
HAL Id: lirmm-01925641
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01925641v1

Submitted on 15 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree Branch Level of Detail Models for Forest
Navigation

Xiaopeng Zhang, Guanbo Bao, Weiliang Meng, Marc Jaeger, Hongjun Li,
Oliver Deussen, Baoquan Chen

To cite this version:
Xiaopeng Zhang, Guanbo Bao, Weiliang Meng, Marc Jaeger, Hongjun Li, et al.. Tree Branch
Level of Detail Models for Forest Navigation. Computer Graphics Forum, 2017, 36 (8), pp.402-417.
�10.1111/cgf.13088�. �lirmm-01925641�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01925641v1
https://hal.archives-ouvertes.fr

Tree Branch Level of Detail Models for Forest Navigation

Xiaopeng Zhang1, Guanbo Bao1, Weiliang Meng1, Marc Jaeger2,3, Hongjun Li1,4, Oliver Deussen5,6 and Baoquan Chen7

1NLPR-LIAMA, Institute of Automation, CAS, China
2AMAP, Cirad, France

3LIRMM-ICAR, Montpellier University, France
4Beijing Forestry University, China

5VCC, Shenzhen Institute of Advanced Technology, CAS, China
6Universitfät Konstanz, Germany

7Shandong University, China

Abstract
We present a level of detail (LOD) method designed for tree branches. It can be combined with methods for processing tree foliage
to facilitate navigation through large virtual forests. Starting from a skeletal representation of a tree, we fit polygon meshes of
various densities to the skeleton while the mesh density is adjusted according to the required visual fidelity. For distant models,
these branch meshes are gradually replaced with semi-transparent lines until the tree recedes to a few lines. Construction of
these complete LOD models is guided by error metrics to ensure smooth transitions between adjacent LOD models. We then
present an instancing technique for discrete LOD branch models, consisting of polygon meshes plus semi-transparent lines.
Line models with different transparencies are instanced on the GPU by merging multiple tree samples into a single model. Our
technique reduces the number of draw calls in GPU and increases rendering performance. Our experiments demonstrate that
large-scale forest scenes can be rendered with excellent detail and shadows in real time.

Keywords: level of detail, virtual forests, real time, branch models, simplification

ACM CCS: I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve generation

1. Introduction

Realistic, real-time rendering of vegetation remains a key challenge
in computer graphics. Trees are major components of outdoor scenes
and have complex topological structures and geometrical shapes that
require a great amount of small graphical primitives to be visually
convincing. Figure 1 provides an example as well as its computer
graphics representation and shows the complexity we dealt with
using our interactive rendering method.

The development of modern techniques in plant shape modelling
and simulation has led to increasing complexity and realistic simu-
lation of growth and dynamic behaviour. Software systems such as
L-systems [PL90, MP96], AMAP [dREF*88], Xfrog [LD99], Onyx-
tree [ony] enable users an easy modelling of complex structures.
These techniques cover a wide range of applications, reaching from
games to scientific simulations. Virtual gardens, forestry, landscapes
[JT03], and ecosystems [DCSD02, DHL*98] are typical examples.
Real-time rendering of such scenes is a major challenge for such
applications [DN04, GMN05].

Unfortunately, the geometrical complexity of vegetation over
large areas still exceeds today’s hardware rendering capabilities.
Several strategies have been developed to address this issue: (1)
simplifying meshes to reduce the number of polygons; (2) replacing
polygons with more simple primitives such as points and lines; and
(3) replacing 3D geometry with textures or billboards. These meth-
ods have all been effective in improving the efficiency of rendering
large plant ecosystems.

For navigation in large-scale forests, several specialized tech-
niques have been developed: (1) compressing the geometrical com-
plexity of forest scenes using simplification [GCRR11, NPDD11]
or volumetric textures plus aperiodic tiling: [DN04]; (2) instancing
LOD models for trees and creating LOD shadow maps by utiliz-
ing the capacity of modern GPUs[BLZD12]. Realistic rendering of
large forests using light fields and view dependent texture shaders
was introduced by Bruneton et al. [BN12].

In this paper, we present a continuous level of detail (LOD)
method for tree branches which, when combined with methods

402

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-jemq0hylo6ue7

Erschienen in: Computer Graphics Forum ; 36 (2017), 8. - S. 402-417
https://dx.doi.org/10.1111/cgf.13088

403

Figure 1: Leafless trees in winter. Figure 1(a) is a rendered image
of virtual leafless trees in the winter with our new technique, and
Figure 1(b) is a photo of real leafless trees showing rich details.

for processing tree foliage such as those presented in [DZYJ10],
facilitates real-time forest walk-throughs and fly-overs.

Starting from a specifically designed representation of the tree
skeleton, we first simplify the tree geometry by replacing consecu-
tive branch segments with a single one, modelled by a single prism
or a line. We then perform a topology simplification by deleting
or merging branch segments. The generation of complete branch
LOD sets is guided by rigorous error metrics that are used to ensure
smooth transitions between adjacent LODs.

Our tree models are generated by the AMAP-Genesis software
that is based on botanical rules [dREF*88, dRDJ90], reflecting a
plant’s growing process and its spatial occupation, and conform-
ing to real measured data. Other plant models, however, may also
be used as long as skeleton information is provided, such as data
from L-systems, Xfrog or Onyx-tree. These procedural generators
lead to complex geometrical objects. Other models, where branches
are represented by very simple single straight cylinders[LVM04,
LCV03, HB05] are not sufficient for immersive views, and are thus
not considered here.

2. Related Work

Several strategies have been developed for improving the rendering
efficiency of branching models and forests on large geometrical
scales. These techniques can be divided into four categories that
consider general objects, plants, branches and large-scale objects.

Geometry processing techniques are efficient for reducing com-
plex geometry. They can be applied to plant objects although their
overall efficiency is limited.

While mesh simplification is useful in polygonal decimation
[GS02] of smooth surfaces, it is inefficient for trees in complex
ecosystems [Max90] since such techniques do not maintain de-
tails of the tree branching structures. Primitive replacement is a
useful technique for polygons that are replaced with simpler primi-
tives such as points and lines. The technique was applied to plants
by Deussen et al. [DCSD02]. After their replacement, however,
lines are not further simplified. Object replacement can be useful
for replacing geometry with textures [MNP01] or billboard clouds
[BCF*05]. In [KCD*14], implicit surface computations define tree
model occlusions from which billboards are generated. Problems
often involve the transition between the different representations,
and the memory footprint is relatively large.

Tree model representations and processing techniques were
specifically developed for compressing the data of plant objects.
View-dependent foliage pruning [GCRR11, NPDD11] is a special
form of stochastic simplification [CHPR07], i.e. invisible parts
of the foliage are pruned for real-time rendering. A problem with
this approach is that real-time shadows are hard to compute.
Multi-resolution foliage models (cf. [DZYJ10]) can unify foliage
polygons, based on simple metrics. A GPU-oriented design of the
corresponding LOD structure is presented to decrease the commu-
nication between CPU and GPU. Unfortunately, semi-transparent
objects, which are important for such geometry, are not considered.
Texture-lobe models are a recent approach for representing foliage
envelopes [LPC*11]. They divide tree models into visually
important and less important parts; a tree is represented by a cluster
of lobes that are procedurally filled with geometry as the process is
executed. This is a compact representation and thus very efficient
for data transmission. [DLX*15] propose a hybrid representation
(HR) of a simplified tree model, which allows to adaptively select
simplified models according to the resolution of different devices.
A saliency map is extracted for simplifying the tree crown.

Branch model processing approaches act on the branching skele-
ton as the visually most prominent structure of trees. Specific mod-
elling and rendering methods have been developed based on an
understanding of these features. Modelling branches using gener-
alized cylinders is a simplistic but popular way to model branch
shapes from skeletons [Blo90, Blo95, BL99]. Specifically, prisms
as simplified generalised cylinders are widely used in tree genera-
tors [Blo85, Blo95]. In [LVM04] a single polygonal mesh is used
to represent the structure of a tree with smooth transitions in bi-
furcations. Continuous re-grouping of branches is used to construct
LODs using error control [BK04]. A specialised metric is used in
[LCV03] to select a LOD model of plant branches. The generic tree
model by Prusinkiewicz et al. [PMKL01] uses three levels of plant
shapes to deliver a range of representations from silhouettes to full
detailed models.

Large-scale scenes are used in many applications, especially
those involving urban or landscape planning. Self-similarity and
the hierarchy of plants were investigated in [DHL*98, GMN05],
where the plant model is broken down into components that are
instanced. Thus, rendering is accelerated by a simple lookup table

404

Figure 2: Main steps of branch LODs for navigation.

Figure 3: An internode and its local geometry: two nodes �Pk and
�Pk+1, their skeletal vectors �Gk and �Gk+1, and the direction vector

of the skeleton segment �Lk .

in graphics memory. After a tree is procedurally defined, the inherent
tree hierarchy can be further reduced to speed up rendering [SG97,
LP02]. Large-scale instancing of trees, supported by hardware, is
presented in [BLZD12] for forests with highly detailed geometry
and used for real-time navigation. A shadow map LOD strategy is
used and maps are filtered entirely on the GPU to reduce shadow
aliasing.

[BN12] presents a real-time realistic lighting model for realistic
and large-scale forest rendering of scenes in real-time. Unfortu-
nately, only a limited number of tree samples can be used due to
memory costs. This model is therefore more suitable for flight sim-
ulators with bird’s-eye views. In [ACV*14], two orthogonal photos

are used to model and render realistic vegetation distributions along
roads paths, where the vegetation is created procedurally on-the-fly
and leaves are rendered using OpenGL 4 tessellation and geometry
shaders. This vegetation model is very simple with relatively few
predefined trunk models.

Lastly, the rendering of large graphs set is presented in [ZBDS12],
involving a novel combination of edge accumulation with density-
based node aggregation. Such image-based methods could also be
used for rendering forests.

In contrast to most earlier works, our LOD model focuses on tree
models including error-controlled direct construction of a simplified
representation of the tree branch geometry with prisms and thin
branches, along with hardware instancing, allowing fast and realistic
rendering of virtual forests. Although our LOD method is designed
for tree branches, it can be combined with foliage LOD algorithms,
such as provided in [DZYJ10].

3. An Overview of the Approach

The overall work of this paper is a LOD technique for tree branches,
described as branch simplification. The framework of the proposed
approach breaks down into seven points, where the six steps (1) to
(6) are illustrated in Figure 2.

(1) Definition of branch skeletons and Frenet frames. The skeleton
of a branch is a list of points with their corresponding radii,
and the Frenet frames are a list coordinate systems, built from
tangents, normals and bi-normal vectors.

405

Figure 4: Internodes in branch equations. (a) Internode sequences
drawn on all branch equations. (b) Five internode sequences merge
on a given branch. The merging process is based on the branch
equation.

(2) Branch modelling. Branch segments are considered as cylin-
drical primitives and modelled by corresponding equations.

(3) Internode merging. Internode merging constructs a new in-
ternode to replace consecutive internodes. Internode merging
is controlled by the maximum permitted error.

(4) Simplification of topology structures. Topology simplification
decimates some child branches while keeping the parent under
error control.

(5) Construction of a multi-resolution branch model. Our multi-
resolution branch model step polygonizes branch segments or
converts them to lines in a sequence of branch LOD models
under error control.

(6) GPU instancing of multi-resolution models. This step sends
the appropriate 3D multi-resolution geometrical model to
the GPU and instances it on request. It also includes semi-
transparent line models for thin branches.

(7) Application to forest navigation. Forest navigation combines
multi-resolution sequences and multi-resolution model in-
stances, where line models with different transparencies are in-
stanced by merging multiple tree samples into a single model,
thereby reducing the number of draw calls and thus increase
virtual forest rendering performance.

The permitted spatial error is often defined in object space,
we adopt it to control the degree of model simplification. A metric
formulation in screen space, however, is more convenient in many
practical applications.

The permitted pixel error, labelled as δ, is specified as the number
of pixels allowed for representing the quality of shape details in the
synthesized image, adopted from [DZYJ10]. δ may be chosen as
0.5 pixels for the model with original details, since a pixel error less
than 0.5 is not visible.

If we fix δ and the camera parameters, the distance of the camera
to the tree will be closely related to the permitted spatial error ε.

Control errors in branch simplification drive the processes of in-
ternode merging within a single branch, branch segment discretiza-
tion and topology simplification. Four independent spatial error
metrics, E1, E2, E3 and E4 are involved in these three tasks.

Internode merging is controlled by two error metrics E1 and E2

where E1 controls the skeleton polyline geometry, i.e. the internode
merging in latitudinal direction, and E2 controls the simplification of
the skeleton for radius deviation and rotational aspects, considering
branch torsion in latitudinal direction.

Multi-resolution branch modelling is controlled by the error met-
ric E3, defining the number of mesh polygons and lines on all branch
segments.

Topology simplification, i.e. branch decimation, is controlled by
the error metric E4. Topology simplification is performed before the
multi-resolution branch models are constructed, thereby we avoid
processing of branches that are further decimated. Internode merg-
ing is processed first, then we do a topological simplification, fol-
lowed by the multi-resolution branch construction, and lastly by the
instancing of the multi-resolution sequences for navigation.

The organization of the paper is as follows: Section 4 presents
details about the branch equations and internode merging. Section
5 concerns multi-resolution branching models, i.e. error-controlled
branch digitalisation for LODs, Section 6 concerns forest naviga-
tion using LOD models with semi-transparent line rendering and
instancing. This is followed by a discussion of the results and ideas
about future works.

4. Branch Definition and Internode Merging

The branch skeleton of an idealized tree is a smooth curve, and the
branch geometry is usually modelled as a generalized smooth cylin-
der [Blo85, Blo95]. A globally smooth branch surface, however,
requires high computational costs and considerable memory and
the visual results are not optimal for navigation in large forests. As
an alternative, we investigated the use of connected straight cylin-
ders, described as branch equation, to represent the geometry of a
single branch of the tree, similar to [dRDJ90]. We used the concept
of Frenet frames along the skeleton [Blo85] and performed a multi-
resolution analysis of the generalized cylinders inspired by the work
of [Blo95].

4.1. Internodes for defining branches

We use internodes to represent the geometry of a branch element
in a manner related to the definition of such internodes in botany.
Similarly, the term node represents one of the two internode endings.
So any single branch is composed by a sequence of consecutive
internodes.

An internode is modelled as a circular cylinder around a segment
of the skeletal poly-line that defines a branch, and two circles at
the two endings orthogonal to the tangent vectors at the end nodes
(Figure 3). Consecutive internodes share a common circle at their
intersection. We define the k-th internode as Ik .

4.2. Branch skeleton and Frenet frames

A branch skeleton B of K internodes is a list of node points { �Pk} and
corresponding radii {Rk}, B = {(�Pk, Rk); 1 ≤ k ≤ K}, with the arc
length of the k-th internode λk > 0. Let �Lk represent the direction

406

Figure 5: A graph of the edge number function h(ρ) (blue) and
its continuous basis function ĥ(ρ) (red), where the variable of two
functions is ρ, the error on internode polygonization.

Figure 6: Construction of a branch mesh. Figure 6(a) is from a
top view of an internode Ik for vertex connection, Figure 6(b) is an
upper side view of a short trunk, and Figure 6(c) is the side view of
Figure 4(a) with all branch meshes.

vector of each skeleton segment , shown as the up arrow of �Lk in
Figure 3; the half angle, βk = arccos(�Lk · �Lk−1)/2, is then called
the node angle.

Frenet frames (�Tk, �Nk, �Bk) are constructed from the nodes sim-
ilar to [Blo90], where �Tk , �Nk , and �Bk are the tangent vector,
the normal vector and the bi-normal vector respectively. We call
�Gk = (�Pk, Rk; �Tk, �Nk, �Bk) a skeletal vector , composed of a node
point and its corresponding radius and corresponding Frenet frame,
or four 3D vectors and a scalar component. It is used to specify the
shape of a branch from its skeleton.

The torsion angle is the angle between two bi-normal vectors
�Gk and �Gk+1, characterizing a twist of a Frenet frame around the
skeleton in differential geometry. As seen in Figure 7(c), the torsion
can be represented by lines of longitudinal twisting along a cylinder.

As proven in Equation (A2) in the Appendix, the torsion angle
between �Gk and �Gk+1 , is not greater than βk + βk+1, therefore βk is
a relevant measure for the consecutive connection of skeletal parts.
We define � to be the torsion threshold, the maximum allowed
torsion angle.

4.3. Branch definition

The cylindrical geometry of internode Ik is now constructed through
linear interpolation between two end circles of the skeletal vectors
�Gk and �Gk+1, i.e. a ruled surface linearly interpolates these two
circles using �Gk and �Gk+1. Thus, the overall branch is a piecewise
continuous parametric surface:

�Vk(t, θ) = (1 − u) · �Pk + u · �Pk+1

+ [(1 − u) · Rk · �Nk + u · Rk+1 · �Nk+1] · cos θ

+ [(1 − u) · Rk · �Bk + u · Rk+1 · �Bk+1] · sin θ,

(1)

where (t, θ) ∈ [tk, tk+1] × [0, 2π], t0 = 0, tk = λ1 + · · · + λk , and
u = (t − tk)/(tk+1 − tk). The normal vector �Dk(t, θ) of Equation (1)
is specified in Equation (A3) in the Appendix. Therefore, the integral
equation of a branch is:

�V (t, θ) = �Vk(t, θ), (t, θ) ∈ [0, tK] × [0, 2π],

where k = k(t) = max{l ∈ Z; tl ≤ t}. Figure 4(a) shows all branch
equations of a 30-year-old virtual white poplar tree (Populus alba).

4.4. Internode merging

Internode merging reduces branch complexity by replacing sets of
consecutive internodes by sets of longer ones. It is the basic process
for branch simplification and concerns all branch skeletons.

We use Ik,q to represent the long internode spanned by
�Gk and �Gk+q with 0 ≤ k ≤ K − q − 1; 1 ≤ q ≤ K − 1, and we
call the list of consecutive internodes represented by Uk,q =
{Ik, . . . , Ik+q−1}(q ≥ 1) an internode group. Thus Ik,q+2 with q ≥ 0
replaces all internodes in group Uk,q+2 during internode merging.
Figure 4(b) shows an internode merging sequence for a branch.

407

Figure 7: Multiresolution of a helix cylinder with quad counts.

We constrain the error ψk,q+2 due to internode merging of Uk,q+2

from Ik,q+2, (q ≥ 0), as follows

ψk,q+2 ≤ φk,q+2 + ϕk,q+2, (2)

where φk,q+2 is the maximum distance between skeletal vertex po-
sitions before and after merging, and ϕk,q+2 is the maximum radius
deviation, specified here-under:

φk,q+2 = max{|| �Xk,j ||; 0 ≤ j ≤ q}
ϕk,q+2 = √

2 max{|| �Yk,j ||, || �Zk,j ||; 0 ≤ j ≤ q},
(3)

where

�Xk,j = (1 − τk,j) · �Pk + τk,j · �Pk+q+2 − �Pk+j+1

�Yk,j = (1 − τk,j) · Rk · �Nk + τk,j · Rk+q+2 · �Nk+q+2

− Rk+j+1 · �Nk+j+1

�Zk,j = (1 − τk,j) · Rk · �Bk + τk,j · Rk+q+2 · �Bk+q+2

− Rk+j+1 · �Bk+j+1 (4)

and

τk,j = (tk+j+1 − tk)/(tk+q+2 − tk). (5)

The proof of Equation (2) can be checked in the Appendix. Errors
in Equation (3) are directly related to q, the number of iterations in
internode merging, so that the amount of merging can be predicted
explicitly, avoiding repeated calculation of intermediate internodes
in the merging process.

Internode merging S : Ik,q+2 → Uk,q+2 is performed when
φk,q+2 ≤ E1, ϕk,q+2 ≤ E2 and the corresponding angle βk of Ik,q+2

is less than the torsion limit �. Internode merging has the strongest
effect on mesh decimation with respect to the number of re-
duced internodes. In practice, errors φk,q+2 and ϕk,q+2 are pre-
computed and are used to guide mesh construction on-the-fly during
rendering.

5. Multi-Resolution Branch Models

In this section, we describe how we build the corresponding surface
model of meshes and lines after internode merging.

5.1. LOD representation with meshes

Prisms are often used to represent branches in traditional approaches
[Blo85, Blo95, dREF*88]. The drawback of this representation is
that mesh density is not adaptive, i.e. the mesh may be too sparse for
the thick end, and too dense for the thin end. We adapted mesh den-
sity along the branches using a two-stage process: first computing
the optimal discretization ratio for each internode, then performing
vertex connections from one internode to another.

Polygonization of internode ends. For each internode, we con-
vert the two circles at their ends into two equilateral polygons. For
each circle of radius R, we take an error metric ε as the distance
from an edge of the equilateral polygon to the surrounding circle,
so that the number of polygon edges can be predicted directly. ε

represents the control error E3.

Let H be the maximum number of edges of all equilateral
polygons considered for all tree branches, we set constants Pi =
1 − cos(π/i) with (i = 3, . . . , H) for our analysis, where Pi is
a monotonously decreasing list. Considering the h-sided poly-
gon (3 ≤ h ≤ H), the approximation error becomes ε = R[1 −
cos(π/h)]. The ratio of the spatial error over the radius, called
error on internode polygonization, would then be

ρ = ε/R = 1 − cos(π/h) ∈ [PH , 0.5]. (6)

Let us define ε0 as a pre-specified permitted error for cylinder
discretization, with ε ≤ ε0. If ε0 ∈ [PH R, 0.5R], then ρ ∈ [PH , 0.5],
so that the edge number can be computed as an integer function

h(ρ) = �π/ arccos(1 − ρ)	 + 1. (7)

Its base function is described as Equation (8)

ĥ(ρ) = π/ arccos(1 − ρ). (8)

If we extend ρ so that ρ ∈ (0.5, 2), Equation (7) is still correct for
internode polygonization, and the integer h(ρ) ∈ (1, 3) or h(ρ) = 2,
so that h(ρ) has to be clamped to value 3 standing for a prism.

This way we construct an analytical and fast way of defining the
discretization ratio, using the piecewise h(ρ) function Equation (9),
which is called the edge function

h(ρ) =
⎧⎨
⎩

3; 0.5 ≤ ρ < 2;
i + 1; Pi+1 ≤ ρ < Pi, 3 < i < H − 1;
H ; ρ < PH ;

(9)

Figure 5 is a graph showing the relation of the edge number
function h(ρ) (blue) and its continuous basis function ĥ(ρ) (red).

Polygonization of an internode. In order to simplify branch
geometry, each internode is polygonized into a prism if the numbers
of vertices of two ends are the same, or into a prismoid if they are
different. Let Hk be the number of edges of a prismoid approximating

408

Figure 8: Tree branch simplification and its corresponding topol-
ogy simplification (after the internode merging process) of a virtual
tree, 2.2 metres tall, and viewed from 36 meters away. (a) to (e)
are the simplification of a holly tree model from a detailed mesh
to a few lines based on different error thresholds. The simplifica-
tion ratio of graphical primitives and primitive counts (quadrilat-
erals/triangles/lines) are shown below the top row. (f) to (j) show
topology simplification, where the simplification ratios of the skele-
ton line counts are shown below the bottom row. The skeletons in
(f) are coloured based on their topological hierarchy: skeleton line
counts: high level skeleton with red, medium with cyan), and low
with blue.

the internode cylinder at node �Gk with E3 as the error, Hk is derived
by

Hk = h(E3/Rk). (10)

For simplicity, the approximation of a prismoid to an internode
cylinder is estimated at the two end circles only.

For the vertex connection at internode Ik , we consider the dif-
ference of vertex numbers at its two ends, dk = ‖Hk+1 − Hk‖, and
fk = min(Hk, Hk+1). There are generally three cases for vertex con-
nection based on the values of Hk and fk . In Figure 6(a), a branch
is shown from its top section view; the inner circle and outer circle
represent the k-th and k + 1-th circle of the branch.

Figure 9: A 5-year-old Scots pine tree, 2.2 metres tall and viewed
from 36 metres away, with both its branches (black) and conifer
leaves (blue), which are simplified at various ratios. The primitive
counts (branch quads/branch triangles/branch lines) and the prim-
itive counts (needle polygons/needle lines) are shown below each
figure.

(i) If fk = 0 and dk ≥ 3, like Hk ≥ 3 and Hk+1 = 0 for example,
we have a cover defined by a triangle fan of dk triangles as
shown in the top section of Figure 6(b). Thus, the following
cases concern fk > 0.

(ii) If dk = 0, the internode is a prism of Hk rectangles (quads) as
shown in the middle section of Figure 6(b).

(iii) If dk ≥ 1, the internode is a prismoid made of dk triangles
and fk rectangles, as shown in Figure 6(a) when dk = 2. We
avoid thin triangles by this construction to ensure mesh quality.
In practice, because there is a limited number of cases, the
connection of the mesh is pre-generated and looked-up during
run-time mesh construction.

Figure 6(c) shows a mesh model of a virtual white poplar tree
(Populus alba), directly constructed from the branch equations
shown in Figure 4(a), therefore rendered from the same camera
position. The construction is based on polygonization of internode
ends and polygonization of an internode. It should be noted that
the meshes of each branch are independent from each other. At the
branch node points, no intersection is explicitly calculated in order
to maintain a single mesh for the entire branch.

In order to illustrate LOD representation of branches with the
mesh model, we choose to sample node points from a circular he-
lix, a typical curve with constant curvature and constant torsion.
Figure 7 shows multiresolution meshes of the cylinder from high
multiresolution to low, with the number of quads used beneath the
figure. The number of edges of each prism is 12, 6, 4, 3 and 3,
respectively. The lines of longitude of Figure 7(c) show the torsion
of the bi-normal vectors.

Although this combination is helpful in ensuring a smooth sur-
face, in our case we construct mesh LODs from skeletons on-the-fly
for each branch and thus discrete elements are required. On the other
hand, the decrease in visual quality resulting from this is minimal
for forest navigation since, most of the time, individual trees are
viewed from a significant distance.

409

Figure 10: Rendering result of the semi-transparent line models (Ground truth).

Figure 11: The instancing method presented by [BLZD12] gives a sparse looking image

Figure 12: Differences between detail windows in Figures 10 and 11. (a) and (b) are detailed views of windows C11 and C21, respectively.
(c) shows pixel differences in C21 compared to C11, with false colours, where the value of each pixel of (c) is the absolute difference of the
intensity of that pixel in C11 and that in C21, ranging from 0 to 255. (d) and (e) are detailed views of C12 and C22. (f) shows pixel differences
in C22 compared to C12, with false colours.

5.2. LOD representation with lines

Switching from polygons to semi-transparent lines is meaningful
for representations of distant branch geometry. This simplifies ge-
ometry and warrants higher quality anti-aliasing during rendering
[DCSD02]. We will consider two aspects: linearization for intern-
odes and topology simplification.

Linearization for internodes. We can extend Equation (9) to
include line geometry, considering ρ ≥ 2 . In fact, h can be any

integer satisfying ρ ≥ 1 − cos(π/h), so h = 1 is chosen for the
linearization of a branch in form of a polyline; the width of each
segment satisfies 2R = 2E3/ρ < 1. For this purpose, Equation (9)
is extended to Equation (11)

h(ρ) =

⎧⎪⎪⎨
⎪⎪

1; 2 ≤ ρ;
3; 0.5 ≤ ρ < 2;
i + 1; Pi+1 ≤ ρ < Pi, 3 < i < H − 1;
H ; ρ < PH .

(11)

410

Figure 13: Our instancing result. Error pixels are dramatically reduced by our new instancing method.

Equation (11) provides a consistent LOD mechanism for cre-
ating line representations and meshes which is efficient for direct
shape representations in graphics memory. As line discretization
is usually not applied at a sub-pixel level, we compute its trans-
parency (alpha-value α) with a penalty for improper line thickness or
darkness:

α(ρ) =
{

2/ρ, ρ ≥ 2;
1, ρ < 2;

(12)

5.3. Topology simplification

While replacing meshes with lines significantly reduces the number
of graphical primitives, more lines than necessary might still remain
when a tree is viewed from far. Therefore, further line simplification
is highly desirable.

Simplifying lines entails not only replacing connected lines with
a few line segments, but also removes small branch segments. We
call this operation topology simplification, or branch decimation.

Figure 14: The decomposition of a tree patch Ti,j in (a), into a mesh patch Pi,j in (b) and a semi-transparent line patch Li,j in (c). Each
patch is made up of 5 tree samples.

411

We guide the removal of small branch by the Hausdorff distance.
The distance is computed between each branch and its parent branch
(its bearer). The accumulated distance of the branch to its parent and
all its child branches defines when the branch can be deleted. E4 is
the error threshold that controls this operation.

The effect of topology simplification represented by skeleton lines
is shown in Figures 8(i) and (j).

5.4. LOD sequence of tree branches

Lastly, the complete LOD sequence of a tree is created by combining
branch internode merging, branch multi-resolution models using
meshes, branch multi-resolution models using lines, and topology
simplification.

Figure 8 shows a multi-resolution representation of a 6-year-
old holly tree, (Ilex) with a height of 2.2 metres based on branch
simplification seen from a distance of 36 metres. Figures 8(a) to
(e) show the tree model simplification from a detailed mesh to a
few lines based on different error thresholds, where the permitted
spatial errors, assuming E1 = E2 = E3 = E4, are given as 0.092,
3.87, 10.8, 18.8 and 39 centimetres, respectively. The spatial error
of 0.092 centimetres represents the finest model corresponding to an
error of 0.5 pixel. These operations result in a significant reduction
of the number of geometrical primitives.

Figures 8(f) to (j) show the effect of skeleton simplification cor-
responding to Figures 8(a) to (e), where the effect of internode
merging can be seen. The drastic reduction is made possible by
internode merging and topology simplification. Note that even the
extremely simplified representations in Figure 8(d) still maintain
the main structure and shape of the tree.

These pixel errors, or permitted spatial error, can be set to other
values based on user’s requests. Setting high error metrics will lead
to over-simplified models, with straight branches in form of multiple
lines and a limited numbers of edges for a prismatic geometry. Such a
request may be made to increase the rendering speed; corresponding
models are shown in Figures 8(d) and (e). However, setting low error
values is of less interest; the effects would reverse. Using the model
in Figure 8(a) for the case of subfigure (b), unnecessary details
would be kept for a very fine quality and rendering speed would
slow down without any gains in visual quality.

5.5. LOD of a conifer tree

Conifer needles are simpler in shape, on the other hand the number
of conifer needles is very large, so we only concentrate on them.
Such needles are organised as bundles along twigs. The structure
of conifer trees is very similar to that of all branches of a tree, so
our approach can also be used for the simplification of the whole
conifer tree.

The shape of conifer needles and small twigs is much simpler than
that of branches. The diameter is nearly constant for all needles and
needle textures can be omitted. We have developed a simplified way
of dealing with conifer needles that saves GPU memory and makes
the process of leaf simplification easier.

Our simplification is performed by iteratively merging two
closeby needles into one. This simplification stops when only one
needle line is left. The distance between two needles, defined from
their extremes (points and radii), is used to measure the error for
this simplification. It is a linear combination of three metrics: the
distance between the lines, the angle between the lines, and the
merging rank of each needle. The merging rank of a needle is de-
fined as the number of needles that it represents. The rank of each
needle is one at start, and the coefficients of the three error met-
rics are empirically set to 0.25, 0.25 and 0.5. This iterative merging
is a time consuming process. An Octree data structure is used to
improve finding the most similar needles. This merging calculation
can also be performed in pre-processing and is then stored for an
on-the-fly usage. An error threshold E5 is specified for controlling
this operation.

Figure 9 shows a 2.2-metre-tall conifer tree, a Scots pine, viewed
from a distance of 36 metres with different LODs for branches and
needles, where the permitted spatial errors (E1 = E2 = E3 = E4 =
E5) are set to values of 0.047, 0.45, 1.82, 8.75, 22 centimetres,
respectively. The spatial error of 0.047 centimetres represents the
finest model that corresponds to an error of 0.5 pixel.

To enable proper illumination of lines from different viewing di-
rections, the normals of the line ‘surfaces’ need to be approximated.
To do this we use three lines with evenly sampled normal directions
to represent one internode.

6. Forest Navigation using LOD Models

To make effective use of new hardware instancing techniques for
fast forest navigation, a series of discrete LOD models are extracted
first. We use so-called Large-Scale Instancing (LSI) rendering of
trees in [BLZD12] for mesh models and have developed a new
technique for line models. The LOD models are selected based on
their associated spatial errors. Let us assume that we have M tree
samples in the forest scene, and each has N user-specified LOD
levels.

To achieve a good visual result while keeping as few polygons
as possible, the permitted pixel error δ of the finest model of a
tree is set to 0.5 pixels, and other LOD models of the tree are
adjusted according to their relative distance from the camera. The
permitted spatial error ε of the lowest LOD model is heuristically
set to 22 centimetres. Experiments carried on various tree structures
led to this value. As an example on broad-leaf trees, in Figures 8(d)
and 8(e), their respective spatial errors are 18.8 and 39 centimetres
respectively. In Figure 8(e), significant parts of the tree structure
are lost. Another example using a conifer is given in Figure 9(e)
here, the spatial error set to 22 centimetres. In this case the overall
tree structure is kept, despite the disappearance of the small branch
vertices on the trunk.

Let N LOD levels of M tree samples be represented as {Ti,j ; 1 ≤
i ≤ M, 1 ≤ j ≤ N}. The geometry Ti,j is separated into two parts:
Pi,j and Li,j

{Ti,j } = {Pi,j } ∪ {Li,j }, (13)

412

Table 1: Comparison with eleven state-of-the-art forest rendering techniques. The symbol ‘+’ means that the proposed technique is efficient for the concerned
criterion; conversely, the symbol ‘-’ means either inefficient, or inappropriate.

Branch
details

Single Tree
Branch LOD

continuity
Memory

cost Scene scale

Forest
Real-time
rendering

Real-time
shadow

Realistic lighting (RRL) model[BN12] Low – High Large + +
Leaf distribution model (LDM)[ACV*14] Low – Low Large + –
Grouping branches (CGB)[BK04] Low – Middle Very Small – –
Billboard clouds (BC)[BCF*05] Middle – Middle Large + –
View-dependent pruning (VDP)[GCRR11] Middle – Middle Small + –
Multi-resolution foliage (MRF)[DZYJ10] Middle poor Middle Small + –
Large-scale instancing (LSI)[BLZD12] Middle – Middle Large + +
Generalized cylinder (GC)[Blo85, BL99] Middle – Middle Very Small – –
Texture-lobe (TL)[LPC*11] Middle – Low Middle + +
Generic tree model (GTM)[PMKL01] Middle – High Small – –
Bud fate control (BFC)[PHL*09] High – High Middle – –
Adaptive Billboard Clouds (ABC)[KCD*14] Middle – High Large + –
Hybrid Representation (HR)[DLX*15] Middle – Middle Small + –
Our method High + Middle Large + +

Figure 15: A comparison of tree model simplification methods for a 25-year-old weeping willow model (Salix babylonica), 7.9 metres tall
and viewed from 129 metres away. (a) is the original model. (b) is simplified by Llunch et al. [LCV03]. (c) to (e) are simplified models with
our method. Primitive counts (quadrilaterals/triangles/lines) are shown below each figure.

where Pi,j consists of the set of opaque polygon meshes, and Li,j is
the set of semi-transparent lines with the N different transparencies.
The transparency value of each LOD level is the same. N is restricted
to 8 due to hardware constraints. Figure 14 shows the decomposition
of a tree patch Ti,j into an opaque polygon mesh patch Pi,j and semi-
transparent line patch Li,j . We fill in the frame buffer, render opaque
mesh models, including broad leaves, the terrain, the sky, and all
Pi,j first. Li,j is rendered with our approach as specified below.

6.1. Rendering semi-transparent line models

Order-independent transparency techniques such as alpha-to-
coverage and depth peeling cannot efficiently deal with scenes hav-
ing many complex objects. The alpha-to-coverage technique em-
ploys multisampling techniques to render semi-transparent objects.
However, its rendering result is inferior to alpha blending, and larger
sample masks would reduce the rendering speed. Depth peeling is
not suitable for rendering scenes containing a large quantity of ob-
jects as too many render passes would be needed. To achieve a
higher quality of the synthesized images, we render opaque objects

first and then do a depth-sorted rendering of transparent surfaces,
with appropriate alpha blending. Semi-transparent lines and their
instances are rendered after the opaque polygons.

We organize the Li,j sets into a vertex buffer object. After ren-
dering Pi,j , including the leaf sets, we render the Li,j , sorted far-to-
near, according to the viewing distance. In the fragment shader, we
employ Phong shading and set the alpha value of each fragments
according to Equation (12). Figure 10 shows a rendering result of
models with semi-transparent lines, where hardware instancing is
not applied.

6.2. Instancing semi-transparent line models

To reduce CPU overhead with small batch sizes, we employ hard-
ware instancing [BLZD12] to instance Pi,j both in the light frustum
for computing shadows and in the view-frustum for forest nav-
igation. When walking through or flying over a forest, shadows
have a stronger impact for close objects than those in medium and
far distances. Shadow changes caused by LOD models switching

413

between two adjacent LOD levels are not significant. Semi-
transparent lines, which require a lot of rendering resources, con-
tribute little to shadows, so in our implementation, Li,j is not ren-
dered in the light frustum.

Tree culling and LOD specification are entirely implemented
on the GPU to avoid breaking drawing batches by complex and
expensive CPU-based methods. This method, however, generates
erroneous pixels for instancing semi-transparent models. It instances
one tree sample after another, so the rendering order is not correct.
For example, Li+1,j is farther away than Li,j and it is occluded by
Li,j in some positions, fragments from Li+1,j will not be rendered
due to their larger depth values. This may result in an image with
sparse backgrounds as shown in Figure 11.

Figure 12 shows the differences between two pairs of snapshots
from Figure 10 and in Figure 11, where Figure 10 is rendered by
considering the sequence of semi-transparent lines given above, and
Figures 11 is rendered with no such consideration. Two false colour
diagrams in Figures 12(c) and (f) show the differences.

We have implemented three improvements above [BLZD12] to
reduce the rendering errors from semi-transparent lines. Figure 13
shows the rendering results of our new instancing approach. The
improvements are:

(1) We pack all M tree samples into one single tree patch repre-
sented as {Tj ; 1 ≤ j ≤ N} for each LOD level, where N is
the number of LOD levels. This reduces both the rendering
effort and the pixel error mentioned above. Each Tj is made
up of a mesh model Pj and a semi-transparent line model Lj .
Figure 14 shows a tree patch consisting of five tree samples.
We instance the Tj set instead of rendering one tree sample
after another.

(2) In each tree culling pass, the method of [BLZD12] selects four
LOD levels each time. In order to obtain a correct rendering
order, we select only one LOD level in the geometry shader
instead of multiple levels for Lj . The order of LOD levels is
determined according to their distances from the viewer, from
far to near.

(3) We use a buffer object to capture the LOD level positions from
the culling pass in (2) and sort them from far to near based on
their distances from the viewer on the CPU. Here we obtain
the right rendering order. Lastly, the sorted positions are sent
back to the GPU for rendering in each frame.

7. Discussion

We compared our method with thirteen state-of-the-art forest ren-
dering techniques mentioned in Section 2. Table 1 summarizes
aspects of this comparison.

All thirteen methods adopt polygons or volumes to represent
trees. Trees are rendered without geometry in RRL[BN12]. Branch
details are well preserved in two methods only, BFC[PHL*09] and
our method. We use detail primitives to represent tree branches and
thereby achieve the highest geometry fidelity of all techniques. Only
continuous branch LODs are extracted in our method.

The model files in LSI[BLZD12] range from approximately 100
KB to 700 KB. The GPU memory complexity of a forest is O(M)
where M is the number of tree samples used in the forest. This is
the same memory cost as in MRF[DZYJ10] and our method. The
memory cost of TL[LPC*11] is the smallest of all methods but
this is only an approximate method. RRL[BN12] costs more than
45 MB per tree sample, so the number of tree samples that can be
used simultaneously in a given view is very limited. LDM[ACV*14]
requires 5 MB per tree sample. Trees in HR[DLX*15] contain 2000
to 8000 triangles for computer rendering, and 100 to 600 triangles
for rendering on mobile devices, so the memory cost is intermediate.
Our method falls within a medium range in memory cost; however,
it has to extract more LODs to achieve continuous model transition.

BC[BCF*05] extremely simplifies the overall geometrical com-
plexity using billboards, thus allowing large-scale virtual forest ren-
dering. Although Adaptive Billboard Clouds [KCD*14] only com-
prise a single billboard representation for a given model, this method
can be naturally extended to generate a hierarchical representation
of billboards for large forests. HR[DLX*15] renders only 30 to
100 trees in the view frustum and cannot handle large-scale forests.
LSI[BLZD12] and our method benefit from hardware instancing to
render large scale forests with highly detailed trees. RRL[BN12]
allows rendering of vast forest, too. LDM[ACV*14] uses OpenGL
4 tessellation and geometry shaders to refine leaves; however, sim-
plification of branch geometry is not considered.

Geometry modifications are made frequently in MRF[DZYJ10]
and VDP[GCRR11] when the view position changes. These two
methods do not benefit from hardware instancing and thus the sizes
of possible forests are limited. For the same reason, MRF[DZYJ10],
VDP[GCRR11], ABC[KCD*14] and HR[DLX*15] cannot handle
real-time shadowing properly, as they must recalculate the model
geometry in the light frustums, leading to considerable overload.
Among them, RRL[BN12] provides the most realistic lighting effect
of forests.

All in all, although our method does not perfectly and simulta-
neously solve all problems, it surpasses the other methods in most
aspects, especially in geometrical fidelity (thin branches in naviga-
tions), scene scale and GPU performance usage.

8. Results

Our system was developed in C++ using OpenGL 4.4 and runs on a
Windows 7 system. The hardware is a desktop computer with Core
i7 CPU 920 2.67 GHz/Intel, 3G RAM, and an NVIDIA GeForce
GTX 770 video card.

All tree models were given as polylines obtained from the AMAP-
Genesis software. Figure 8 demonstrates the application of our LOD
techniques to a conventional tree. To demonstrate the benefits of in-
ternode merging and topology simplification, we applied our tech-
niques to a Scots pine tree (Pinus sylvestris) with long, thin, and
dense leaves (Figure 9). We have further applied our techniques
to a weeping willow (Salix babylonica) (Figure 15). Figure 15(b)
shows that the procedural multi-resolution method by Llunch et al.
[LCV03] completely removed the long and thin branches that are
a prominent feature of willow trees. The models generated by
our technique, however, maintain the long and thin branches, and

414

Figure 16: A bird’s-eye view of a dense forest without leaves (with 11 820 trees and 4 429 236 primitives in the view, where the FPS is 22).

Figure 17: A bird’s-eye view of a dense forest (with 497 trees and 5 715 347 primitives in the view, where FPS is 24).

the overall shape of the tree, even when simplified significantly
(cf. Figures 15 c–e).

The advantage of our LOD technique is a drastic simplification of
plant geometry combined with high fidelity and continuity. Figure
16 shows a bird’s-eye view of a winter forest consisting of various

tree species, including birch (Betula), chestnut (Castanea), holly,
Aleppo pine (Pinus halepensis), and white poplar. It consists of
11,820 trees and 4,429,236 primitives in view, rendered at 22 FPS.

Figure 17 shows a bird’s-eye view of another virtual forest which
contains older and more complex trees than the forest in Figure

415

16. In this view 497 trees are visible, and 5.7 million primitives
remain after simplification, 4.5% of the full detailed primitive count,
corresponding to a compression ratio of 95.5%. 24 FPS are reached
with a screen resolution of 1920 × 945.

9. Conclusions and Future Work

We propose a new multi-resolution representation method for inter-
active virtual forest rendering. Based on tree skeletons we provide
mathematical formulations that describe the geometry of such rami-
fied objects with a wide range of fidelity – from very detailed meshes
to simple line approximations. The basic mesh generation is based
on Frenet frames of discrete skeletons with torsion control. We de-
fine error metrics to guide the generation of geometrical primitives.
These error metrics ensure smooth transitions between the various
data detail levels.

By merging multiple tree samples, choosing one single LOD level
in the geometry shader, as well as sorting the positions, line-models
with different degrees of transparency are instanced on the GPU.
In this case the number of graphic driver invocations is reduced to
a large extent. Our tests show that large-scale forest scenes can be
rendered with shadows in real-time.

Keeping skeletons plus Frenet frames as the starting represen-
tation to build the LODs on-the-fly is more effective than starting
from a fully fledged mesh. This approach consumes less mem-
ory and computation for simplification and also guarantees smooth
transitions during topology simplification. This strategy can also
be useful for facilitating remote visualization of forest data over
the internet because only skeletons and Frenet frames need to be
transferred while geometrical primitives for branch surfaces can be
generated on-the-fly.

Rendering efficiency can be further improved by incorporating
other classical acceleration strategies such as occlusion culling.
Since meshes are generated on-the-fly based on skeletons, culling
away invisible skeletons can avoid unnecessary mesh generation.
This will be even more useful when rendering a fully foliated forest.
While our method accommodates viewing forests at close or mid-
range distances, it is not designed for long-ranges. We plan to inte-
grate our method with existing techniques devoted to long-distance
forest representation (e.g. [BN12]) to allow real-time forest ren-
dering at any distance. Texture-lobes [LPC*11] and sub-structures
[YdRPH03] could also be used to organize all branches into several
groups for more compact representations of the models.

Acknowledgements

This work is supported in part by National Natural Science Foun-
dation of China with Nos. 61331018, 61571439, 61571400 and
61561003, in part by the National High Technology Research and
Development Program of China (2015AA016402), in part by the
National Foreign 1000 Talent Plan (WQ201344000169), and in part
by Leading Talents of Guangdong Program (00201509).

A Appendix

Here are some supplementary materials for detailed mathematical
deduction of the main equations of branch shapes and some descrip-
tions of continuous simplification of branches in the body of this

paper. The purpose of this section is to avoid considering tedious
mathematical deductions.

The description of branch surfaces is based on Frenet frames,
which are constructed from their skeleton curves. Continuous sim-
plification of branches is accomplished by repeated internode merg-
ing.

A.1 Frenet frames for branch skeletons

The Frenet frame consists of the tangent vector �T , normal vector
�N , and binormal vector �B, which collectively form an orthonor-

mal coordinate frame along the curve defined by K + 1 nodes. We
calculate the tangent vector �Tk at each node as the bi-sector of seg-
ment angle at first. Similar to [Blo90], the principal normal �B and
bi-normals �N are defined recursively as

⎧⎨
⎩

�Bk+1 = (�Tk+1 × �Nk)

‖ �Tk+1 × �Nk‖
;

�Nk+1 = �Bk+1 × �Tk+1;
k = 0, . . . , K − 1. (A1)

As proved in Equation (A2) of Theorem 1, we see that the torsion
of binormal vectors of Frenet frame at �Pk with respect to its neigh-
bour frame at �Pk+1 is not bigger than βk + βk+1, which is the basis
of our metrics for branch geometry simplification.

Theorem 1 Torsion constraints. The tangent, principal normal and
the bi-normal vectors defined in Equation (A1) satisfy the following
inequality (A2)

⎧⎨
⎩

�Tk · �Tk+1 ≥ cos(βk + βk+1)
�Nk · �Nk+1 ≥ cos(βk + βk+1)
�Bk+1 · �Bk ≥ cos(βk + βk+1)

(A2)

Proof. The first inequality is an obvious deduction from the defini-
tion of tangent vectors Tk .

When Bk+1 in the first equation of Equation (A1) is applied to the
second, we have

�Nk+1 = [�Nk − (�Tk+1 · �Nk) �Tk+1]/|| �Tk+1 × �Nk||

Then we have

�Nk+1 · �Nk = [1 − (�Tk+1 · �Nk)2]/|| �Tk+1 × �Nk||
= || �Tk+1 × �Nk||

Since

(�Tk+1 · �Nk)2 ≤ 1 − (�Tk+1 · �Tk)2

= 1 − [cos(βk + βk+1)]2

Then

�Nk · �Nk+1 ≥ cos(βk + βk+1)

416

Similarly

�Bk+1 · �Bk = [�Tk+1 · (�Nk × �Bk)]/|| �Tk+1 × �Nk||
≥ �Tk · �Tk+1

≥ cos(βk + βk+1.) �

A.2 Branch equation and internode merging

This subsection explains details of the Branch Equation, Equation
(1). We modelled the geometry of internode Ik by a simple ruled
surface. This surface, constructed from �Gk and
�Gk+1(0 ≤ k ≤ K − 1) was described in Equation (1) where
u = (t − tk)/(tk+1 − tk), the unifies parameter of t at [tk, tk+1]. The
corresponding normal vector equation of (1) is approximated by

�Dk(t, θ) = (1 − u) · [cos θ · �Nk + sin θ · �Bk]
+ u · [cos θ · �Nk+1 + sin θ · �Bk+1]

(A3)

which is a linear interpolation of the normal vectors on two end
circles of the internode.

Polygonization of a branch involves using a prismoid for each
internode cylinder Therefore, vertices at node �Gk (k = 0, . . . , K)
are specified as:

�Vj,k = �V (tk, j · 2π/(2Hk))
= �Pk + Rk · �Nk · cos(j · π/Hk)

+ Rk · �Bk · sin(j · π/Hk)
(A4)

deduced from (1) (j = 0, · · · , Hk , k = 0, . . . , K). Hk defines the
degree of prismoid disretization step in (10). The normal vectors at
vertex �Vj,k are

�Dj,k = �Nk · cos(j · π/Hk) + �Bk · sin(j · π/Hk) (A5)

A.3 Error analysis on internode merging

This subsection explains details of Equation (2).

Theorem 2 Error on internode merging. Given an internode group
Uk,q+2(q ≥ 0), the error ψk,q+2 between Ik,q+2 and Uk,q+2 satisfies

ψk,q+2 ≤ φk,q+2 + ϕk,q+2, (A6)

where φk,q+2 and ϕk,q+2 are specified in Equation (3).

Proof. The function of Ik,q+2 is

�Vk,q+2(t, θ) = (1 − t) �Pk + t · �Pk+q+2

+ [(1 − t)Rk
�Nk + tRk+q+2 �Nk+q+2] cos θ

+ [(1 − t)Rk
�Bk + tRk+q+2 �Bk+q+2] sin θ

Since Ik,q+2 defines a ruled surface, and Uk,q is a surface gener-
ated by polylines, the maximum difference is between a series of

polylines and corresponding single line segments. Therefore Fk,q+2

comes from the maximum value of

�Vk,q+2(τk,j , θ) − �Vk+j+1(τk,j , θ)

= (1 − τk,j) �Pk + τk,j
�Pk+q+2 − �Pk+j+1

+ cos θ [(1 − τk,j)Rk × �Nk + (τk,j)Rk+q+2 × �Nk+q+2

−Rk+j+1 × �Nk+j+1]

+ sin θ [(1 − τk,j)Rk × �Bk + τk,jRk+q+2 × �Bk+q+2

−Rk+j+1 × �Bk+j+1]

for all 0 ≤ j ≤ q, because τk,j ∈ [0, 1]. Thus

ψk,q+2 ≤ ||Xk,j || + ||Yk,j || cos θ + ||Zk,j || sin θ

Therefore,

ψk,q+2 ≤ φk,q+2 + ϕk,q+2. �

References

[ACV*14] ANDÚJAR C., CHICA A., VICO M. A., MOYA S., BRUNET

P.: Inexpensive reconstruction and rendering of realistic roadside
landscapes. Computer Graphics Forum 33, 6 (2014), 101–117.

[BCF*05] BEHRENDT S., COLDITZ C., FRANZKE O., KOPF J., DEUSSEN

O.: Realistic real-time rendering of landscapes using billboard
clouds. Computer Graphics Forum 24, 3 (2005), 507–516.

[BK04] BEAUDOIN J., KEYSER J.: Simulation levels of detail for
plant motion. In Proceedings of the 2004 ACM SIGGRAPH/
Eurographics Symposium on Computer Animation (2004), pp.
297–304.

[BL99] BLOOMENTHAL J., LIM C.: Skeletal methods of shape manip-
ulation. In SMI ’99: Proceedings of the International Conference
on Shape Modeling and Applications (Washington, DC, USA,
1999), IEEE Computer Society, p. 44.

[Blo85] BLOOMENTHAL J.: Modeling the mighty maple. In SIG-
GRAPH ’85 (1985), pp. 305–311.

[Blo90] BLOOMENTHAL J.: Calculation of reference frames along a
space curve. In Graphics Gems. A. Glassner (Ed.). Academic
Press, Boston (1990), pp. 567–571.

[Blo95] BLOOMENTHAL J.: Skeletal Design of Natural Forms. PhD
thesis, Calgary, Alta., Canada, 1995.

[BLZD12] BAO G., LI H., ZHANG X., DONG W.: Large-scale forest
rendering: Real-time, realistic, and progressive. Computers &
Graphics 36, 3 (2012), 140–151. Novel Applications of VR.

[BN12] BRUNETON E., NEYRET F.: Real-time realistic rendering and
lighting of forests. Computer Graphics Forum 31, 2pt1 (2012),
373–382.

[CHPR07] COOK R. L., HALSTEAD J., PLANCK M., RYU D.: Stochastic
simplification of aggregate detail. ACM Transactions on Graph-
ics 26, 3 (July 2007), 79:1–79:8.

417

[DCSD02] DEUSSEN O., COLDITZ C., STAMMINGER M., DRETTAKIS G.:
Interactive visualization of complex plant ecosystems. In Pro-
ceedings of the Conference on Visualization ’02 (Washington,
DC, USA, 2002), VIS ’02, IEEE Computer Society, pp. 219–
226.

[DHL*98] DEUSSEN O., HANRAHAN P., LINTERMANN B., MECH R.,
PHARR M., PRUSINKIEWICZ P.: Realistic modeling and rendering of
plant ecosystems. In SIGGRAPH ’98 (1998), pp. 275–286.

[DLX*15] DONG T., LIU S., XIA J., FAN J., ZHANG L.: A time-critical
adaptive approach for visualizing natural scenes on different de-
vices. PLoS ONE 10, 2 (2015), 1–26.

[DN04] DECAUDIN P., NEYRET F.: Rendering forest scenes in real-
time. Computer Graphics Forum (2004), 93–102. Proc. Sympo-
sium on Eurographics.

[dRDJ90] DE REFFYE P., DINOUARD P., JAEGER M.: Basic concepts
of computer plants growth simulation. NICOGRAPH’90 6, 1
(1990), 219–233.

[dREF*88] DE REFFYE P., EDELIN C., FRANÇON J., JAEGER M., PUECH

C.: Plant models faithful to botanical structure and developmentr.
In SIGGRAPH ’88 (1988), vol. 22, pp. 151–158.

[DZYJ10] DENG Q., ZHANG X., YANG G., JAEGER M.: Multiresolution
foliage for forest rendering. Computer Animation and Virtual
Worlds 21, 1 (2010), 1–23.

[GCRR11] GUMBAU J., CHOVER M., REMOLAR I., REBOLLO C.: View-
dependent pruning for real-time rendering of trees. Computers &
Graphics 35, 2 (2011), 364–374.

[GMN05] GILET G., MEYER A., NEYRET F.: Point-based rendering of
trees. In Eurographics Workshop on Natural Phenomena (2005).

[GS02] GARLAND M., SHAFFER E.: A multiphase approach to effi-
cient surface simplification. In Proceedings of Visualization ’02
(2002), pp. 117–124.

[HB05] HERNANDEZ E., BENES B.: Robin hood’s algorithm for time-
critical level of detail. In Graphicon’2005 Russia (2005).

[JT03] JAEGER M., TENG J.: Tree and plant volume imaging - an
introductive study towards voxelized functional landscapes. In
Proceedings on Plant Growth Modeling and Applications (2003),
pp. 169–181.

[KCD*14] KRATT J., COCONU L., DAPPER T., SCHLIEP J. W., PAAR P.,
DEUSSEN O.: Adaptive billboard clouds for botanical tree models.
Digital Landscape Architecture (2014), 274–282.

[LCV03] LLUCH J., CAMAHORT E., VIVÓ R.: Procedural multiresolu-
tion for plant and tree rendering. In AFRIGRAPH ’03 (2003), pp.
31–38.

[LD99] LINTERMANN B., DEUSSEN O.: Interactive modeling of plants.
IEEE Computer Graphics and Applications 19, 1 (1999), 56–65.

[LP02] LANE B., PRUSINKIEWICZ P.: Generating spatial distributions
for multilevel models of plant communities. In Graphics Inter-

face (Calgary, Alberta, Canada, 27–29 May 2002), Canadian
Human-Computer Communications Society, pp. 69–80.

[LPC*11] LIVNY Y., PIRK S., CHENG Z., YAN F., DEUSSEN O., COHEN-
OR D., CHEN B.: Texture-lobes for tree modelling. ACM Trans-
actions on Graphics 30, 4 (July 2011), 53:1–53:10.

[LVM04] LLUCH J., VIVÓ R., MONSERRAT C.: Modelling tree struc-
tures using a single polygonal mesh. Graphical Models 66, 2
(2004), 89–101.

[Max90] MAX N.: Cone-spheres. In SIGGRAPH ’90 Conference
Proceedings (New York, NY, USA, 1990), ACM Press, pp. 59–
62.

[MNP01] MEYER A., NEYRET F., POULIN P.: Interactive rendering of
trees with shading and shadows. In Eurographics Workshop on
Rendering (2001), pp. 183–196.

[MP96] MECH R., PRUSINKIEWICZ P.: Visual models of plants inter-
acting with their environment. In SIGGRAPH ’96 (1996), pp.
397–410.

[NPDD11] NEUBERT B., PIRK S., DEUSSEN O., DACHSBACHER C.: Im-
proved model- and view-dependent pruning of large botanical
scenes. Computer Graphics Forum 30, 6 (2011), 1708–1718.

[ony] Onyx-tree. In http://www.onyxtree.com/, Onyx Computing,
Inc. Accessed on 30 June 2014.

[PHL*09] PALUBICKI W., HOREL K., LONGAY S., RUNIONS A., LANE

B., MĚCH R., PRUSINKIEWICZ P.: Self-organizing tree models for
image synthesis. ACM Transactions on Graphics 28, 3 (July
2009), 58:1–58:10.

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorithmic Beauty
of Plants. Springer-Verlag, New York, 1990.

[PMKL01] PRUSINKIEWICZ P., MÜNDERMANN L., KARWOWSKI R., LANE

B.: The use of positional information in the modeling of plants.
In SIGGRAPH ’01 (2001), pp. 289–300.

[SG97] SCHMALSTIEG D., GERVAUTZ M.: Modeling and rendering of
outdoor scenes for distributed virtual environments. In Proceed-
ings of ACM VRST (1997), pp. 209–215.

[YdRPH03] YAN H., DE REFFYE P., PAN C., HU B.: Fast construction of
plant architectural models based on substructure decomposition.
Journal of Computer Science and Technology 18, 6 (2003), 780–
787.

[ZBDS12] ZINSMAIER M., BRANDES U., DEUSSEN O., STROBELT H.:
Interactive level-of-detail rendering of large graphs. IEEE Trans-
actions on Visualization and Computer Graphics 18, 12 (Dec
2012), 2486–2495.

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Movie S1.

