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RSA encryption (Rivest, Shamir and Adleman)

Bob chooses p and q two large prime numbers and computes N = pq. He
generates E and D two integers such that ED = 1 (mod (p − 1)(q − 1)).

Public Key: N,D.

Private Key: E , p, q.

Alice encrypts a message m by: c = mD mod N.

Bob decrypts c by doing: cE = mED mod N = m.
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An algorithm for modular exponentiation : Right-to-left
Square-and-multiply

Require: A modulus N, an
integer X ∈ [0,N[ and an
exponent
E = (e`−1, . . . , e0)2

Ensure: R = XE (mod N)
1: R ← 1
2: Z ← X
3: for i from 0 to `− 1

do
4: if ei = 1 then
5: R ← R × Z (mod N)
6: end if
7: Z ← Z 2 (mod N)
8: end for
9: return R

XE = X

`−1∑
i=0

ei2
i

XE = X e`−12
`−1×· · ·×X e121×X e020
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Simple power analysis
E = (e`, . . . , e0)2 and X ∈ [0,N[

↑
Square-and-multiply
R ← 1
Z ← X
for i = 0 to `− 1 do

if ei = 1 then
R ← R · Z mod N

endif

Z ← Z2 mod N
endfor
return(R)

Square-and-multiply-always
R0 ← 1
R1 ← 1
Z ← X
for i = 0 to `− 1 do

if ei = 0 then
R0 ← R0 · Z mod N

else
R1 ← R1 · Z mod N

endif
endfor

Z ← Z2 mod N
return(R1)

Montgomery-ladder
R ← 1
R′ ← X
for i = ` to 1 do

if ki = 1 then
R ← R · R′ mod N

R′ ← R′2 mod N
else

R′ ← R · R′ mod N

R ← R2

endif
endfor
return(R)

↓ ↓
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Differential power analysis

loop 1
e1 = 1

r1

loop 2
e2 = 0

r2

loop 3
e3 = 1

r3

loop 4
e4 = 0

r4

loop 5
e5 =??

m

0 r5

r ′51

trace 1

trace 2

trace 3
............

trace L

correct guess

wrong guess

Differentials:

Counter-measure: Randomization of the exponent and data.
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Montgomery multiplication

Basic modular multiplication. For X ,Y ∈ [0,N[

1 Product. Z ← X × Y

2 Reduction. Q ← bZ/Nc and R ← Z − Q × N

Montgomery Multiplication

Require: X ,Y ∈ [0,N[ and
A = 2n > N

Ensure: R = X × Y × A−1 (mod N)
1: Z ← X × Y
2: Q ← N−1 × Z (mod A)
3: R ← (Z − Q × N)/A

X

× Y

Z1 Z0

= Q × N− ∗ Z0

R 0

×2−n R

Montgomery representation.

1 X̃ = XA mod N provides

2 MontMul(X̃ , Ỹ ) = (XA)× (YA)× A−1 mod N = XYA mod N
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Montgomery multiplication in residue number system

Let A = {a1, . . . , at} be a set t co-prime integers.

An integer X such that 0 ≤ X < A =
∏t

i=1 ai is represented by

[X ]A = (x1 = X mod a1, . . . , xt = X mod at).

The Chinese remainder theorem tell us that for op ∈ {+,×}

[X ]A op [Y ]A = ([x1 op y1]a1 , . . . , [xt op yt ]at )⇔ X op Y mod A

Montgomery Multiplication in RNS

Require: X ,Y in A ∪ B
Ensure: XYA−1 mod N in A ∪ B
1: [Q]A ← [XYN−1]A

2: [Q]B ← BEA→B([Q]A)

3: [Z ]B ← [(XY − QN)A−1]B

4: [Z ]A ← BEB→A([Z ]B)

5: return (ZA∪B)
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Randomization in RNS (LRA CHES 2004)
We have

X̃old = [XAold ]Aold∪Bold

we permute the basis elements Aold ∪ Bold → Anew ∪ Bnew
A B

a1

a2

at−1
at bt bt−1

b1

this leads to a new representation of X

X̃new = [XAnew ]Anew∪Bnew

Cost

Two Montgomery multiplications :

XAold mod N → XAoldAnew mod N → XAnew mod N.
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Randomized square-and-multiply-always

Input: N, X ∈ [0,N[,E = (e`−1, . . . , e0)2 and M = {m1, . . . ,m2t}.
Output: XE mod N

Square-and-mult-always

A,B ← random split M
Z̃ ← [X̃ ]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do

R̃ei ← MM RNS(R̃ei , Z̃ ,A,B)

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
end for
return R̃1

Proposed

A,B ← random split M
Z̃ ← [X̃ ]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do
A′ei ,B

′
ei ←

random split M
R̃ei ← MM RNS(R̃ei , Z̃ ,A′ei ,B

′
ei )

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
Randomise(Aold ,Bold ,A,B)

Z̃ ← Update(Z̃ ,Aold ,Bold ,A,B)
end for
return R̃1
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Example
For E = 7 = (111)2 and M = {m1,m2,m3,m4}

Initialization: A = {m1,m2},B = {m3,m4} leads to

R1 = m1m2 mod N
Z = Xm1m2 mod N

Loop 1: A1 = {m2,m4},B1 = {m1,m3} we get

R1 = (m1m2)× (Xm1m2)︸ ︷︷ ︸
Z

× (m−12 m−14 )︸ ︷︷ ︸
Mont. factor

= Xm2
1m2m

−1
4

A = {m1,m3},B = {m2,m4} leads to

Z = X 2m1m3

Loop 2: A1 = {m1,m4},B1 = {m2,m3} we get

R1 = Xm2
1m2m

−1
4 × (X 2m1m3)× (m−11 m−14 ) = X 3m2

1m2m3m
−2
4

Etc.
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R1 = (m1m2)× (Xm1m2)︸ ︷︷ ︸
Z

× (m−12 m−14 )︸ ︷︷ ︸
Mont. factor

= Xm2
1m2m

−1
4

A = {m1,m3},B = {m2,m4} leads to

Z = X 2m1m3

Loop 2: A1 = {m1,m4},B1 = {m2,m3} we get

R1 = Xm2
1m2m

−1
4 × (X 2m1m3)× (m−11 m−14 ) = X 3m2

1m2m3m
−2
4

Etc.
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Random evolution of the mask
After i loop iterations we have

R̃
(i)
1 = X

∑i−1
j=0 ej2

j

×
2t∏
j=0

m
γ
(i)
j

j mod N

and each γ
(i)
j evolves randomly as

γ
(i+1)
j = γ

(i)
j + δ

(i)
j with δ

(i)
j ∈ {−1, 0, 1} and


P(δ

(i)
j = 1) = 1/8,

P(δ
(i)
j = −1) = 1/8,

P(δ
(i)
j = 0) = 3/4.

0 21 3 4 5

γ
(i)
j

i (loop iterations)

δ
(4)
j = 0

δ
(2)
j = 0

δ
(3)
j = 1

δ
(5)
j = 1

δ
(1)
j = 1
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Removing the final mask

Problem: at the end we have to remove the final mask
∏2t

j=1m
γ
(`)
j

j from

X̃ = XE ·
2t∏
j=1

m
γ
(`)
j

j mod N.

Strategy: we force γ
(`)
j to be equal 0 as follows

During the first half of the iterations each γ
(i)
j evolves freely.

During the second half we constrain each |γ(i)j | to decrease toward 0.

(loop iterations)
0 1 2

γ
(i)
j

` i
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Level of randomization

The probabilities of the mask exponents satisfy

P(γ
(i)
j = d) =

∑d+b(i−d)/2c
k=d

( i
k

)( i−k
k−d
) (

1
8

)2k−d (3
4

)i−2k+d

P(Γ(i) = Γ) ≤
∏t

j=1 P(γ
(i)
j = γj) ≤

∏t
j=1 P(γ

(i)
j = 0)

Comparison: for a 2048-bit RSA modulus and t = 32:
I CHES 04:

F Montgomery-ladder,
F 4MM RNS per randomization,
F all masks are controled.

I Proposed:
F right-left square-and-multiply-always,
F 2MM RNS per randomization
F the masks for R0 and R1 are not controled.

Approach loop 1 loop 5 loop 10 loop 50 loop 100

CHES 04 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38

Proposed 10−8 5 · 10−28 1.7 · 10−38 2.69 · 10−61 5.75 · 10−71
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Conclusion

Secure embedded implementation of RSA:

Randomized modular exponentiation

But leak resistant arithmetic (CHES 04) is costly: 4 MM RNS per
randomization

We proposed:

To apply LRA to right-to-left exponentiation.

Avoid some correction of Montgomery Factor.

This decreases the computational cost: 2 MM RNS per
randomization.

Increases the level of randomization after a small number of loop.

Perspectives:

A better estimation of the level of randomization.

Is it a good counter-measure against horizontal power analysis ?
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Thank you for your attention!
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