Efficient Leak Resistant Modular Exponentiation in RNS

Andrea Lesavourey, Christophe Negre, Thomas Plantard

To cite this version:

Andrea Lesavourey, Christophe Negre, Thomas Plantard. Efficient Leak Resistant Modular Exponentiation in RNS. ARITH: Computer Arithmetic, Jul 2017, London, United Kingdom. pp.156-163, 10.1109/ARITH.2017.39 . lirmm-01925642

HAL Id: lirmm-01925642

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01925642
Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Efficient Leak Resistant Modular Exponentiation in RNS

Andrea Lesavourey ${ }^{(1)}$, Christophe Negre ${ }^{(1)}$ and Thomas Plantard ${ }^{(2)}$
(1) DALI (UPVD) and LIRMM (Univ. of Montpellier, CNRS), Perpignan, France
(2) CCISR, SCIT, University of Wollongong, Wollongong, Australia

24-th Symposium on Computer Arithmetic,
London, July 26, 2017

Outline

(1) Cryptography

- RSA cryptosystem
- Power analysis
- Montgomery multiplication in RNS
(2) Randomized modular exponentiation in RNS
- Randomized Montgomery multiplication
- Proposed approach
- Level of randomization
(3) Conclusion

Outline

(1) Cryptography

- RSA cryptosystem
- Power analysis
- Montgomery multiplication in RNS
(2) Randomized modular exponentiation in RNS
- Randomized Montgomery multiplication
- Proposed approach
- Level of randomization
(3) Conclusion

RSA encryption (Rivest, Shamir and Adleman)

Bob chooses p and q two large prime numbers and computes $N=p q$. He generates E and D two integers such that $E D=1(\bmod (p-1)(q-1))$.

- Public Key: N, D.
- Private Key: E, p, q.
- Alice encrypts a message m by: $c=m^{D} \bmod N$.
- Bob decrypts c by doing: $c^{E}=m^{E D} \bmod N=m$.

An algorithm for modular exponentiation : Right-to-left Square-and-multiply

```
Require: A modulus N, an
    integer }X\in[0,N[\mathrm{ and an
    exponent
    E=(e\ell-1},\ldots,\mp@subsup{e}{0}{}\mp@subsup{)}{2}{
Ensure: R=X 會 (mod}N
    1: R\leftarrow1
    2: }Z\leftarrow
    3: for i from 0 to \ell-1
    do
        if }\mp@subsup{e}{i}{}=1\mathrm{ then
        R\leftarrowR\timesZ (mod N)
        end if
        L\leftarrowZZ'(mod}N
        end for
    9: return R
```

6: end if
7: $\quad Z \leftarrow Z^{2}(\bmod N)$
8: end for
9: return R

$$
\begin{gathered}
X^{E}=X^{\sum_{i=0}^{\ell-1} e_{i} 2^{i}} \\
X^{E}=X^{e_{\ell-1} 2^{\ell-1}} \times \cdots \times X^{e_{1} 2^{1}} \times X^{e_{0} 2^{0}}
\end{gathered}
$$

Simple power analysis

$E=\left(e_{\ell}, \ldots, e_{0}\right)_{2}$ and $X \in[0, N[$

\uparrow
Square-and-multiply
$R \leftarrow 1$
$Z \leftarrow X$
for $i=0$ to $\ell-1$ do
if $e_{i}=1$ then
$R \leftarrow R \cdot Z \bmod N$
endif
$Z \leftarrow Z^{2} \bmod N$
endfor
return (R)

Simple power analysis

$E=\left(e_{\ell}, \ldots, e_{0}\right)_{2}$ and $X \in[0, N[$

Square-and-multiply-always
$R_{0} \leftarrow 1$
$R_{1} \leftarrow 1$
$Z \leftarrow X$
for $i=0$ to $\ell-1$ do
if $e_{i}=0$ then
$R_{0} \leftarrow R_{0} \cdot Z \bmod N$
else
$R_{1} \leftarrow R_{1} \cdot Z \bmod N$ endif endfor $Z \leftarrow Z^{2} \bmod N$ return $\left(R_{1}\right)$

Differential power analysis

Differential power analysis

$$
\begin{aligned}
& r_{1} \quad r_{2} \quad r_{3} \quad r_{4}<r_{1}^{\prime}
\end{aligned}
$$

Differential power analysis
 loop 1 loop 2 loop 3 loop 4 loop 5 $e_{1}=1 \quad e_{2}=0 \quad e_{3}=1 \quad e_{4}=0 \quad e_{5}=? ?$

$$
r_{1} \quad r_{2} \quad r_{3} \quad r_{4}<_{1>r_{5}^{\prime}}^{0>r_{5}}
$$

Differential power analysis

$$
\begin{aligned}
& e_{1}=1 \quad e_{2}=0 \quad e_{3}=1 \quad e_{4}=0 \quad e_{5}=? ? \\
& r_{1} \\
& r_{4} \sum_{1>r_{5}^{\prime}}^{0} r_{5}
\end{aligned}
$$

 correct guess

Differentials:

Differential power analysis

$$
\begin{aligned}
& e_{1}=1 \quad e_{2}=0 \quad e_{3}=1 \quad e_{4}=0 \quad e_{5}=? ? \\
& r_{1}
\end{aligned}
$$

 correct guess

Differentials:
wrong guess

Counter-measure: Randomization of the exponent and data.

Montgomery multiplication

Basic modular multiplication. For $X, Y \in[0, N[$
(1) Product. $Z \leftarrow X \times Y$
(2) Reduction. $Q \leftarrow\lfloor Z / N\rfloor$ and $R \leftarrow Z-Q \times N$

Montgomery multiplication

Basic modular multiplication. For $X, Y \in[0, N[$
(1) Product. $Z \leftarrow X \times Y$
(2) Reduction. $Q \leftarrow\lfloor Z / N\rfloor$ and $R \leftarrow Z-Q \times N$

Montgomery Multiplication

Require: $X, Y \in[0, N[$ and

$$
A=2^{n}>N
$$

Ensure: $R=X \times Y \times A^{-1}(\bmod N)$
1: $Z \leftarrow X \times Y$
2: $Q \leftarrow N^{-1} \times Z(\bmod A)$
3: $R \leftarrow(Z-Q \times N) / A$

Montgomery multiplication

Basic modular multiplication. For $X, Y \in[0, N[$
(1) Product. $Z \leftarrow X \times Y$
(2) Reduction. $Q \leftarrow\lfloor Z / N\rfloor$ and $R \leftarrow Z-Q \times N$

Montgomery Multiplication
Require: $X, Y \in[0, N[$ and

$$
A=2^{n}>N
$$

Ensure: $R=X \times Y \times A^{-1}(\bmod N)$
1: $Z \leftarrow X \times Y$
2: $Q \leftarrow N^{-1} \times Z(\bmod A)$
3: $R \leftarrow(Z-Q \times N) / A$
re lo

Montgomery multiplication

Basic modular multiplication. For $X, Y \in[0, N[$
(1) Product. $Z \leftarrow X \times Y$
(2) Reduction. $Q \leftarrow\lfloor Z / N\rfloor$ and $R \leftarrow Z-Q \times N$

Montgomery Multiplication
Require: $X, Y \in[0, N[$ and

$$
A=2^{n}>N
$$

Ensure: $R=X \times Y \times A^{-1}(\bmod N)$
1: $Z \leftarrow X \times Y$
2: $Q \leftarrow N^{-1} \times Z(\bmod A)$
3: $R \leftarrow(Z-Q \times N) / A$

Montgomery multiplication

Basic modular multiplication. For $X, Y \in[0, N[$
(1) Product. $Z \leftarrow X \times Y$
(2) Reduction. $Q \leftarrow\lfloor Z / N\rfloor$ and $R \leftarrow Z-Q \times N$

Montgomery Multiplication

Require: $X, Y \in[0, N[$ and

$$
A=2^{n}>N
$$

Ensure: $R=X \times Y \times A^{-1}(\bmod N)$
1: $Z \leftarrow X \times Y$
2: $Q \leftarrow N^{-1} \times Z(\bmod A)$
3: $R \leftarrow(Z-Q \times N) / A$

Montgomery representation.
(1) $\tilde{X}=X A \bmod N$ provides
(2) $\operatorname{MontMul}(\widetilde{X}, \widetilde{Y})=(X A) \times(Y A) \times A^{-1} \bmod N=X Y A \bmod N$

Montgomery multiplication in residue number system

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{t}\right\}$ be a set t co-prime integers.

Montgomery multiplication in residue number system

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{t}\right\}$ be a set t co-prime integers.
- An integer X such that $0 \leq X<A=\prod_{i=1}^{t} a_{i}$ is represented by

$$
[X]_{\mathcal{A}}=\left(x_{1}=X \quad \bmod a_{1}, \ldots, x_{t}=X \quad \bmod a_{t}\right)
$$

Montgomery multiplication in residue number system

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{t}\right\}$ be a set t co-prime integers.
- An integer X such that $0 \leq X<A=\prod_{i=1}^{t} a_{i}$ is represented by

$$
[X]_{\mathcal{A}}=\left(x_{1}=X \quad \bmod a_{1}, \ldots, x_{t}=X \quad \bmod a_{t}\right)
$$

- The Chinese remainder theorem tell us that for op $\in\{+, \times\}$

$$
[X]_{\mathcal{A}} \text { op }[Y]_{\mathcal{A}}=\left(\left[x_{1} \text { op } y_{1}\right]_{a_{1}}, \ldots,\left[x_{t} \text { op } y_{t}\right]_{a_{t}}\right) \Leftrightarrow X \text { op } Y \bmod A
$$

Montgomery multiplication in residue number system

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{t}\right\}$ be a set t co-prime integers.
- An integer X such that $0 \leq X<A=\prod_{i=1}^{t} a_{i}$ is represented by

$$
[X]_{\mathcal{A}}=\left(x_{1}=X \quad \bmod a_{1}, \ldots, x_{t}=X \quad \bmod a_{t}\right)
$$

- The Chinese remainder theorem tell us that for op $\in\{+, \times\}$

$$
[X]_{\mathcal{A}} \text { op }[Y]_{\mathcal{A}}=\left(\left[x_{1} \text { op } y_{1}\right]_{a_{1}}, \ldots,\left[x_{t} \text { op } y_{t}\right]_{a_{t}}\right) \Leftrightarrow X \text { op } Y \bmod A
$$

Montgomery Multiplication in RNS

Require: X, Y in $\mathcal{A} \cup \mathcal{B}$
Ensure: $X Y A^{-1} \bmod N$ in $\mathcal{A} \cup \mathcal{B}$
1: $[Q]_{\mathcal{A}} \leftarrow\left[X Y N^{-1}\right]_{\mathcal{A}}$
3: $[Z]_{\mathcal{B}} \leftarrow\left[(X Y-Q N) A^{-1}\right]_{\mathcal{B}}$
5: return $\left(Z_{\mathcal{A} \cup \mathcal{B}}\right)$

Montgomery multiplication in residue number system

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{t}\right\}$ be a set t co-prime integers.
- An integer X such that $0 \leq X<A=\prod_{i=1}^{t} a_{i}$ is represented by

$$
[X]_{\mathcal{A}}=\left(x_{1}=X \quad \bmod a_{1}, \ldots, x_{t}=X \quad \bmod a_{t}\right)
$$

- The Chinese remainder theorem tell us that for op $\in\{+, \times\}$

$$
[X]_{\mathcal{A}} \text { op }[Y]_{\mathcal{A}}=\left(\left[x_{1} \text { op } y_{1}\right]_{a_{1}}, \ldots,\left[x_{t} \text { op } y_{t}\right]_{a_{t}}\right) \Leftrightarrow X \text { op } Y \bmod A
$$

Montgomery Multiplication in RNS

Require: X, Y in $\mathcal{A} \cup \mathcal{B}$
Ensure: $X Y A^{-1} \bmod N$ in $\mathcal{A} \cup \mathcal{B}$
1: $[Q]_{\mathcal{A}} \leftarrow\left[X Y N^{-1}\right]_{\mathcal{A}}$
2: $[Q]_{\mathcal{B}} \leftarrow B E_{\mathcal{A} \rightarrow \mathcal{B}}\left([Q]_{\mathcal{A}}\right)$
3: $[Z]_{\mathcal{B}} \leftarrow\left[(X Y-Q N) A^{-1}\right]_{\mathcal{B}}$
4: $[Z]_{\mathcal{A}} \leftarrow B E_{\mathcal{B} \rightarrow \mathcal{A}}\left([Z]_{\mathcal{B}}\right)$
5: return $\left(Z_{\mathcal{A} \cup \mathcal{B}}\right)$

Outline

(1) Cryptography

- RSA cryptosystem
- Power analysis
- Montgomery multiplication in RNS
(2) Randomized modular exponentiation in RNS
- Randomized Montgomery multiplication
- Proposed approach
- Level of randomization
(3) Conclusion

Randomization in RNS (LRA CHES 2004)

We have

$$
\widetilde{X}_{\text {old }}=\left[X A_{\text {old }}\right]_{\mathcal{A}_{\text {old }} \cup \mathcal{B}_{\text {old }}}
$$

we permute the basis elements $\mathcal{A}_{\text {old }} \cup \mathcal{B}_{\text {old }} \rightarrow \mathcal{A}_{\text {new }} \cup \mathcal{B}_{\text {new }}$

this leads to a new representation of X

$$
\widetilde{X}_{\text {new }}=\left[X A_{\text {new }}\right]_{\mathcal{A}_{\text {new }} \cup \mathcal{B}_{\text {new }}}
$$

Cost

Two Montgomery multiplications :
$X A_{\text {old }} \bmod N \rightarrow X A_{\text {old }} A_{\text {new }} \bmod N \rightarrow X A_{\text {new }} \bmod N$.

Randomized square-and-multiply-always

- Input: $N, X \in\left[0, N\left[, E=\left(e_{\ell-1}, \ldots, e_{0}\right)_{2}\right.\right.$ and $\mathcal{M}=\left\{m_{1}, \ldots, m_{2 t}\right\}$.
- Output: $X^{E} \bmod N$

Square-and-mult-always

```
A,\mathcal{B}\leftarrowr random split }\mathcal{M
\widetilde{Z}}\leftarrow[[\widetilde{X}\mp@subsup{]}{\mathcal{A}\cup\mathcal{B}}{}
\mp@subsup{R}{0}{}}\leftarrow[[\tilde{1}\mp@subsup{]}{\mathcal{A\cup\mathcal{B}}}{},\mp@subsup{\widetilde{R}}{1}{}\leftarrow[[\mp@subsup{]}{\mathcal{A\cupB}}{
for i from 0 to }\ell-1\mathrm{ do
    \widetilde{R}}\mp@subsup{\widetilde{\mp@subsup{e}{i}{}}}{}{\leftarrowMM_RNS(\widetilde{R}
    Z}\leftarrowMM_RNS(\widetilde{Z},\widetilde{Z},\mathcal{A},\mathcal{B}
end for
return }\mp@subsup{\widetilde{R}}{1}{
```


Randomized square-and-multiply-always

- Input: $N, X \in\left[0, N\left[, E=\left(e_{\ell-1}, \ldots, e_{0}\right)_{2}\right.\right.$ and $\mathcal{M}=\left\{m_{1}, \ldots, m_{2 t}\right\}$.
- Output: $X^{E} \bmod N$

Randomized
 Square-and-mult-always

```
\mathcal{A},\mathcal{B}\leftarrow[\widetilde{~}
Z}\leftarrow[\widetilde{X}\mp@subsup{]}{\mathcal{A\cupB}}{}
\mp@subsup{R}{0}{}}\leftarrow[\widetilde{1}\mp@subsup{]}{\mathcal{A\cupB}}{},\mp@subsup{\widetilde{R}}{1}{}\leftarrow[\widetilde{1}\mp@subsup{]}{\mathcal{A}\cup\mathcal{B}}{
for i from 0 to }\ell-
    \mp@subsup{\widetilde{R}}{\mp@subsup{e}{i}{}}{}\leftarrowMM_RNS(\widetilde{R}
    Z}\leftarrowMM_RNS(\tilde{Z},\tilde{Z},\mathcal{A},\mathcal{B}
    Randomise(}\mp@subsup{\mathcal{A}}{\mathrm{ old }}{},\mp@subsup{\mathcal{B}}{\mathrm{ old }}{},\mathcal{A},\mathcal{B}
    Z}\leftarrowU\operatorname{Update( }(\tilde{Z},\mp@subsup{\mathcal{A}}{\mathrm{ old }}{},\mp@subsup{\mathcal{B}}{\mathrm{ old }}{\prime},\mathcal{A},\mathcal{B}
    \widetilde{R}
    \widetilde{R}
end for
return }\mp@subsup{\widetilde{R}}{1}{
```


Randomized square-and-multiply-always

- Input: $N, X \in\left[0, N\left[, E=\left(e_{\ell-1}, \ldots, e_{0}\right)_{2}\right.\right.$ and $\mathcal{M}=\left\{m_{1}, \ldots, m_{2 t}\right\}$.
- Output: $X^{E} \bmod N$

```
Randomized
Square-and-mult-always
```

```
\mathcal{A},\mathcal{B}\leftarrow~
```

\mathcal{A},\mathcal{B}\leftarrow~
Z}\leftarrow[\widetilde{X}\mp@subsup{]}{\mathcal{A\cupB}}{}
Z}\leftarrow[\widetilde{X}\mp@subsup{]}{\mathcal{A\cupB}}{}
\mp@subsup{R}{0}{}}\leftarrow[\widetilde{1}\mp@subsup{]}{\mathcal{A\cup\mathcal{B}}}{},\mp@subsup{\widetilde{R}}{1}{}\leftarrow[\widetilde{1}\mp@subsup{]}{\mathcal{A}\cup\mathcal{B}}{
\mp@subsup{R}{0}{}}\leftarrow[\widetilde{1}\mp@subsup{]}{\mathcal{A\cup\mathcal{B}}}{},\mp@subsup{\widetilde{R}}{1}{}\leftarrow[\widetilde{1}\mp@subsup{]}{\mathcal{A}\cup\mathcal{B}}{
for i from 0 to }\ell-1\mathrm{ do
for i from 0 to }\ell-1\mathrm{ do
\mp@subsup{\widetilde{R}}{\mp@subsup{e}{i}{}}{}\leftarrowMM_RNS(\widetilde{R}
\mp@subsup{\widetilde{R}}{\mp@subsup{e}{i}{}}{}\leftarrowMM_RNS(\widetilde{R}
Z}\leftarrowMM_RNS(\tilde{Z},\tilde{Z},\mathcal{A},\mathcal{B}
Z}\leftarrowMM_RNS(\tilde{Z},\tilde{Z},\mathcal{A},\mathcal{B}
Randomise (}\mp@subsup{\mathcal{A}}{\mathrm{ old }}{},\mathcal{B
Randomise (}\mp@subsup{\mathcal{A}}{\mathrm{ old }}{},\mathcal{B
Z}\leftarrow\mathrm{ Update(}\tilde{Z},\mp@subsup{\mathcal{A}}{\mathrm{ old }}{\mathrm{ , }

```
    Z}\leftarrow\mathrm{ Update( }\tilde{Z},\mp@subsup{\mathcal{A}}{\mathrm{ old }}{\mathrm{ , }
```



```
    \mp@subsup{R}{1}{}\longleftarrowU\mathrm{ pdate (}\mp@subsup{\widetilde{R}}{1}{},\mp@subsup{\mathcal{A}}{\mathrm{ old }}{},\mp@subsup{\mathcal{B}}{\mathrm{ old }}{},\mathcal{A},\mathcal{B})
```

 \mp@subsup{R}{1}{}\longleftarrowU\mathrm{ pdate (}\mp@subsup{\widetilde{R}}{1}{},\mp@subsup{\mathcal{A}}{\mathrm{ old }}{},\mp@subsup{\mathcal{B}}{\mathrm{ old }}{},\mathcal{A},\mathcal{B})
 end for
end for
return }\mp@subsup{\widetilde{R}}{1}{

```
return }\mp@subsup{\widetilde{R}}{1}{
```


Randomized square-and-multiply-always

- Input: $N, X \in\left[0, N\left[, E=\left(e_{\ell-1}, \ldots, e_{0}\right)_{2}\right.\right.$ and $\mathcal{M}=\left\{m_{1}, \ldots, m_{2 t}\right\}$.
- Output: $X^{E} \bmod N$

Randomized
 Square-and-mult-always

$\mathcal{A}, \mathcal{B} \leftarrow{ }^{\text {random split }} \mathcal{M}$
$\underset{\widetilde{R}}{\mathcal{R}} \leftarrow[\widetilde{X}]_{\mathcal{A} \cup \mathcal{B}}$,
$\widetilde{R}_{0} \leftarrow[\widetilde{1}]_{\mathcal{A} \cup \mathcal{B}}, \widetilde{R}_{1} \leftarrow[\widetilde{1}]_{\mathcal{A} \cup \mathcal{B}}$
for i from 0 to $\ell-1$ do
$\widetilde{R}_{e_{i}} \leftarrow M M _\operatorname{RNS}\left(\widetilde{R}_{e_{i}}, \widetilde{Z}, \mathcal{A}, \mathcal{B}\right)$
$\widetilde{Z} \leftarrow M M _\operatorname{RNS}(\tilde{Z}, \tilde{Z}, \mathcal{A}, \mathcal{B})$
Randomise $\left(\mathcal{A}_{\text {old }}, \mathcal{B}_{\text {old }}, \mathcal{A}, \mathcal{B}\right)$
$\widetilde{Z} \leftarrow \operatorname{Update}\left(\widetilde{Z}, \mathcal{A}_{\text {old }}, \mathcal{B}_{\text {old }}, \mathcal{A}, \mathcal{B}\right)$
$\widetilde{R}_{0} \cup U$ pdate $\left(\widetilde{R}_{0}, \mathcal{A}_{\text {old }}, \mathcal{B}_{\text {old }}, \mathcal{A}, \mathcal{B}\right)$ $\widetilde{R}_{1} \longleftarrow \operatorname{Update}\left(\widetilde{R}_{1}, \mathcal{A}_{\text {old }}, \mathcal{B}_{\text {old }}, \mathcal{A}, \mathcal{B}\right)$ end for return \widetilde{R}_{1}

Proposed

$$
\begin{aligned}
& \mathcal{A}, \mathcal{B} \leftarrow{ }^{\text {random split }} \mathcal{M} \\
& \underset{\underset{R}{Z}}{\widetilde{R}} \leftarrow[\widetilde{X}]_{\mathcal{A} \cup \mathcal{B}}, \\
& \widetilde{R}_{0} \leftarrow[\widetilde{1}]_{\mathcal{A} \cup \mathcal{B}}, \widetilde{R}_{1} \leftarrow[\widetilde{1}]_{\mathcal{A} \cup \mathcal{B}} \\
& \text { for } i \text { from } 0 \text { to } \ell-1 \text { do } \\
& \mathcal{A}_{e_{i}}^{\prime}, \mathcal{B}_{e_{i}}^{\prime} \leftarrow{ }^{\text {random split }} \mathcal{M} \\
& \widetilde{R}_{e_{i}} \leftarrow \operatorname{MM} _\operatorname{RNS}\left(\widetilde{R}_{e_{i}}, \widetilde{Z}, \mathcal{A}_{e_{i}}^{\prime}, \mathcal{B}_{e_{i}}^{\prime}\right) \\
& \tilde{Z} \leftarrow \operatorname{MM} _\operatorname{RNS}(\tilde{Z}, \tilde{Z}, \mathcal{A}, \mathcal{B}) \\
& \text { Randomise }\left(\mathcal{A}_{\text {old }}, \mathcal{B}_{\text {old }}, \mathcal{A}, \mathcal{B}\right) \\
& \widetilde{Z} \leftarrow \operatorname{Update}\left(\widetilde{Z}, \mathcal{A}_{\text {old }}, \mathcal{B}_{\text {old }}, \mathcal{A}, \mathcal{B}\right) \\
& \text { end for } \\
& \text { return } \widetilde{R}_{1}
\end{aligned}
$$

Example

For $E=7=(111)_{2}$ and $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$

Example

For $E=7=(111)_{2}$ and $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$

- Initialization: $\mathcal{A}=\left\{m_{1}, m_{2}\right\}, \mathcal{B}=\left\{m_{3}, m_{4}\right\}$ leads to

$$
\begin{aligned}
R_{1} & =m_{1} m_{2} \quad \bmod N \\
Z & =X m_{1} m_{2} \quad \bmod N
\end{aligned}
$$

Example

For $E=7=(111)_{2}$ and $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$

- Initialization: $\mathcal{A}=\left\{m_{1}, m_{2}\right\}, \mathcal{B}=\left\{m_{3}, m_{4}\right\}$ leads to

$$
\begin{aligned}
R_{1} & =m_{1} m_{2} \quad \bmod N \\
Z & =X m_{1} m_{2} \quad \bmod N
\end{aligned}
$$

- Loop 1: $\mathcal{A}_{1}=\left\{m_{2}, m_{4}\right\}, \mathcal{B}_{1}=\left\{m_{1}, m_{3}\right\}$ we get

$$
R_{1}=\left(m_{1} m_{2}\right) \times \underbrace{\left(X m_{1} m_{2}\right)}_{Z} \times \underbrace{\left(m_{2}^{-1} m_{4}^{-1}\right)}_{\text {Mont. factor }}=X m_{1}^{2} m_{2} m_{4}^{-1}
$$

Example

For $E=7=(111)_{2}$ and $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$

- Initialization: $\mathcal{A}=\left\{m_{1}, m_{2}\right\}, \mathcal{B}=\left\{m_{3}, m_{4}\right\}$ leads to

$$
\begin{aligned}
R_{1} & =m_{1} m_{2} \quad \bmod N \\
Z & =X m_{1} m_{2} \quad \bmod N
\end{aligned}
$$

- Loop 1: $\mathcal{A}_{1}=\left\{m_{2}, m_{4}\right\}, \mathcal{B}_{1}=\left\{m_{1}, m_{3}\right\}$ we get

$$
R_{1}=\left(m_{1} m_{2}\right) \times \underbrace{\left(X m_{1} m_{2}\right)}_{Z} \times \underbrace{\left(m_{2}^{-1} m_{4}^{-1}\right)}_{\text {Mont. factor }}=X m_{1}^{2} m_{2} m_{4}^{-1}
$$

$$
\mathcal{A}=\left\{m_{1}, m_{3}\right\}, \mathcal{B}=\left\{m_{2}, m_{4}\right\} \text { leads to }
$$

$$
Z=X^{2} m_{1} m_{3}
$$

Example

For $E=7=(111)_{2}$ and $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$

- Initialization: $\mathcal{A}=\left\{m_{1}, m_{2}\right\}, \mathcal{B}=\left\{m_{3}, m_{4}\right\}$ leads to

$$
\begin{aligned}
R_{1} & =m_{1} m_{2} \quad \bmod N \\
Z & =X m_{1} m_{2} \quad \bmod N
\end{aligned}
$$

- Loop 1: $\mathcal{A}_{1}=\left\{m_{2}, m_{4}\right\}, \mathcal{B}_{1}=\left\{m_{1}, m_{3}\right\}$ we get

$$
R_{1}=\left(m_{1} m_{2}\right) \times \underbrace{\left(X m_{1} m_{2}\right)}_{Z} \times \underbrace{\left(m_{2}^{-1} m_{4}^{-1}\right)}_{\text {Mont. factor }}=X m_{1}^{2} m_{2} m_{4}^{-1}
$$

$\mathcal{A}=\left\{m_{1}, m_{3}\right\}, \mathcal{B}=\left\{m_{2}, m_{4}\right\}$ leads to

$$
Z=X^{2} m_{1} m_{3}
$$

- Loop 2: $\mathcal{A}_{1}=\left\{m_{1}, m_{4}\right\}, \mathcal{B}_{1}=\left\{m_{2}, m_{3}\right\}$ we get

$$
R_{1}=X m_{1}^{2} m_{2} m_{4}^{-1} \times\left(X^{2} m_{1} m_{3}\right) \times\left(m_{1}^{-1} m_{4}^{-1}\right)=X^{3} m_{1}^{2} m_{2} m_{3} m_{4}^{-2}
$$

Example

For $E=7=(111)_{2}$ and $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$

- Initialization: $\mathcal{A}=\left\{m_{1}, m_{2}\right\}, \mathcal{B}=\left\{m_{3}, m_{4}\right\}$ leads to

$$
\begin{aligned}
R_{1} & =m_{1} m_{2} \quad \bmod N \\
Z & =X m_{1} m_{2} \quad \bmod N
\end{aligned}
$$

- Loop 1: $\mathcal{A}_{1}=\left\{m_{2}, m_{4}\right\}, \mathcal{B}_{1}=\left\{m_{1}, m_{3}\right\}$ we get

$$
R_{1}=\left(m_{1} m_{2}\right) \times \underbrace{\left(X m_{1} m_{2}\right)}_{Z} \times \underbrace{\left(m_{2}^{-1} m_{4}^{-1}\right)}_{\text {Mont. factor }}=X m_{1}^{2} m_{2} m_{4}^{-1}
$$

$\mathcal{A}=\left\{m_{1}, m_{3}\right\}, \mathcal{B}=\left\{m_{2}, m_{4}\right\}$ leads to

$$
Z=X^{2} m_{1} m_{3}
$$

- Loop 2: $\mathcal{A}_{1}=\left\{m_{1}, m_{4}\right\}, \mathcal{B}_{1}=\left\{m_{2}, m_{3}\right\}$ we get

$$
R_{1}=X m_{1}^{2} m_{2} m_{4}^{-1} \times\left(X^{2} m_{1} m_{3}\right) \times\left(m_{1}^{-1} m_{4}^{-1}\right)=X^{3} m_{1}^{2} m_{2} m_{3} m_{4}^{-2}
$$

- Etc.

Random evolution of the mask

After i loop iterations we have

$$
\widetilde{R}_{1}^{(i)}=X^{\sum_{j=0}^{i-1} e_{j} 2^{j}} \times \prod_{j=0}^{2 t} m_{j}^{\gamma_{j}^{(i)}} \bmod N
$$

and each $\gamma_{j}^{(i)}$ evolves randomly as

$$
\gamma_{j}^{(i+1)}=\gamma_{j}^{(i)}+\delta_{j}^{(i)} \text { with } \delta_{j}^{(i)} \in\{-1,0,1\} \text { and }\left\{\begin{array}{c}
\mathbb{P}\left(\delta_{j}^{(i)}=1\right)=1 / 8 \\
\mathbb{P}\left(\delta_{j}^{(i)}=-1\right)=1 / 8 \\
\mathbb{P}\left(\delta_{j}^{(i)}=0\right)=3 / 4
\end{array}\right.
$$

Removing the final mask

Problem: at the end we have to remove the final mask $\prod_{j=1}^{2 t} m_{j}^{\gamma_{j}^{(\ell)}}$ from

$$
\tilde{X}=X^{E} \cdot \prod_{j=1}^{2 t} m_{j}^{\gamma_{j}^{(\ell)}} \bmod N .
$$

Strategy: we force $\gamma_{j}^{(\ell)}$ to be equal 0 as follows

- During the first half of the iterations each $\gamma_{j}^{(i)}$ evolves freely.
- During the second half we constrain each $\left|\gamma_{j}^{(i)}\right|$ to decrease toward 0 .

Level of randomization

- The probabilities of the mask exponents satisfy

$$
\begin{aligned}
& \mathbb{P}\left(\gamma_{j}^{(i)}=d\right)=\sum_{k=d}^{d+\lfloor(i-d) / 2\rfloor}\binom{i}{k}\binom{i-k}{k-d}\left(\frac{1}{8}\right)^{2 k-d}\left(\frac{3}{4}\right)^{i-2 k+d} \\
& \mathbb{P}\left(\Gamma^{(i)}=\Gamma\right) \leq \prod_{j=1}^{t} \mathbb{P}\left(\gamma_{j}^{(i)}=\gamma_{j}\right) \leq \prod_{j=1}^{t} \mathbb{P}\left(\gamma_{j}^{(i)}=0\right)
\end{aligned}
$$

Level of randomization

- The probabilities of the mask exponents satisfy

$$
\begin{aligned}
& \mathbb{P}\left(\gamma_{j}^{(i)}=d\right)=\sum_{k=d}^{d+\lfloor(i-d) / 2\rfloor}\binom{i}{k}\binom{i-k}{k-d}\left(\frac{1}{8}\right)^{2 k-d}\left(\frac{3}{4}\right)^{i-2 k+d} \\
& \mathbb{P}\left(\Gamma^{(i)}=\Gamma\right) \leq \prod_{j=1}^{t} \mathbb{P}\left(\gamma_{j}^{(i)}=\gamma_{j}\right) \leq \prod_{j=1}^{t} \mathbb{P}\left(\gamma_{j}^{(i)}=0\right)
\end{aligned}
$$

- Comparison: for a 2048-bit RSA modulus and $t=32$:
- CHES 04:
\star Montgomery-ladder,
* 4MM_RNS per randomization,
\star all masks are controled.
- Proposed:
« right-left square-and-multiply-always,
\star 2MM_RNS per randomization
\star the masks for R_{0} and R_{1} are not controled.

Approach	loop 1	loop 5	loop 10	loop 50	loop 100
CHES 04	$4.17 \cdot 10^{-38}$				
Proposed	10^{-8}	$5 \cdot 10^{-28}$	$1.7 \cdot 10^{-38}$	$2.69 \cdot 10^{-61}$	$5.75 \cdot 10^{-71}$

Outline

(1) Cryptography

- RSA cryptosystem
- Power analysis
- Montgomery multiplication in RNS
(2) Randomized modular exponentiation in RNS
- Randomized Montgomery multiplication
- Proposed approach
- Level of randomization
(3) Conclusion

Conclusion

Secure embedded implementation of RSA:

- Randomized modular exponentiation
- But leak resistant arithmetic (CHES 04) is costly: 4 MM_RNS per randomization

Conclusion

Secure embedded implementation of RSA:

- Randomized modular exponentiation
- But leak resistant arithmetic (CHES 04) is costly: 4 MM_RNS per randomization
We proposed:
- To apply LRA to right-to-left exponentiation.
- Avoid some correction of Montgomery Factor.
- This decreases the computational cost: 2 MM_RNS per randomization.
- Increases the level of randomization after a small number of loop.

Conclusion

Secure embedded implementation of RSA:

- Randomized modular exponentiation
- But leak resistant arithmetic (CHES 04) is costly: 4 MM_RNS per randomization
We proposed:
- To apply LRA to right-to-left exponentiation.
- Avoid some correction of Montgomery Factor.
- This decreases the computational cost: 2 MM_RNS per randomization.
- Increases the level of randomization after a small number of loop.

Perspectives:

- A better estimation of the level of randomization.
- Is it a good counter-measure against horizontal power analysis ?

Thank you for your attention!

