈ Setdummy ⇔ Nexti = i (1.4)

∧ ∀i ∈ V, ∀k = 1..K, i ∈ Setk ⇔ Nexti ∈ Setk (1.5)

∧ NoSubTours(Set1, ..., SetK , Next1, ..., Nextn) (1.6)

∧ ∀k = 1..K,
∑
i∈Setk c(i,Nexti) ≤ Costk (1.7)

∧
∑K
k=1 Costk ≤ Z (1.8)
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The AllDifferent constraint on the Next variables ensures that any vertex
must belong to a cycle or must be isolated and then, thanks to line 1.4, must
belong to Setdummy. We assume that the Partition constraints allows empty
sets. Thanks to line 1.5 each cycle must be included in a single subset Setk.
The NoSubTours constraint enforces that such a cycle is an Hamiltonian cycle
of the induced subgraph G[Setk]. This is not a standard constraint but it is a
generalization of the NoSubTour constraint[3,14]. The next section will discuss
NoSubTours filtering. The sum constraints (1.7) and (1.8) ensure that the cost
of each cycle is greater or equal to the sum of the weights of its edges and that
the total sum of Costk variables is less or equal to Z.

5 Propagation

First we will look at the filtering of constraint NoSubTours in order to be able
to implement constraint WeightedSubCircuits thanks to its decomposition.
We will then propose a specific additional filtering for constraint Weighted-
SubCircuits.

Since obtaining AC for these two constraints is NP-hard, the filtering algo-
rithms that we will study in this section are necessarily incomplete.

5.1 NoSubTours

When Nexti is instantiated with j, the filtering rule 1.1 used for the constraint
NoSubTour is dedicated to remove from the domain of Nextε(j) any value
leading to a cycle of size less that |V |.

For the NoSubTours constraints (1.6), the set {(i,Nexti), i ∈ Setk} must
form a cycle of size |Setk| in G[Setk]. Hence, if the path resulting from the
instantiation Nexti = j has a length smaller than the size of the lower bound
of Setk, this path cannot be closed at its ends to form a cycle. This corresponds
to the following filtering rule:

Nexti = j ∧ i ∈ lb(Setk) ∧ (L(β(i)) + L(j) + 1) < |lb(Setk)| − 1

⇒ Nextε(j) 6= β(i) (1.9)

Conversely, if the resulting path passes through all vertices of the upper
bound of Setk, the cycle must be closed and Setk is instantiated:

Nexti = j ∧ i ∈ lb(Setk) ∧ (L(β(i)) + L(j) + 1) = |ub(Setk)| − 1

⇒ Nextε(j) = β(i) ∧ Setk = ub(Setk) (1.10)

NoSubTours filtering can also benefit from searching for connected compo-
nents to ensure that lb(Setk) is included in a connected (via Nexti variables)
component of ub(Setk).

Finally, we can notice that backtractable variables like β(i) can also be used
to filter constraint (1.5) since all the vertices in the path passing through i and



8 P. Vismara et al.

connecting β(i) to ε(i) must be in the same Setk than i. This corresponds to
the following filtering rules:

i ∈ lb(Setk) ⇒ {β(i), Nextβ(i), . . . , i, Nexti, . . . , ε(i)} ⊆ lb(Setk) (1.11)

and

i 6∈ ub(Setk) ⇒ {β(i), Nextβ(i), . . . , i, Nexti, . . . , ε(i)} ∩ ub(Setk) = ∅ (1.12)

5.2 WeightedSubCircuits

Previous works on the WeightedCircuit constraint have shown the benefit of
dedicated filtering compared to separate filtering on the Circuit constraint and
the cost of the circuit.

During the search, the vertices involved in the WeightedSubCircuits con-
straint can be divided in 4 categories (see Figure 3) :

A. The vertices in lb(Setdummy) will not be part of the circuits.
B. The vertices in lb(Setk) will necessarily contribute to the value of Costk and

Z.
C. The vertices in V \ (ub(Setdummy) ∪

⋃
k lb(Setk)) cannot be excluded but

are not yet assigned to a Setk. They cannot yet contribute to the value of a
specific Costk but will necessarily contribute to the value of Z.

D. For the vertices in ub(Setdummy) \lb(Setdummy) it is still too early to know
if they will be part of the circuits.

Fig. 3. Vertex distribution for constraint WeightedSubCircuits during the search:
A vertices are definitely discarted and inserted in subset Setdummy; B vertices are
definitely added to one subset Setk; C vertices can no longer be discarded but are not
yet assigned to any subset Sk; D vertices can belong to any subset.

Whether one considers a particular variable Costk or the global variable Z,
in both cases there is a subset of vertices that must be part of the solution and
other vertices that may participate.
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For instance, to find a lower bound for lb(Costk), the subset of required
vertices is equal to lb(Setk). It is unfortunate that it is not possible to consider
only G[lb(Setk)] in order to find a lower bound for lb(Costk):

Proposition 2. OPTTSP (G[lb(Setk)]) is not a lower bound for lb(Costk)

Proof. In the graph of Figure 4, the subgraph induced by lb(Setk) is a cycle of
weight 24. With additional vertices 5 and 6 added to Setk, the induced subgraph
includes a cycle of weight 21. Moreover, G[lb(Setk)] may not contain a cycle
while G[ub(Setk)] does �
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4
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4

2

9

lb(Setk)

1

7

2

3 4

56

Fig. 4. The optimal value for TSP (G[lb(Setk)]) is equal to 24 whereas
OPTTSP (G[lb(Setk) ∪ {5, 6}]) is equal to 21.

To find a lower bound for Costk, we must consider not only the mandatory
vertices but also the potential vertices. This question can be reduced to the
Steiner cycle problem, which is a generalization of the Steiner tree problem [10].

Definition 2. (Steiner Cycle Problem) Let H = (V,E, c) a weighted graph and
V ′ ⊆ V . The Steiner Cycle Problem SCP (H,V ′) consists in finding an elemen-
tary cycle of minimum cost that contains all nodes in V ′ (but may include addi-
tional vertices). The cost of an optimal solution will be noted OPTSCP (H,V ′).

The TSP is a specific case of SCP where V ′ = V .

Proposition 3. lb(Costk) ≥ OPTSCP (G[ub(Setk)], lb(Setk))

Proof. Costk is the cost of a Hamiltonian cycle in G[Setk]. Thus, this cy-
cle must necessarily pass through all the vertices of lb(Setk) and eventually
through some vertices of ub(Setk) \ lb(Setk). This is the exact definition of
SCP (G[ub(Setk)], lb(Setk)) �

Proposition 3 gives a way to filter Costk. Since computing an optimal Steiner
cycle is NP-hard, a lower bound can be determined by relaxing a constraint of
SCP as is done for TSP. To do this, we start by defining an extended subgraph:
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Definition 3. (Extended subgraph) Given a weighted graph H = (V,E, c) and a
subset V ′ ⊆ V , the extended subgraph G(H,V ′) is obtained by adding to H[V ′]
new edges (i, j), with weight c(i, j) = δi,j, such that (i, j) 6∈ E and there is a
shortest path connecting i to j in H[(V \ V ′)∪ {i, j}] whose cost is equal to δi,j.

This definition is illustrated by Figure 5. The edges added to H[V ′] correspond
to a shortest path outside V ′ and connecting two non-adjacent vertices of H[V ′].
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1 2

3 4
G(H,V ′)

Fig. 5. Extended subgraph G(H,V ′) for a graph H = (V,E, c) and a subset V ′ ⊆ V

Proposition 4. Given a weighted graph H = (V,E, c) that respects triangular
inequality and V ′ ⊆ V with |V ′| ≥ 3 we have

OPTSCP (H,V ′) ≥ OPTTSP (G(H,V ′))

Proof. Any Hamiltonian cycle C that is solution of SCP (H,V ′) is composed of
paths included in V ′ and paths outside V ′. Let Pi,j = 〈i, x1, . . . , xt, j〉 be a sub-
path of C such that i, j ∈ V ′ and ∀p ∈ 1..t, xp 6∈ V ′. If (i, j) ∈ E, the triangular
inequality imposes that c(i, j) is not greater than the cost of Pi,j . If (i, j) 6∈ E,
by construction of G(H,V ′), there exists in G(H,V ′) an edge (i, j) whose weight
is lower or equal to the cost of Pi,j . Thus, the cycle obtained by replacing in
C all paths Pi,j by edge (i, j) is a Hamiltonian cycle of G(H,V ′) whose cost is
lower or equal to that of C �

By combining propositions 3 and 4 we obtain a filtering rule for Costk:

Corollary 1. lb(Costk) ≥ OPTTSP (G(G[ub(Setk)], lb(Setk)) )

and therefore, a filtering rule for Z:

Corollary 2. lb(Z) ≥
∑K
k=1OPTTSP (G(G[ub(Setk)], lb(Setk)) )

Since all Setk must be disjoined, all graphs G(G[ub(Setk)], lb(Setk)) are dis-
joined and so we have:

Proposition 5. lb(Z) ≥ OPTTSP (
⋃K
k=1 G(G[ub(Setk)], lb(Setk)) )
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Computing ∪Kk=1G(G[ub(Setk)], lb(Setk)) can be done inO(|V |(|E|+|V | log |V |))
with at most |V \ub(Setdummy)| calls to Dijkstra’s algorithm. This is compara-
ble to the complexity of some relaxation algorithms. For example, the Hungarian
algorithm used for the Assignment Problem relaxation is in O(|V |3).

Thanks to Proposition 5, a lower bound of Z can be computed with a relax-
ation of the TSP, as in the case of constraint WeightedCircuit.

This bound is directly related to the state of variables Setk, which define
the vertices of the extended subgraphs, and to the domains of variables Nexti,
which fix adjacency in G. Depending on the relaxation used, it is also possible
to take into account variable Setdummy.

For example, suppose we use the relaxation corresponding to the Assignment
Problem (AP). For any graph H, a solution of AP (H) is a set of disjoined
minimum cost elementary circuits covering all the vertices of H. Applying AP
to extended subgraphs results in a set of sub-cycles covering all type B vertices
of Figure 3. However, type C vertices are not covered by these sub-cycles even
though they will necessarily be part of the final cycles. To take into account
these vertices we can expand the extended subgraphs to vertices of type C.

Let SB =
⋃K
k=1 lb(Setk) the set of type B vertices and SC the set of type C

vertices. We have SC = V \ (ub(Setdummy) ∪ SB).

We define the global extended subgraph G∗ as follow:

Definition 4. (Global extended subgraph) The global extended subgraph G∗ is
an extended subgraph built on G[SB ∪ SC ] by adding only edges between two
vertices of the same lb(Setk) or between a vertex of SB and a vertex of SC .

This definition is illustrated by Figure 6.

Computing G∗ has the same complexity O(|V |(|E|+ |V | log |V |)) as comput-
ing all extended subgraphs.

Since G∗ is built from a subgraph that contains the C-type vertices, we have
a new lower bound for Z:

Proposition 6.

lb(Z) ≥ OPTAP (G∗) (1.13)

The proof is similar to that of Proposition 4.

For the graph in Figure 6, the cycle set {〈1, 2, 3, 4, 1〉, 〈8, 11, 8〉, 〈9, 10, 9〉} is
an optimal solution to AP (G∗). The cost (33) of this solution is a lower bound
of Z, whatever the vertices added to Set1 or Set2. Moreover, according to the
upper bound of Z, some edges can be discarded because they cannot be part
of a solution. This filtering is based on computing a reduced cost for each arc
(i, j) not in the solution of AP (G∗), i.e., the minimum increase of the overall cost
for setting Nexti to j (see [2,7]). For instance, with ub(Z) = 40, edges (8, 10)
and (9, 11) could be eliminated. This filtering concerns only the edges of G∗ that
belong to G.
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Fig. 6. En example of global extended subgraph G∗, with SC = {4} and SB =
lb(Set1) ∪ lb(Set2) = {1, 2, 3, 8, 9, 10, 11} and Next1 = 2, Next2 = 3

6 Experimental Results

This section presents some preliminary results to evaluate the benefits of the con-
straint WeightedSubCircuits. These preliminary experiments aim to measure
the interest of a filtering based on Steiner cycles.

Rather than generating random data we consider the Balancing Bike Sharing
Systems (BBSS). This problem is linked to the management of a shared bicycle
fleet. The objective is to optimize a tour of the stations in order to remove
bicycles from overfilled stations and refill empty stations. The capacity of the
transport vehicle and the time available do not allow all stations to be optimized.
We implemented the CSP model of [4,5] which uses a Cycle constraint. We
simply modified it in order to make dummy vertices appear: to ensure that some
stations will not be visited, we imposed that the demand for each visited station
be fully satisfied rather than partially handle all stations. The benchmark is
based on instances from the city of Vienna given by [4]. To gerenate additional
instances from size 12 to 18, we extracted a subset of vertices from instances with
20 vertices. Unlike the initial article which was based on a Large Neighborhood
Search (LNS) approach, we used a standard search procedure used with fixed
ordering of variables. This limits the size of instances that can be processed.

We compared 4 models based on:

– a simple Cycle constraint using the NoSubTour filtering.
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– the decomposition of the WeightedSubCircuits constraint presented in
section 5.1, with the filtering rules 1.9 to 1.12 for the NoSubTours con-
straint

– the NoSubTours constraint plus the filtering rule for Z based on AP (G∗)
(Proposition 6)

– the previous filtering rules with additional filtering on the Nexti variables
using reduced costs from AP (G∗)
We implemented these models in the Java library Choco 4 [16]. All the exper-

iments were executed on a Linux machine with Intel(R) Xeon(R) CPU E5-2680
(2.40 GHz). The time limit for each run was set to 2 hours.

Table 1 summarizes the results obtained for series of 30 graphs of different
sizes. When all the graphs in a series have been resolved, the CPU time and the
number of nodes are an average over the 30 graphs. Otherwise, only the number
of resolved instances is displayed.

Circuit Decomposition of
WSC

WSC filtering on Z with
AP (G∗) relaxation

WSC filtering on
Z and Nexti

|V | # solved time (sec) nodes time (sec) nodes time (sec) nodes

10 12/30 13 201,658 6 78,735 6 66,984

12 6/30 89 1,415,712 16 228,809 12 159,703

14

0/30

381 6,035,049 49 723,136 40 522,914
16 1515 23,729,425 181 2,480,824 121 1,489,637
18 26/30 526 6,480,702 369 4,017,667
20 19/30 1523 16,147,092 1097 10,475,711
Table 1. Average results on BBS instances for the WeightedSubCircuits.

These preliminary results show that the model based on the decomposition
of the WeightedSubCircuits constraint allows to find an optimal solution for
instances up to 20 vertices while the model based on the Circuit constraint
of Choco (NoSubTour) reaches the time limit for several small instances. In
addition, the filtering of the Z variable based on the AP (G∗) relaxation seems
to be quite effective. The last columns show that the computation of G∗ is even
more profitable if it is used to eliminate edges by filtering the Nexti variables.

7 Conclusion

In this paper, we considered circuit constraints that allow the modeling of tour
problems in a CP solver. We have proposed a new global constraint, named
WeightedSubCircuits, that enforces multiple disjoint circuits of bounded to-
tal cost to partially cover a weighted graph. The constraint is posted on a family
of subsets of vertices to obtain a Hamiltonian circuit in each subgraph induced
by a subset. The WeightedSubCircuits constraint is intended to be com-
bined with other constraints that control the composition of these subsets and
the dummy set of discarded vertices.
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We have shown that the WeightedSubCircuits constraint can improve
filtering where the WeightedCircuit constraint cannot be used because of the
dummy vertices. We have proposed an adaptation of the NoSubTour con-
straint filtering that is compatible with discarded vertices. We have shown that
computing a lower bound of the cost of each circuit can be reduced to a Steiner
circuit problem. We demonstrated how to obtain a lower bound of the Steiner
circuit by solving a TSP relaxation on an extended subgraph. To obtain a lower
bound of the total cost of all circuits, we have shown that it is possible to take
into account the required vertices that are not yet assigned to a subset, using AP
relaxation. Preliminary experiments have shown the potential of this approach
and encourage further exploration of filtering rules for the new constraint.
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