
HAL Id: lirmm-01925642
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01925642v1

Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Leak Resistant Modular Exponentiation in RNS
Andrea Lesavourey, Christophe Negre, Thomas Plantard

To cite this version:
Andrea Lesavourey, Christophe Negre, Thomas Plantard. Efficient Leak Resistant Modular Expo-
nentiation in RNS. ARITH: Computer Arithmetic, Jul 2017, London, United Kingdom. pp.156-163,
�10.1109/ARITH.2017.39�. �lirmm-01925642�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01925642v1
https://hal.archives-ouvertes.fr

Efficient Leak Resistant Modular Exponentiation in
RNS

Andrea Lesavourey(1), Christophe Negre(1) and Thomas Plantard(2)

(1) DALI (UPVD) and LIRMM (Univ. of Montpellier, CNRS), Perpignan, France

(2) CCISR, SCIT, University of Wollongong, Wollongong, Australia

24-th Symposium on Computer Arithmetic,
London, July 26, 2017

1 / 19

Outline

1 Cryptography
RSA cryptosystem
Power analysis
Montgomery multiplication in RNS

2 Randomized modular exponentiation in RNS
Randomized Montgomery multiplication
Proposed approach
Level of randomization

3 Conclusion

2 / 19

Outline

1 Cryptography
RSA cryptosystem
Power analysis
Montgomery multiplication in RNS

2 Randomized modular exponentiation in RNS
Randomized Montgomery multiplication
Proposed approach
Level of randomization

3 Conclusion

3 / 19

RSA encryption (Rivest, Shamir and Adleman)

Bob chooses p and q two large prime numbers and computes N = pq. He
generates E and D two integers such that ED = 1 (mod (p − 1)(q − 1)).

Public Key: N,D.

Private Key: E , p, q.

Alice encrypts a message m by: c = mD mod N.

Bob decrypts c by doing: cE = mED mod N = m.

4 / 19

An algorithm for modular exponentiation : Right-to-left
Square-and-multiply

Require: A modulus N, an
integer X ∈ [0,N[and an
exponent
E = (e`−1, . . . , e0)2

Ensure: R = XE (mod N)
1: R ← 1
2: Z ← X
3: for i from 0 to `− 1

do
4: if ei = 1 then
5: R ← R × Z (mod N)
6: end if
7: Z ← Z 2 (mod N)
8: end for
9: return R

XE = X

`−1∑
i=0

ei2
i

XE = X e`−12
`−1×· · ·×X e121×X e020

5 / 19

Simple power analysis
E = (e`, . . . , e0)2 and X ∈ [0,N[

↑
Square-and-multiply
R ← 1
Z ← X
for i = 0 to `− 1 do

if ei = 1 then
R ← R · Z mod N

endif

Z ← Z2 mod N
endfor
return(R)

Square-and-multiply-always
R0 ← 1
R1 ← 1
Z ← X
for i = 0 to `− 1 do

if ei = 0 then
R0 ← R0 · Z mod N

else
R1 ← R1 · Z mod N

endif
endfor

Z ← Z2 mod N
return(R1)

Montgomery-ladder
R ← 1
R′ ← X
for i = ` to 1 do

if ki = 1 then
R ← R · R′ mod N

R′ ← R′2 mod N
else

R′ ← R · R′ mod N

R ← R2

endif
endfor
return(R)

↓ ↓

6 / 19

Simple power analysis
E = (e`, . . . , e0)2 and X ∈ [0,N[

↑
Square-and-multiply
R ← 1
Z ← X
for i = 0 to `− 1 do

if ei = 1 then
R ← R · Z mod N

endif

Z ← Z2 mod N
endfor
return(R)

Square-and-multiply-always
R0 ← 1
R1 ← 1
Z ← X
for i = 0 to `− 1 do

if ei = 0 then
R0 ← R0 · Z mod N

else
R1 ← R1 · Z mod N

endif
endfor

Z ← Z2 mod N
return(R1)

Montgomery-ladder
R ← 1
R′ ← X
for i = ` to 1 do

if ki = 1 then
R ← R · R′ mod N

R′ ← R′2 mod N
else

R′ ← R · R′ mod N

R ← R2

endif
endfor
return(R)

↓ ↓

6 / 19

Differential power analysis

loop 1
e1 = 1

r1

loop 2
e2 = 0

r2

loop 3
e3 = 1

r3

loop 4
e4 = 0

r4

loop 5
e5 =??

m

0 r5

r ′51

trace 1

trace 2

trace 3
............

trace L

correct guess

wrong guess

Differentials:

Counter-measure: Randomization of the exponent and data.

7 / 19

Differential power analysis

loop 1
e1 = 1

r1

loop 2
e2 = 0

r2

loop 3
e3 = 1

r3

loop 4
e4 = 0

r4

loop 5
e5 =??

m

0 r5

r ′51

trace 1

trace 2

trace 3
............

trace L

correct guess

wrong guess

Differentials:

Counter-measure: Randomization of the exponent and data.

7 / 19

Differential power analysis

loop 1
e1 = 1

r1

loop 2
e2 = 0

r2

loop 3
e3 = 1

r3

loop 4
e4 = 0

r4

loop 5
e5 =??

m

0 r5

r ′51

trace 1

trace 2

trace 3
............

trace L

correct guess

wrong guess

Differentials:

Counter-measure: Randomization of the exponent and data.

7 / 19

Differential power analysis

loop 1
e1 = 1

r1

loop 2
e2 = 0

r2

loop 3
e3 = 1

r3

loop 4
e4 = 0

r4

loop 5
e5 =??

m

0 r5

r ′51

trace 1

trace 2

trace 3
............

trace L

correct guess

wrong guess

Differentials:

Counter-measure: Randomization of the exponent and data.

7 / 19

Differential power analysis

loop 1
e1 = 1

r1

loop 2
e2 = 0

r2

loop 3
e3 = 1

r3

loop 4
e4 = 0

r4

loop 5
e5 =??

m

0 r5

r ′51

trace 1

trace 2

trace 3
............

trace L

correct guess

wrong guess

Differentials:

Counter-measure: Randomization of the exponent and data.
7 / 19

Montgomery multiplication

Basic modular multiplication. For X ,Y ∈ [0,N[

1 Product. Z ← X × Y

2 Reduction. Q ← bZ/Nc and R ← Z − Q × N

Montgomery Multiplication

Require: X ,Y ∈ [0,N[and
A = 2n > N

Ensure: R = X × Y × A−1 (mod N)
1: Z ← X × Y
2: Q ← N−1 × Z (mod A)
3: R ← (Z − Q × N)/A

X

× Y

Z1 Z0

= Q × N− ∗ Z0

R 0

×2−n R

Montgomery representation.

1 X̃ = XA mod N provides

2 MontMul(X̃ , Ỹ) = (XA)× (YA)× A−1 mod N = XYA mod N

8 / 19

Montgomery multiplication

Basic modular multiplication. For X ,Y ∈ [0,N[

1 Product. Z ← X × Y

2 Reduction. Q ← bZ/Nc and R ← Z − Q × N

Montgomery Multiplication

Require: X ,Y ∈ [0,N[and
A = 2n > N

Ensure: R = X × Y × A−1 (mod N)
1: Z ← X × Y
2: Q ← N−1 × Z (mod A)
3: R ← (Z − Q × N)/A

X

× Y

Z1 Z0

= Q × N− ∗ Z0

R 0

×2−n R

Montgomery representation.

1 X̃ = XA mod N provides

2 MontMul(X̃ , Ỹ) = (XA)× (YA)× A−1 mod N = XYA mod N

8 / 19

Montgomery multiplication

Basic modular multiplication. For X ,Y ∈ [0,N[

1 Product. Z ← X × Y

2 Reduction. Q ← bZ/Nc and R ← Z − Q × N

Montgomery Multiplication

Require: X ,Y ∈ [0,N[and
A = 2n > N

Ensure: R = X × Y × A−1 (mod N)
1: Z ← X × Y
2: Q ← N−1 × Z (mod A)
3: R ← (Z − Q × N)/A

X

× Y

Z1 Z0

= Q × N− ∗ Z0

R 0

×2−n R

Montgomery representation.

1 X̃ = XA mod N provides

2 MontMul(X̃ , Ỹ) = (XA)× (YA)× A−1 mod N = XYA mod N

8 / 19

Montgomery multiplication

Basic modular multiplication. For X ,Y ∈ [0,N[

1 Product. Z ← X × Y

2 Reduction. Q ← bZ/Nc and R ← Z − Q × N

Montgomery Multiplication

Require: X ,Y ∈ [0,N[and
A = 2n > N

Ensure: R = X × Y × A−1 (mod N)
1: Z ← X × Y
2: Q ← N−1 × Z (mod A)
3: R ← (Z − Q × N)/A

X

× Y

Z1 Z0

= Q × N− ∗ Z0

R 0

×2−n R

Montgomery representation.

1 X̃ = XA mod N provides

2 MontMul(X̃ , Ỹ) = (XA)× (YA)× A−1 mod N = XYA mod N

8 / 19

Montgomery multiplication

Basic modular multiplication. For X ,Y ∈ [0,N[

1 Product. Z ← X × Y

2 Reduction. Q ← bZ/Nc and R ← Z − Q × N

Montgomery Multiplication

Require: X ,Y ∈ [0,N[and
A = 2n > N

Ensure: R = X × Y × A−1 (mod N)
1: Z ← X × Y
2: Q ← N−1 × Z (mod A)
3: R ← (Z − Q × N)/A

X

× Y

Z1 Z0

= Q × N− ∗ Z0

R 0

×2−n R

Montgomery representation.

1 X̃ = XA mod N provides

2 MontMul(X̃ , Ỹ) = (XA)× (YA)× A−1 mod N = XYA mod N

8 / 19

Montgomery multiplication in residue number system

Let A = {a1, . . . , at} be a set t co-prime integers.

An integer X such that 0 ≤ X < A =
∏t

i=1 ai is represented by

[X]A = (x1 = X mod a1, . . . , xt = X mod at).

The Chinese remainder theorem tell us that for op ∈ {+,×}

[X]A op [Y]A = ([x1 op y1]a1 , . . . , [xt op yt]at)⇔ X op Y mod A

Montgomery Multiplication in RNS

Require: X ,Y in A ∪ B
Ensure: XYA−1 mod N in A ∪ B
1: [Q]A ← [XYN−1]A

2: [Q]B ← BEA→B([Q]A)

3: [Z]B ← [(XY − QN)A−1]B

4: [Z]A ← BEB→A([Z]B)

5: return (ZA∪B)

9 / 19

Montgomery multiplication in residue number system

Let A = {a1, . . . , at} be a set t co-prime integers.

An integer X such that 0 ≤ X < A =
∏t

i=1 ai is represented by

[X]A = (x1 = X mod a1, . . . , xt = X mod at).

The Chinese remainder theorem tell us that for op ∈ {+,×}

[X]A op [Y]A = ([x1 op y1]a1 , . . . , [xt op yt]at)⇔ X op Y mod A

Montgomery Multiplication in RNS

Require: X ,Y in A ∪ B
Ensure: XYA−1 mod N in A ∪ B
1: [Q]A ← [XYN−1]A

2: [Q]B ← BEA→B([Q]A)

3: [Z]B ← [(XY − QN)A−1]B

4: [Z]A ← BEB→A([Z]B)

5: return (ZA∪B)

9 / 19

Montgomery multiplication in residue number system

Let A = {a1, . . . , at} be a set t co-prime integers.

An integer X such that 0 ≤ X < A =
∏t

i=1 ai is represented by

[X]A = (x1 = X mod a1, . . . , xt = X mod at).

The Chinese remainder theorem tell us that for op ∈ {+,×}

[X]A op [Y]A = ([x1 op y1]a1 , . . . , [xt op yt]at)⇔ X op Y mod A

Montgomery Multiplication in RNS

Require: X ,Y in A ∪ B
Ensure: XYA−1 mod N in A ∪ B
1: [Q]A ← [XYN−1]A

2: [Q]B ← BEA→B([Q]A)

3: [Z]B ← [(XY − QN)A−1]B

4: [Z]A ← BEB→A([Z]B)

5: return (ZA∪B)

9 / 19

Montgomery multiplication in residue number system

Let A = {a1, . . . , at} be a set t co-prime integers.

An integer X such that 0 ≤ X < A =
∏t

i=1 ai is represented by

[X]A = (x1 = X mod a1, . . . , xt = X mod at).

The Chinese remainder theorem tell us that for op ∈ {+,×}

[X]A op [Y]A = ([x1 op y1]a1 , . . . , [xt op yt]at)⇔ X op Y mod A

Montgomery Multiplication in RNS

Require: X ,Y in A ∪ B
Ensure: XYA−1 mod N in A ∪ B
1: [Q]A ← [XYN−1]A

2: [Q]B ← BEA→B([Q]A)

3: [Z]B ← [(XY − QN)A−1]B

4: [Z]A ← BEB→A([Z]B)

5: return (ZA∪B)

9 / 19

Montgomery multiplication in residue number system

Let A = {a1, . . . , at} be a set t co-prime integers.

An integer X such that 0 ≤ X < A =
∏t

i=1 ai is represented by

[X]A = (x1 = X mod a1, . . . , xt = X mod at).

The Chinese remainder theorem tell us that for op ∈ {+,×}

[X]A op [Y]A = ([x1 op y1]a1 , . . . , [xt op yt]at)⇔ X op Y mod A

Montgomery Multiplication in RNS

Require: X ,Y in A ∪ B
Ensure: XYA−1 mod N in A ∪ B
1: [Q]A ← [XYN−1]A
2: [Q]B ← BEA→B([Q]A)
3: [Z]B ← [(XY − QN)A−1]B
4: [Z]A ← BEB→A([Z]B)
5: return (ZA∪B)

9 / 19

Outline

1 Cryptography
RSA cryptosystem
Power analysis
Montgomery multiplication in RNS

2 Randomized modular exponentiation in RNS
Randomized Montgomery multiplication
Proposed approach
Level of randomization

3 Conclusion

10 / 19

Randomization in RNS (LRA CHES 2004)
We have

X̃old = [XAold]Aold∪Bold

we permute the basis elements Aold ∪ Bold → Anew ∪ Bnew
A B

a1

a2

at−1
at bt bt−1

b1

this leads to a new representation of X

X̃new = [XAnew]Anew∪Bnew

Cost

Two Montgomery multiplications :

XAold mod N → XAoldAnew mod N → XAnew mod N.
11 / 19

Randomized square-and-multiply-always

Input: N, X ∈ [0,N[,E = (e`−1, . . . , e0)2 and M = {m1, . . . ,m2t}.
Output: XE mod N

Square-and-mult-always

A,B ← random split M
Z̃ ← [X̃]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do

R̃ei ← MM RNS(R̃ei , Z̃ ,A,B)

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
end for
return R̃1

Proposed

A,B ← random split M
Z̃ ← [X̃]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do
A′ei ,B

′
ei ←

random split M
R̃ei ← MM RNS(R̃ei , Z̃ ,A′ei ,B

′
ei)

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
Randomise(Aold ,Bold ,A,B)

Z̃ ← Update(Z̃ ,Aold ,Bold ,A,B)
end for
return R̃1

12 / 19

Randomized square-and-multiply-always

Input: N, X ∈ [0,N[,E = (e`−1, . . . , e0)2 and M = {m1, . . . ,m2t}.
Output: XE mod N

Randomized
Square-and-mult-always

A,B ← random split M
Z̃ ← [X̃]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do

R̃ei ← MM RNS(R̃ei , Z̃ ,A,B)

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
Randomise(Aold ,Bold ,A,B)

Z̃ ← Update(Z̃ ,Aold ,Bold ,A,B)

R̃0 ← Update(R̃0,Aold ,Bold ,A,B)

R̃1 ← Update(R̃1,Aold ,Bold ,A,B)
end for
return R̃1

Proposed

A,B ← random split M
Z̃ ← [X̃]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do
A′ei ,B

′
ei ←

random split M
R̃ei ← MM RNS(R̃ei , Z̃ ,A′ei ,B

′
ei)

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
Randomise(Aold ,Bold ,A,B)

Z̃ ← Update(Z̃ ,Aold ,Bold ,A,B)
end for
return R̃1

12 / 19

Randomized square-and-multiply-always

Input: N, X ∈ [0,N[,E = (e`−1, . . . , e0)2 and M = {m1, . . . ,m2t}.
Output: XE mod N

Randomized
Square-and-mult-always

A,B ← random split M
Z̃ ← [X̃]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do

R̃ei ← MM RNS(R̃ei , Z̃ ,A,B)

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
Randomise(Aold ,Bold ,A,B)

Z̃ ← Update(Z̃ ,Aold ,Bold ,A,B)

R̃0 ← Update(R̃0,Aold ,Bold ,A,B)

R̃1 ← Update(R̃1,Aold ,Bold ,A,B)
end for
return R̃1

Proposed

A,B ← random split M
Z̃ ← [X̃]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do
A′ei ,B

′
ei ←

random split M
R̃ei ← MM RNS(R̃ei , Z̃ ,A′ei ,B

′
ei)

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
Randomise(Aold ,Bold ,A,B)

Z̃ ← Update(Z̃ ,Aold ,Bold ,A,B)
end for
return R̃1

12 / 19

Randomized square-and-multiply-always

Input: N, X ∈ [0,N[,E = (e`−1, . . . , e0)2 and M = {m1, . . . ,m2t}.
Output: XE mod N

Randomized
Square-and-mult-always

A,B ← random split M
Z̃ ← [X̃]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do

R̃ei ← MM RNS(R̃ei , Z̃ ,A,B)

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
Randomise(Aold ,Bold ,A,B)

Z̃ ← Update(Z̃ ,Aold ,Bold ,A,B)

R̃0 ← Update(R̃0,Aold ,Bold ,A,B)

R̃1 ← Update(R̃1,Aold ,Bold ,A,B)
end for
return R̃1

Proposed

A,B ← random split M
Z̃ ← [X̃]A∪B,

R̃0 ← [1̃]A∪B, R̃1 ← [1̃]A∪B
for i from 0 to `− 1 do
A′ei ,B

′
ei ←

random split M
R̃ei ← MM RNS(R̃ei , Z̃ ,A′ei ,B

′
ei)

Z̃ ← MM RNS(Z̃ , Z̃ ,A,B)
Randomise(Aold ,Bold ,A,B)

Z̃ ← Update(Z̃ ,Aold ,Bold ,A,B)
end for
return R̃1

12 / 19

Example
For E = 7 = (111)2 and M = {m1,m2,m3,m4}

Initialization: A = {m1,m2},B = {m3,m4} leads to

R1 = m1m2 mod N
Z = Xm1m2 mod N

Loop 1: A1 = {m2,m4},B1 = {m1,m3} we get

R1 = (m1m2)× (Xm1m2)︸ ︷︷ ︸
Z

× (m−12 m−14)︸ ︷︷ ︸
Mont. factor

= Xm2
1m2m

−1
4

A = {m1,m3},B = {m2,m4} leads to

Z = X 2m1m3

Loop 2: A1 = {m1,m4},B1 = {m2,m3} we get

R1 = Xm2
1m2m

−1
4 × (X 2m1m3)× (m−11 m−14) = X 3m2

1m2m3m
−2
4

Etc.

13 / 19

Example
For E = 7 = (111)2 and M = {m1,m2,m3,m4}

Initialization: A = {m1,m2},B = {m3,m4} leads to

R1 = m1m2 mod N
Z = Xm1m2 mod N

Loop 1: A1 = {m2,m4},B1 = {m1,m3} we get

R1 = (m1m2)× (Xm1m2)︸ ︷︷ ︸
Z

× (m−12 m−14)︸ ︷︷ ︸
Mont. factor

= Xm2
1m2m

−1
4

A = {m1,m3},B = {m2,m4} leads to

Z = X 2m1m3

Loop 2: A1 = {m1,m4},B1 = {m2,m3} we get

R1 = Xm2
1m2m

−1
4 × (X 2m1m3)× (m−11 m−14) = X 3m2

1m2m3m
−2
4

Etc.

13 / 19

Example
For E = 7 = (111)2 and M = {m1,m2,m3,m4}

Initialization: A = {m1,m2},B = {m3,m4} leads to

R1 = m1m2 mod N
Z = Xm1m2 mod N

Loop 1: A1 = {m2,m4},B1 = {m1,m3} we get

R1 = (m1m2)× (Xm1m2)︸ ︷︷ ︸
Z

× (m−12 m−14)︸ ︷︷ ︸
Mont. factor

= Xm2
1m2m

−1
4

A = {m1,m3},B = {m2,m4} leads to

Z = X 2m1m3

Loop 2: A1 = {m1,m4},B1 = {m2,m3} we get

R1 = Xm2
1m2m

−1
4 × (X 2m1m3)× (m−11 m−14) = X 3m2

1m2m3m
−2
4

Etc.

13 / 19

Example
For E = 7 = (111)2 and M = {m1,m2,m3,m4}

Initialization: A = {m1,m2},B = {m3,m4} leads to

R1 = m1m2 mod N
Z = Xm1m2 mod N

Loop 1: A1 = {m2,m4},B1 = {m1,m3} we get

R1 = (m1m2)× (Xm1m2)︸ ︷︷ ︸
Z

× (m−12 m−14)︸ ︷︷ ︸
Mont. factor

= Xm2
1m2m

−1
4

A = {m1,m3},B = {m2,m4} leads to

Z = X 2m1m3

Loop 2: A1 = {m1,m4},B1 = {m2,m3} we get

R1 = Xm2
1m2m

−1
4 × (X 2m1m3)× (m−11 m−14) = X 3m2

1m2m3m
−2
4

Etc.

13 / 19

Example
For E = 7 = (111)2 and M = {m1,m2,m3,m4}

Initialization: A = {m1,m2},B = {m3,m4} leads to

R1 = m1m2 mod N
Z = Xm1m2 mod N

Loop 1: A1 = {m2,m4},B1 = {m1,m3} we get

R1 = (m1m2)× (Xm1m2)︸ ︷︷ ︸
Z

× (m−12 m−14)︸ ︷︷ ︸
Mont. factor

= Xm2
1m2m

−1
4

A = {m1,m3},B = {m2,m4} leads to

Z = X 2m1m3

Loop 2: A1 = {m1,m4},B1 = {m2,m3} we get

R1 = Xm2
1m2m

−1
4 × (X 2m1m3)× (m−11 m−14) = X 3m2

1m2m3m
−2
4

Etc.

13 / 19

Example
For E = 7 = (111)2 and M = {m1,m2,m3,m4}

Initialization: A = {m1,m2},B = {m3,m4} leads to

R1 = m1m2 mod N
Z = Xm1m2 mod N

Loop 1: A1 = {m2,m4},B1 = {m1,m3} we get

R1 = (m1m2)× (Xm1m2)︸ ︷︷ ︸
Z

× (m−12 m−14)︸ ︷︷ ︸
Mont. factor

= Xm2
1m2m

−1
4

A = {m1,m3},B = {m2,m4} leads to

Z = X 2m1m3

Loop 2: A1 = {m1,m4},B1 = {m2,m3} we get

R1 = Xm2
1m2m

−1
4 × (X 2m1m3)× (m−11 m−14) = X 3m2

1m2m3m
−2
4

Etc.
13 / 19

Random evolution of the mask
After i loop iterations we have

R̃
(i)
1 = X

∑i−1
j=0 ej2

j

×
2t∏
j=0

m
γ
(i)
j

j mod N

and each γ
(i)
j evolves randomly as

γ
(i+1)
j = γ

(i)
j + δ

(i)
j with δ

(i)
j ∈ {−1, 0, 1} and

P(δ

(i)
j = 1) = 1/8,

P(δ
(i)
j = −1) = 1/8,

P(δ
(i)
j = 0) = 3/4.

0 21 3 4 5

γ
(i)
j

i (loop iterations)

δ
(4)
j = 0

δ
(2)
j = 0

δ
(3)
j = 1

δ
(5)
j = 1

δ
(1)
j = 1

14 / 19

Removing the final mask

Problem: at the end we have to remove the final mask
∏2t

j=1m
γ
(`)
j

j from

X̃ = XE ·
2t∏
j=1

m
γ
(`)
j

j mod N.

Strategy: we force γ
(`)
j to be equal 0 as follows

During the first half of the iterations each γ
(i)
j evolves freely.

During the second half we constrain each |γ(i)j | to decrease toward 0.

(loop iterations)
0 1 2

γ
(i)
j

` i

15 / 19

Level of randomization

The probabilities of the mask exponents satisfy

P(γ
(i)
j = d) =

∑d+b(i−d)/2c
k=d

(i
k

)(i−k
k−d
) (

1
8

)2k−d (3
4

)i−2k+d

P(Γ(i) = Γ) ≤
∏t

j=1 P(γ
(i)
j = γj) ≤

∏t
j=1 P(γ

(i)
j = 0)

Comparison: for a 2048-bit RSA modulus and t = 32:
I CHES 04:

F Montgomery-ladder,
F 4MM RNS per randomization,
F all masks are controled.

I Proposed:
F right-left square-and-multiply-always,
F 2MM RNS per randomization
F the masks for R0 and R1 are not controled.

Approach loop 1 loop 5 loop 10 loop 50 loop 100

CHES 04 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38

Proposed 10−8 5 · 10−28 1.7 · 10−38 2.69 · 10−61 5.75 · 10−71

16 / 19

Level of randomization

The probabilities of the mask exponents satisfy

P(γ
(i)
j = d) =

∑d+b(i−d)/2c
k=d

(i
k

)(i−k
k−d
) (

1
8

)2k−d (3
4

)i−2k+d

P(Γ(i) = Γ) ≤
∏t

j=1 P(γ
(i)
j = γj) ≤

∏t
j=1 P(γ

(i)
j = 0)

Comparison: for a 2048-bit RSA modulus and t = 32:
I CHES 04:

F Montgomery-ladder,
F 4MM RNS per randomization,
F all masks are controled.

I Proposed:
F right-left square-and-multiply-always,
F 2MM RNS per randomization
F the masks for R0 and R1 are not controled.

Approach loop 1 loop 5 loop 10 loop 50 loop 100

CHES 04 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38

Proposed 10−8 5 · 10−28 1.7 · 10−38 2.69 · 10−61 5.75 · 10−71

16 / 19

Outline

1 Cryptography
RSA cryptosystem
Power analysis
Montgomery multiplication in RNS

2 Randomized modular exponentiation in RNS
Randomized Montgomery multiplication
Proposed approach
Level of randomization

3 Conclusion

17 / 19

Conclusion

Secure embedded implementation of RSA:

Randomized modular exponentiation

But leak resistant arithmetic (CHES 04) is costly: 4 MM RNS per
randomization

We proposed:

To apply LRA to right-to-left exponentiation.

Avoid some correction of Montgomery Factor.

This decreases the computational cost: 2 MM RNS per
randomization.

Increases the level of randomization after a small number of loop.

Perspectives:

A better estimation of the level of randomization.

Is it a good counter-measure against horizontal power analysis ?

18 / 19

Conclusion

Secure embedded implementation of RSA:

Randomized modular exponentiation

But leak resistant arithmetic (CHES 04) is costly: 4 MM RNS per
randomization

We proposed:

To apply LRA to right-to-left exponentiation.

Avoid some correction of Montgomery Factor.

This decreases the computational cost: 2 MM RNS per
randomization.

Increases the level of randomization after a small number of loop.

Perspectives:

A better estimation of the level of randomization.

Is it a good counter-measure against horizontal power analysis ?

18 / 19

Conclusion

Secure embedded implementation of RSA:

Randomized modular exponentiation

But leak resistant arithmetic (CHES 04) is costly: 4 MM RNS per
randomization

We proposed:

To apply LRA to right-to-left exponentiation.

Avoid some correction of Montgomery Factor.

This decreases the computational cost: 2 MM RNS per
randomization.

Increases the level of randomization after a small number of loop.

Perspectives:

A better estimation of the level of randomization.

Is it a good counter-measure against horizontal power analysis ?

18 / 19

Thank you for your attention!

19 / 19

	Cryptography
	RSA cryptosystem
	Power analysis
	Montgomery multiplication in RNS

	Randomized modular exponentiation in RNS
	Randomized Montgomery multiplication
	Proposed approach
	Level of randomization

	Conclusion

