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3 LIRMM, UMR 5506, Université de Montpellier and CNRS, France

Abstract

Digital Signature Algorithm (DSA) (resp. ECDSA) involves modular exponentiation (resp. scalar multiplication)

of a public and known base by a random one-time exponent. In order to speed-up this operation, well-known methods

take advantage of the memorization of base powers (resp. base multiples). Best approaches are the Fixed-base Radix-

R method and the Fixed-base Comb method. In this paper we present a new approach for storage/online computation

trade-off, by using a multiplicative splitting of the digits of the exponent radix-R representation.

We adapt classical algorithms for modular exponentiation and scalar multiplication in order to take advantage of

the proposed exponent recoding. An analysis of the complexity for practical size shows that our proposed approach

involves a lower storage for a given level of online computation. This is confirmed by implementation results showing

significant memory saving, up to 3 times for the largest NIST standardized key sizes, compared to the state of the

art approaches.

Keywords. RNS, Multiplicative Splitting, Digital Signature, Fixed Base, Modular Exponentiation, Scalar Multipli-

cation, Memory Storage, Efficient Software Implementation.

I. INTRODUCTION

In the DSS (Digital Signature Standard), DSA (Digital Signature Algorithm) is a popular authentication protocol.

According to the NIST standard (see [12]), the public parameters are p, q and g. The parameter g is a generator

of a multiplicative sub-group of F∗p of size q. The integers p and q are two primes with sizes corresponding to the

required security level: for the recommended security level 80-256 bits, q has to be a 160-512 bit integer. When a

server needs to sign a batch of documents, the most costly operations are modular exponentiations gk mod p (one

per signature), where g, p are fixed and k is a one time random integer.

Another popular standard for electronic signature is ECDSA which uses the group of point on an elliptic curve

(E(Fp),+) instead of (F∗p,×). The signature algorithm ECDSA is very similar to the DSA and its main operation

November 19, 2018 DRAFT



2

is a scalar multiplication k · P for P ∈ E(Fp). In order to cover both cases DSA and ECDSA we consider a

multiplicative abelian group (G,×) in which we have to compute gk for g ∈ G and k ∈ N.

In this article we consider the following practical case: a server has to compute a large number of signatures,

which involves a large number of exponentiations gk with the same g ∈ G and several random k. We assume that

the server has a large cache and RAM (Random Access Memory) so that we can therefore store a large amount

of precomputed data to speed-up these exponentiations. In the sequel, by ’offline computation’ we mean the data

computed only once and used in every signature generation; by ’online computation’ we mean the operations

required only in a single exponentiation gk for a given k.

The main known methods of the state of the art which take advantage of large amount of precomputed data are

the Fixed-base Radix R presented by Gordon in [8] and the Fixed-base Comb presented by Lim and Lee in [14].

The Fixed-base Radix R method of [8] precomputes gaR
i

for 0 ≤ a < R and then, using the radix-R expression

of k, we obtain the exponentiation gk with logR(k) multiplications. The Fixed-base Comb method uses a Comb

decomposition of k (instead of a radix-R representation) and requires less precomputed data at the cost of some

extra squarings. In [17] the authors provide a variant of the Radix-R approach using the NAFw recoding resulting

in a reduced number of online multiplications than for the radix-R approach but with a penalty of some extra

squarings.

Contributions. We investigate some new strategies for a better trade-off between storage and online computation in

fixed base exponentiation. To reach this goal, we propose to use the representation of the exponent in radix R as

k =
∑`−1

i=0 kiR
i and then compute a multiplicative splitting of each digit ki. Specifically, we use a radix R = m0m1

with pairwise prime m0,m1. An RNS representation of a digit ki ∈ [0, R[ in {m0,m1} leads to a splitting into

two parts: one part k(0)i which value is at most m0 and the other k
(1)
i which value is at most m1. We apply this

process to all the digits of the radix R representation of the exponent. While processing the exponentiation, the

digits k
(1)
i are handled with a look-up table and the digits k

(0)
i are handled with online computation. This approach

was part of a preliminary version of this paper published in the proceedings of the WAIFI 2016 conference [20].

We present a novel approach for the multiplicative splitting of the digits of the exponent: if we choose the radix

R as a prime integer, then processing a partial execution of the extended euclidean algorithm, one can re-express

a digit ki as product ki = k
(0)
i (k

(1)
i )−1 mod R where |k(1)i | < c and |k(0)i | < R/c for a fixed c. Again, this

splitting can be applied to all digits of the radix R representation of the exponent. The exponentiation algorithms

can then be computed with memorizations related to the (k
(1)
i )−1 part of the digit splitting and online computation

to handle the part k(0)i of the digit splitting. The main advantage of this version with a prime R is that the resulting

exponentiation algorithm is constant time, which means that it is robust against timing attacks.

We study the corresponding complexities and storage amounts, and compare the results with the best approaches

of the literature for fixed-base modular exponentiation (resp. scalar multiplication) for NIST recommended fields

(resp. curves). The metric chosen for a comparison between the proposed algorithms is the following: for a given

level of online computation the best approach is the one which has the lowest amount of precomputed data. Using
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this metric we show that the proposed approach is the more efficient for a large range of practical case. We also

implement these approaches in software and we perform tests in order to validate the complexity analysis. Our

approaches provide also some flexibility in terms of required storage amount: one can choose the storage amount

according to the device resources available and compatible to the global computation load of the system.

Organization of the paper. In Section II, we review the best approaches of the literature for fixed-base exponentiation

and we give their complexities and storage requirements. In Section III, we present a multiplicative splitting recoding

of the exponent in radix R = m0m1 and a fixed-base exponentiation using this recoding. In Section IV, we present

a multiplicative splitting recoding for R prime and the corresponding exponentiation algorithm. In Section V, we

compare the complexity results and software implementations of the proposed approach to the best approaches of

the literature for modular exponentiation and scalar multiplication. Finally, in Section VI, we give some concluding

remarks and perspectives.

II. STATE OF THE ART OF FIXED-BASE EXPONENTIATION

We consider digital signature algorithms based on discrete logarithm in a finite group. The main ones are DSA

where the considered group is a subgroup of prime order q in the multiplicative group F∗p and ECDSA where the

group is the set of point on an elliptic curve E(Fp) [16], [13]. For the sake of simplicity, in the sequel, we use a

generic abelian multiplicative group (G,×) of order q. The algorithms presented later in this paper extend directly

to abelian groups with additive group law like E(Fp). Generating a digital signature consists in computing (s1, s2)

from a message m ∈ {0, 1}∗, a secret integer x and a random integer k as follows

s1 ← H1(g
k),

s2 ← (H2(m) + s1x)k
−1 mod q.

Here, H1 is a function G→ Z/qZ and H2 is a cryptographic hash function {0, 1}∗ → Z/qZ. One can see that the

most costly operation in a signature generation is the exponentiation gk of a fixed g ∈ G and where k is a one-time

random exponent of size ∼= q. This exponentiation can be done with the classical Square-and-multiply algorithm.

Square-and-multiply exponentiation. The left-to-right version of the square-and-multiply exponentiation scans the

bits ki of k from left to right and performs a squaring followed by a multiplication when ki = 1. In terms of

complexity, given the bit length t of k, the number of squarings is t − 1 and the number of multiplications to be

computed is t/2 on average for a randomly chosen exponent. There is no storage in this case.

Side channel analysis. The above method is threatened by side-channel analysis. These attacks extract part of

the exponent by monitoring and analyzing the computation time, the power consumption or the electromagnetic

emanations. In this paper, we focus on servers which generate large amounts of signature very quickly and are

physically not accessible to an attacker. The main threat in this case is the timing attack. This attack attempts to

find the sequence of operations (multiplication and squaring) of an exponentiation by a statistical analysis of several

timings of an exponentiation. If the assumed sequence of operations is correct, the attacker can deduce the key bits

of the exponent since each multiplication corresponds to a bit equal to 1, otherwise the bit is 0. A general solution
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Algorithm 1 Left-to-Right Square-and-multiply Exponentiation
Require: Let an integer k = (kt−1, . . . , k0)2, and g an element of G.

Ensure: X = gk

1: X ← 1

2: for i from t− 1 downto 0 do

3: X ← X2

4: if ki = 1 then

5: X ← X · g

6: return (X)

to thwart this attack is to render the sequence of operations not correlated to key bits, which means that we need

to remove any if test on the key bits or digits in the exponentiation algorithm.

Fixed base exponentiation. When the base g is fixed, one can precompute in advance some data in order to reduce

the number of operations in the online computation of the exponentiation. This is the case when a server has to

intensively compute a number of signatures with the same g. For example, the method presented by Gordon in [8]

is a modified square-and-multiply algorithm: one first stores the t successive squarings of g (that is the sequence

of g2
i

), then for a given computation of gk, one has to multiply the g2
i

corresponding to ki = 1. In terms of

complexity, given the bit length t of the exponent, one has now no squarings and the number of multiplications

is t/2, in average. As counterpart, one has to store t elements of G. We can even further reduce the amount of

online computation by increasing the precomputed data. This is the strategy followed by the main approaches of

the literature.

Radix-R method. Gordon in [8] mentions the generalization of his first idea to radix R = 2w representation of

the exponent k =
∑`−1

i=0 kiR
i. This consists in the memorization of the values ga·R

j

, with a ∈ [0, ..., R − 1] and

0 ≤ j < ` where ` is the length of the exponent in radix R representation. If we denote w = dlog2(R)e then we

have ` = dt/we. In this case, the online computation consists of ` − 1 multiplications, for a storage amount of

` · R values in G. In the sequel, we will call this approach the Fixed-base Radix-R exponentiation method (see

Algorithm 2). This algorithm is constant time as soon as the multiplications by 1 (i.e., when ki = 0) are performed

as any other multiplication or, alternatively, by using the radix R recoding of [11] which avoids ki = 0.

Comb method. Another classical method is the so called Fixed-base Comb method which was initially proposed by

Lim and Lee in [14]. This method attempts to trade some of the storage of Algorithm 2 with a few online computed

squarings. It is based on the following decomposition of the exponent k

k =

d−1∑
j=0

(

w−1∑
i=0

kid+j2
id)︸ ︷︷ ︸

Kj

2j where d = dt/we. (1)

Each integer Kj can be seen as a comb as described in the following diagram.
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Algorithm 2 Fixed-Base Radix-R Exponentiation
Require: k = (k`−1, . . . , k0)R, g a generator of G.

Ensure: X = gk

1: Offline precomputation. Store T [a][j]← ga·R
j

, with a ∈ [0, ..., R− 1] and 0 ≤ j < `.

2: X ← 1

3: for i from `− 1 downto 0 do

4: X ← X · T [ki][i]

5: return (X)

The integer w is the number of comb-teeth in each Kj and d = dt/we is the distance in bits between two consecutive

teeth. When all the possible values gKj are precomputed and stored in table indexed by

IKj
= [k(w−1)d+jk(w−2)d+j . . . , kj ]2,

one can compute gk with a 2w size look-up table, dt/we − 1 multiplications and dt/we − 1 squarings using (1).

This method is shown in Algorithm 3. As in the case of Radix-R method, this approach can be implemented in

constant time if the multiplications by 1 (which occurs Kj = 0) are computed as an arbitrary multiplication or by

using the recoding of [10] which renders all comb coefficients 6= 0.

Algorithm 3 Fixed-Base Comb Exponentiation [14]
Require: k = (kt−1, . . . , k1, k0)2, a generator g of G, a window width 2w and d = dt/we.

Ensure: X = gk mod p

1: Offline precomputation. For all (aw−1, . . . , a0) ∈ {0, 1}w we set a = aw−12
(w−1)d + · · · + a12

d + a0 and

T [(aw−1, . . . , a0)2] = ga.

2: Split k =
∑d−1

j=0 Kj2
j as in (1)

3: X ← 1

4: for j from d− 1 downto 0 do

5: X ← X2

6: X ← X · T [Kj ]

7: return (X)

Fixed base exponentiation with NAFw. In [17], the authors proposed an alternative approach when inverting an

element in the group G is almost free of computation and multi-squarings can be computed efficiently. Their main

application is the group of points on a elliptic curves where computing the inverse of a point is really cheap. They
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use a NAFw representation of k in order to reduce the number of multiplications (this generalizes the approach

of [21] which uses a NAF representation of k). Specifically, they start by computing the NAFw representation of

the exponent k

k = k′t−12
t−1 + k′t−22

t−2 + · · ·+ k′0

where k′i ∈ {±1,±3, . . . ,±2w−1 − 1} and there are at least w zero between two non zero coefficients. For more

details on NAFw the reader may refer to [9]. Then they rewrite this NAFw(k) into ` = dt/we consecutive windows

of w coefficients:

k =
∑̀
i=0


w−1∑
j=0

k′iw+j2
j

︸ ︷︷ ︸
Ki

 2iw. (2)

In [17] the authors noticed that, in each Ki, there is at most one non-zero coefficient k′iw+j , which means that

Ki = s× a× 2j for some s ∈ {−1, 1}, a ∈ {1, 3, . . . , 2w−1 − 1} and 0 ≤ j < w. They then reorder the terms in

expression (2) by splitting the parameter i into two parts i = i1e+ i0 for some fixed integer e:

k =
∑e−1

i0=0

∑d−1
i1=0 Ki1e+i02

i1ew+i0w where d = d`/ee

=
∑e−1

i0=0

(∑d−1
i1=0 Ki1e+i02

i1ew
)
2i0w.

(3)

For all possible values for Ki1e+i02
i1ew with Ki1e+i0 = sa2j the term ga2

j+i1ew

is stored in a Table T [a][i1][j].

Then Algorithm 4 computes gk based on (3) as a sequence of multiplications/divisions (in Step 9 depending on

s = 1 or s− 1) and w consecutive squarings (in Step 5).

Algorithm 4 Fixed-Base Exponentiation with NAFw [17]
Require: A scalar k = (k′t−1, . . . , k

′
1, k
′
0)NAFw and g in an abelian group G, and positive integers c, w.

Ensure: X = gk

1: ` = d t
w e and d = d `ee

2: Offline precomputation. T [a][i1][j] = ga2
j+ewi1 for all a ∈ {1, 3, . . . , 2w−1 − 1}, i1 ∈ {0, . . . , d − 1} and

j ∈ {0, . . . , w − 1}.

3: X ← 1

4: for i0 from e− 1 downto 0 do

5: X ← X2w

6: for i1 from d− 1 downto 0 do

7: (s, a, j) s.t. (k′jb+t,w−1 . . . k
′
jb+t,0)NAFw

= s · a · 2j

8: if a 6= 0 then

9: X ← X × (T [a][i1][j])
s

10: return (X)
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In Algorithm 4 the number of precomputed elements is equal to dw2w−2 ∼= d tee2
w−2. The online computation

consists of w(e − 1) squarings and ed(1 − ( w
w+1 )

w) ∼= d t
w e(1 − ( w

w+1 )
w) multiplications/divisions (cf. [17] for

details).

III. FIXED-BASE EXPONENTIATION WITH MULTIPLICATIVE SPLITTING WITH R = m0m1

We now present our approach of a Fixed-base exponentiation with multiplicative splitting with R = m0m1.

In this section, we review the method presented in a preliminary work at WAIFI 2016 [20]. The goal is to use a

multiplicative splitting of the digits of k in order to provide a better trade-off between storage and online computation

in the exponentiation.

A. Digit multiplicative splitting for radix R = m0m1

A natural way to get a splitting of the digits is to use the RNS representation in radix R = m0 ·m1 which splits

any digit into two parts. When all the digits of an exponent are split we can process the exponentiation as follows:

the first part of the digits will be used to select the precomputed values and the second part will be processed by

online computation.

We first remind the RNS representation in a base B = {m0,m1}. Let R = m0 · m1 and x ∈ Z such that

0 ≤ x < R. Let us also assume m0 is prime, since this allows us to invert all non-zero integers < m0 modulo m0,

and we choose m1 < m0. In the sequel, we denote |x|m = x mod m.

One represents x with the residues  x(0) = |x|m0
,

x(1) = |x|m1
,

and x can be retrieved using the Chinese Remainder Theorem as follows:

x =
∣∣∣x(0) ·m1 · |m−11 |m0 + x(1) ·m0 · |m−10 |m1

∣∣∣
R
. (4)

We now present our recoding approach. We consider an exponent k expressed in radix R = m0 ·m1

k =

`−1∑
i=0

kiR
i with ` = dt/ log2(R)e.

We represent every radix-R digit in RNS with the RNS base B = {m0,m1}: if ki is the i-th digit of k in radix-R,

we denote by (k
(0)
i , k

(1)
i ) its RNS representation in base B k

(0)
i = |ki|m0

,

k
(1)
i = |ki|m1 .

Let us denote
m′0 = m1 · |m−11 |m0 ,

m′1 = m0 · |m−10 |m1 .

We recode the digits of k in B = {m0,m1} as follows
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• If k(1)i 6= 0: we denote  k
′(0)
i = |k(0)i · (k

(1)
i )−1|m0

,

k
′(1)
i = k

(1)
i .

One keeps

k′i = k
′(1)
i |k

′(0)
i ·m′0 +m′1|R (5)

as a representation of ki in a multiplicative splitting form and we have ki = |k′i|R with (4). When modifying

the digits of k as above, one needs to take into account the correcting term due to the reduction modulo R:

ki = k
′(1)
i |k

′(0)
i ·m′0 +m′1|R
−bk′(1)i · |k′(0)i ·m′0 +m′1|R/Rc ·R.

Let us denote C = bk′(1)i · (k′(0)i ·m′0 +m′1)/Rc which satisfies 0 ≤ C < m1. We consider C as a carry that

one can subtract to ki+1. This leads to the following computation

if ki+1 ≥ C then

ki+1 ← ki+1 − C

C ← 0

else

ki+1 ← ki+1 +R− C,

C ← 1

and one gets ki+1 ≥ 0.

• If k(1)i = 0: we define k′i as follows

k′i =
∣∣∣|k(0)i + 1|m0 ·m′0 +m′1

∣∣∣
R︸ ︷︷ ︸

(∗)

− |m′0 +m′1|R︸ ︷︷ ︸
=1

. (6)

and k′i satisfies |k′i|R = ki This expression is meant to have the part (∗) as in (5): the goal is to use the same

precomputed data in the exponentiation algorithm. The term −|m′0 +m′1|R = −1 is meant to get back to ki

while reducing k′i modulo R. We then set the following coefficients: k
′(0)
i = |k(0)i + 1|m0

,

k
′(1)
i = 0.

Setting k
′(1)
i = 0 tells us that this is a special case and we get ki from k

′(0)
i as

ki =
∣∣∣|k′(0)i ·m′0 +m′1)|R − 1

∣∣∣
R
.

We deal with the carry as it was done when k
(1)
i 6= 0, this is detailed in the algorithm.

One notices it might be necessary to handle the last carry C generated by the recoding of k`−1 with a final

correction. This gives a final coefficient k′` = −C which satisfies |k′`| < m1. Finally, this leads to the recoding

algorithm shown in Algorithm 5.
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Algorithm 5 Multiplicative Splitting Recoding with R = m0m1

Require: An RNS base {m0,m1}, a radix R = m0 ·m1 and an exponent k =
∑`−1

i=0 kiR
i.

Ensure: {(k′(0)i , k
′(1)
i ), 0 ≤ i < `, (C)} the multiplicative splitting recoding of k in radix R = m0m1.

1: C ← 0

2: for i from 0 to `− 1 do

3: ki ← ki − C,C ← 0

4: if ki < 0 then

5: ki ← ki +R, C ← 1

6: k
(0)
i ← |ki|m0 , k

(1)
i ← |ki|m1 .

7: if k(1)
i = 0 then

8: (k
′(0)
i , k

′(1)
i )← (|k(0)

i + 1|m0 , 0)

9: C ← C +
⌊(
|k′(0)i ·m′0 +m′1|R − 1

)
/R
⌋

10: else

11: k
′(0)
i ← |k(0)

i · (k
(1)
i )−1|m0

12: k
′(1)
i ← k

(1)
i

13: C ← C + bk′(1)i · |k′(0)i ·m′0 +m′1|R/Rc
14: return {(k′(0)i , k

′(1)
i ), 0 ≤ i < `, k′` = −C}

At the end the recoded exponent k =
∑`

i=0 k
′
iR

i has most of its digits k′i expressed as a product k′(1)i × |k′(0)i ·

m′0 +m′1|R and k
′(1)
i is of size m1 while |k′(0)i ·m′0 +m′1|R is indexed with k

′(0)
i which is of size m0.

Example 1. We present here an example of the m0m1 recoding with an exponent size t of 20 bits (0 < k < 220), and

B = {11, 8} (i.e. m0 = 11,m1 = 8). Thus, in this case, one has the radix R = m0 ·m1 = 88, ` = d20/ log2(88)e =

4, and also
m′0 = 8 · |8−1|11 = 56,

m′1 = 11 · |11−1|8 = 33.

Let us take k = 93619210, the random exponent. By rewriting k in radix-R, one has

k = 48 + 78 · 88 + 32 · 882 + 1 · 883.

We now use Algorithm 5, which consists of a for loop (Steps 2 to 13).

• In the first iteration (i = 0), one has k0 = 48.

– One has C ← 0 and one skips the if-test steps 4 to 5 since k0 ≥ 0.

– Step 6, one computes the RNS representation in base B of k0 = 48:

k
(0)
0 = |k0|11 = 4, k

(1)
0 = |k0|8 = 0.

– Steps 7 to 9, since k
(1)
0 = 0, one sets

(k
′(0)
0 , k

′(1)
0 )← (|k(0)0 + 1|11, 0) = (5, 0).
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and the carry

C ← C +
⌊(
|k′(0)0 · 56 + 33|88 − 1

)
/88
⌋
= 0

• In the second iteration (i = 1), one has k1 = 78.

– One has C ← 0 and one skips the if-test of Steps 4 to 5 since k1 ≥ 0.

– Step 6, one computes the RNS representation in base B of k1 = 78:

k
(0)
1 = |k1|11 = 1, k

(1)
1 = |k1|8 = 6.

– Steps 10 to 13, since k
(1)
1 6= 0, one has

|(k(1)1 )−1|11 ← 2

k
′(0)
1 = |k(0)1 · (k

(1)
1 )−1|11 ← 2

k
′(1)
1 = k

(1)
1 ← 6

C ← b(k′(1)1 · |k′(0)1 · 56 + 33|88)/88c ← 3

• In the third iteration (i = 2), one has now k2 ← k2 − C = 29.

– The RNS representation in base B of k2 is k
(0)
2 = 7, k

(1)
2 = 5.

– The Steps 10-13 give C ← 2, and

(k
′(0)
2 , k

′(1)
2 )← (8, 5).

Without providing all the remaining details, one finally obtains the values returned by the algorithm:

((5, 0), (2, 6), (8, 5), (3, 7)), and k′4 = −C = −2.

B. Exponentiation with a multiplicative splitting recoding in radix R = m0m1

We first rewrite the exponentiation using the recoding of k =
∑`

i=0 k
′
iR

i of the previous subsection as follows:

gk mod p = g
∑`

i=0 k′i·R
i

= gk
′
`·R

` ·
∏`−1

i=0 g
k′i·R

i
(7)

where each term gk
′
i·R

i

satisfy one of the following three cases:

• When k
′(1)
i 6= 0 and i < `:

gk
′
i·R

i

= gk
′(1)
i ·Ri·|k′(0)i ·m′0+m′1|R

• When k
′(1)
i = 0 and i < `:

gk
′
i·R

i

= gR
i·|k′(0)i ·m′0+m′1|R · g−R

i

.

• when i = ` we have k′` ≤ 0 which implies that gk
′
`R

`

= (g−R
`

)|k
′
`|.

In order to compute the fixed-base exponentiation gk, one stores the following values:

T [i][j] = gR
i·|j·m′0+m′1|R , with

 0 ≤ i ≤ `− 1,

0 ≤ j < m0.
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and one also stores the following inverses:

T [i][−1] = g−R
i

with 0 ≤ i ≤ `.

We use Yj to denote the product of gR
i·|k′(0)i ·m′0+m′1|R for each i such that k′(1)i = j. In other words for j 6= 0

Yj =


(∏

for k
′(1)
i =j,i<`

T [i][k
′(0)
i ]

)
· T [`][−1] if |k′`| = j,(∏

for k
′(1)
i =j,i<`

T [i][k
′(0)
i ]

)
,

and

Y0 =
∏

for all k
′(1)
i =0,i<`

T [i][k
′(0)
i ]× T [i][−1].

We can then rewrite the expression of gk in (7) in terms of Yj for j = 0, . . . ,m1 − 1 as follows:

gk = Y0 ×
m1−1∏
j=1

Y j
j .

Each individual exponentiation Y j
j is performed with a square-and-multiply approach, which is more efficient than

performing j − 1 multiplications, even for small m1. This approach is depicted in Algorithm 6.

One important drawback of the above algorithm is that it is not constant time, due to the if branching attached

to the condition k
′(1)
i = 0.

Example 2. We present the computation of gk mod p using Algorithm 6, we take B = {11, 8} (i.e. m0 = 11,m1 =

8). In terms of storage, one computes the values

T [i][j] = gR
i·|j·m′0+m′1|R mod p with 0 ≤ i ≤ `− 1.

One has the values {33, 1, 57, 25, 81, 49, 17, 73, 41, 9, 65} for |j ·m′0 +m′1|R when 0 ≤ j < 11. This leads to

T [i][0..10] = {g88i·33, g88i , g88i·57, g88i·25, g88i·81,

g88
i·49, g88

i·17, g88
i·73, g88

i·41, g88
i·9, g88

i·65}.

The trace of Algorithm 6 for the computation of gk and k = 936192 using the recoding obtained in Example 1 is

provided in Table I.

C. Complexity

For the amount of precomputed data, one can notice that it is equal to (m0 + 1)× `+ 1 elements.

The complexity of online computation in Algorithm 6 is evaluated step by step in Table III for the average case.

The number of multiplications (M) is evaluated as follows:

• The costs of Steps 6 to 15 follow directly from Algorithm 6 and are detailed in Table III.

• The first squaring in Step 18 skipped since X = 1, leading to a cost of W − 1 squarings.

• The multiplications in Steps 21 and 22 are performed only in case of Yj 6= 1. This means that in the worst

case we save the first multiplication which is an affectation : this is the case considered in Table III.

For the sake of simplicity, we denote by H the sum of the j Hamming weights for each j from m1 − 1 downto 1

(for loop in Step 1ç). The value of H is shown in Table II for different practical values of m1.
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Algorithm 6 Fixed-base exponentiation with multiplicative splitting with radix R = m0m1

Require: An RNS base {m0,m1}, a radix R = m0m1, the exponent k =
∑`−1

i=0 kiR
i and {(k′(0)i , k

′(1)
i ), 0 ≤ i < `, (k′`)} the

m0m1 recoding of k and g ∈ G.

Ensure: A = gk

1: Offline precomputation. Store T [i][j]← gR
i·|j·m′0+m′1|R with 0 ≤ i < `, 0 ≤ j < m0, T [i][−1]← g−Ri

, 0 ≤ i ≤ `

2: X ← 1, Yj ← 1 for 0 ≤ j < m1

3: for i from 0 to `− 1 do

4: if k′(1)i = 0 then

5: if Y0 = 1 then

6: Y0 ← T [i][k
′(0)
i ]× T [i][−1]

7: else

8: Y0 ← Y0 × T [i][k
′(0)
i ]× T [i][−1]

9: else

10: if Y
k
′(1)
i

= 1 then

11: Y
k
′(1)
i

← T [i][k
′(0)
i ]

12: else

13: Y
k
′(1)
i

← Y
k
′(1)
i

× T [i][k
′(0)
i ]

14: if k′` 6= 0 then

15: Y|k′
`
| ← Y|k′

`
| × T [`][−1]

16: W ← size of m1 in bits

17: for i from W − 1 downto 0 do

18: X ← X2

19: for j from m1 − 1 downto 1 do

20: if bit i of j is non zero then

21: X ← X × Yj

22: return (X × Y0)

IV. FIXED BASE EXPONENTIATION WITH MULTIPLICATIVE SPLITTING WITH R PRIME

In this section we present a novel recoding algorithm based on multiplicative splitting modulo R prime. We will

show that the resulting exponentiation algorithm can be made constant time.

A. Digit multiplicative splitting for prime radix R

We present in this subsection a variant of the multiplicative splitting to the case of a prime radix R. When R is a

prime we can use a multiplicative splitting modulo R based on an extension of the half-size multiplicative splitting

of [19]. Our goal is to get the following splitting

ki = k
(0)
i (k

(1)
i )−1 mod R with

 |k
(0)
i | < c

|k(1)i | ≤ R/c
(8)

for a fixed bound 0 < c < R.
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Table I

EXAMPLE OF AN EXECUTION TRACE FOR AN EXPONENTIATION BASED ON MULTIPLICATIVE SPLITTING RECODING WITH R = m0m1

Iter. Exp. coef. Step Value

(loop 3:)

i = 0
k
′(0)
0 = 5

k
′(1)
0 = 0

6:
Y0 ← T [0][k

′(0)
0 ]× T [0][−1]

= g49 × g−1 = g48

i = 1
k
′(0)
1 = 2

k
′(1)
1 = 6

11:
Y6 ← T [1][k

′(0)
1 ] = g88·57

= g5016

i = 2
k
′(0)
2 = 8

k
′(1)
2 = 5

11:
Y5 ← T [2][k

′(0)
2 ] = g88

2·41

= g317504

i = 3
k
′(0)
3 = 3

k
′(1)
3 = 7

11:
Y7 ← T [3][k

′(0)
3 ] = g88

3·25

= g17036800

- - 15:
T2 ← T [4][−1] = g88

4·(−1)

= g−59969536

- -

17:

to

22:

gk = Y0 ×
∏m1−1

j=1 Y j
j

= g48g2·(−59969536)

×g5·317504

×g6·5016g7·17036800

= g936192

Table II

HAMMING WEIGHTS ACCOUNT FOR 0 ≤ j < m1

m1 2 3 4 5 6 7 8 9

H 1 2 4 5 7 9 12 13

1) Multiplicative splitting modulo a prime R: The multiplicative splitting modulo a prime radix R is based on

the extended Euclidean algorithm. We briefly review this algorithm. We consider a prime integer R and 0 < k < R.

Then k and R are pairwise prime gcd(k,R) = 1. The Euclidean algorithm computes gcd(k,R) through a sequence

of modular reductions:
r0 = R, r1 = k, r2 = r0 mod r1, . . .

. . . , rj+1 = rj−1 mod rj , . . .

The sequence of remainders rj satisfies

gcd(rj , rj+1) = gcd(R, k)

and is strictly decreasing and thus reaches 0 after some iterations. The last r` 6= 0 satisfies r` = gcd(k,R) = 1.

The extended Euclidean algorithm computes a Bezout relation

uR+ vk = gcd(k,R)
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Table III

COMPLEXITY OF EXPONENTIATION BASED ON MULTIPLICATIVE SPLITTING RECODING WITH R = m0m1

Complexity

Step Operation Cost

1× Step 6 T [i][k
′(0)
i ]× T [i][−1] 1 M

(`/m1 − 1)× Step 8 Y0 × T [i][k
′(0)
i ]× T [i][−1] 2 M

(m1 − 1)× Step 11 - -

(`
m1−1
m1

− (m1 − 1))

× Step 13
Y
k
′(1)
i

× T [i][k
′(0)
i ] 1 M

1× Step 15 Y|k′
`
| × T [`][−1] 1 M

(W − 1)× Step 18 X ← X2 1 S

(H− 1)× Step 21 X × Yj 1 M

1× Step 22 (X × Y0) 1 M

TOTAL (`
m1+1
m1

−m1 +H+ 1) M +(W − 1) S

TOTAL

STORAGE
(m0 + 1)× ` + 1 elements of G

by maintaining two sequences of integers uj and vj satisfying:

ujR+ vjk = rj , for j = 0, 1, . . . , `. (9)

The sequence vj is an increasing sequence in magnitude starting from v0 = 0 and v1 = 1. The multiplicative

splitting of (8) can then be obtained from (9) where we take j such that rj ∈ [0, c[ and vj ∈ [0, R/c] and by taking

k
(0)
i = rj and k

(1)
i = vj . The following lemma establishes this property.

Lemma 1. If one chooses c ∈ [0, R[, there exists j such that |rj | ≥ c and rj+1 < c and at the same time |vj | ≤ R/c

and |vj+1| ≥ R/c.

The proof of the lemma is given in the appendix.

This leads to the method shown in Algorithm 7 for multiplicative splitting modulo a prime radix R. In this

algorithm a third variable s is used for the sign of the multiplicative splitting.

2) Recoding the exponent: We now present our recoding approach for an integer k given in radix-R representation:

k =

`−1∑
i=0

kiR
i, with ` = dt/ log2(R)e.

We choose a splitting bound c and we consider a digit ki 6= 0. Using Algorithm 7 we get si, k
(0)
i and k

(1)
i such

that

ki = sik
(0)
i (k

(1)
i )−1 mod R with


si ∈ {−1, 1}

k
(0)
i ∈ [0, c[,

k
(1)
i ∈ [0, R/c].

(10)
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Algorithm 7 Truncated Extended Euclidean Algorithm (TruncatedEEA(k,R, c))

Require: k ∈ Z, the prime radix R, and c, the upper bound for k(1)
i .

Ensure: (s, k(0), k(1)), such as k = |s× k(0) × (k(1))−1|R with 0 ≤ k(0) < c and 0 ≤ k(1) ≤ dR/ce and s ∈ {−1, 1} when

gcd(k,R) = 1.

1: if gcd(k,R) = R then

2: return (1, 0, 0)

3: else

4: u0 ← 1, v0 ← 0, r0 ← R, u1 ← 0, v1 ← 1, r1 ← |k|R
5: while (r1 ≥ c) do

6: q ← br0/r1c, r2 ← |r0|r1
7: u2 ← u0 − q · u1, v2 ← v0 − q · v1
8: (u0, v0, r0)← (u1, v1, r1)

9: (u1, v1, r1)← (u2, v2, r2)

10: s← sign(v1), k(0) ← r1, k
(1) ← |v1|

11: return (s, k(0), k(1))

We put apart the case ki = 0 which is recoded as (1, 0, 0) (cf. Step 2 of Algorithm 7). We handle the reduction

modulo R as follows:
C = (sik

(0)
i |(k

(1)
i )−1|R − ki)/R (exact quotient),

ki = sik
(0)
i |(k

(1)
i )−1|R − CR.

One notices that C satisfies −c ≤ C < c. We then consider C as a carry that we subtract to ki+1.

We obtain an expression k =
∑`

i=0 k
′
iR

i of k in radix R such that each digit k′i = sik
(0)
i |(k

(1)
i )−1|R is given

in a multiplicative splitting form. The last coefficient k′` = −C is necessary to handle the last carry. The resulting

recoding algorithm is shown in Algorithm 8.

Algorithm 8 Multiplicative Splitting Recoding for R Prime
Require: R prime, k =

∑`−1
i=0 kiR

i, and c the splitting bound.

Ensure: {(si, k(0)
i , k

(1)
i ), 0 ≤ i < `, (k′`)} the multiplicative splitting recoding of k.

1: C ← 0

2: for i from 0 to `− 1 do

3: ki ← ki − C

4: si, k
(0)
i , k

(1)
i ← TruncatedEEA(ki, R, c).

5: C ← (sik
(0)
i |(k

(1)
i )−1|R − ki)/R //exact quotient

6: return {(si, k(0)
i , k

(1)
i ), 0 ≤ i < `, (k′` = −C)}

Example 3. We present an example of multiplicative splitting recoding for a prime radix R = 89 with an exponent

size t of 20 bits (0 < k < 220). In this case, one has ` = d20/ log2(89)e = 4. One also sets c = 23 = 8, and then,

dR/ce = 12. Let us take k = 90164410, the random exponent. By rewriting k in radix-R, one has
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k = 74 + 73 · 89 + 24 · 892 + 1 · 893.

The execution trace of Algorithm 8 is provided in Table IV.

Table IV

EXAMPLE OF AN EXECUTION TRACE OF ALGORITHM 8

Iter. Step Value

i = 0

3: k0 = 74 does not change since C = 0

4: s0 = −1, k(0)0 = 1, k
(1)
0 = 6.

5: C ← (s0 · k(0)0 · |(k(1)0 )−1|R − k0)/R = −1

i = 1

3: k1 ← 73 + 1 = 74 since C = −1
4: s1 = −1, k(0)1 = 1, k

(1)
1 = 6.

5: C ← (s1 · k(0)1 · |(k(1)1 )−1|R − k1)/R = −1

i = 2

3: k2 ← 24 + 1 = 25 since C = −1
4: s2 = −1, k(0)2 = 3, k

(1)
2 = 7.

5: C ← (s2 · k(0)2 · |(k(1)2 )−1|R − k2)/R = −2

i = 3

3: k3 ← 1 + 2 = 3 since C = −2
4: s3 = 1, k

(0)
3 = 3, k

(1)
3 = 1.

5: C ← (s3 · k(0)3 · |(k(1)3 )−1|R − k3)/R = 0

((−1, 1, 6), (−1, 1, 6), (−1, 3, 7), (1, 3, 1)) and k′4 = C = 0

B. Exponentiation Algorithm with multiplicative splitting recoding in a prime radix R

We now present an exponentiation algorithm which takes advantage of the exponent recoding given in Sec-

tion IV-A2. One wants to compute
gk = g

∑`
i=0 k′i·R

i

= gk
′
`·R

` ·
∏`−1

i=0 g
k′i·R

i
(11)

with
gk
′
i·R

i

= gsi·k
(0)
i ·|(k

(1)
i )−1|R·Ri

, if k(1)i 6= 0,

gk
′
i·R

i

= 1, if k(1)i = 0(this corresponds to ki = 0).

In order to compute the fixed-base exponentiation gk mod p, one stores the following values:

T [i][s][j] = gR
i·s·|j−1|

R , with


0 ≤ i ≤ `− 1,

1 ≤ j ≤ dR/ce,

s ∈ {−1, 1}.

T [i][s][0] = 1 with s ∈ {−1, 1}.

T [`][s] = gsR
`

with s ∈ {−1, 1}.
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One denotes Yj the product of the terms gsi·|(k
(1)
i )−1|R·Ri

such that of k(0)i = j. This means that for j 6= |k′`|

Yj =

 ∏
k
(0)
i =j

T [i][si][k
(1)
i ]

 .

and for j = |k′`| one has

Yj =

 ∏
k
(0)
i =j

T [i][si][k
(1)
i ]

× T [`][sign(k′`)].

We can then rewrite the products in (11) in terms of Yj as follows:

gk =
∏

j∈{1,...,c−1}

Y j
j .

Every individual exponentiation Y j
j is performed with a square-and-multiply approach, which is more efficient than

performing j − 1 multiplications, even for small c. This finally leads to the exponentiation shown in Algorithm 9.

Algorithm 9 Fixed-base exponentiation with multiplicative splitting for prime radix R

Require: R a prime integer, an exponent k =
∑`−1

i=0 kiR
i and {(si, k(0)

i , k
(1)
i ), 0 ≤ i < `, k′`} the multiplicative splitting

recoding in radix R of k and g ∈ G.

Ensure: X = gk

1: Offline precomputation. For 0 ≤ i ≤ `−1, 1 ≤ j ≤ dR/ce, s ∈ {−1, 1} store T [i][s][j]← gR
i·s·|j−1|

R and T [i][s][0]← 1

for 0 ≤ i ≤ `− 1, s ∈ {−1, 1} and T [`][s]← gsR
`

for s ∈ {−1, 1}.
2: X ← 1, Yj ← 1 for 0 ≤ j ≤ c

3: for i from 0 to `− 1 do

4: Y
k
(0)
i

← Y
k
(0)
i

× T [i][si][k
(1)
i ]

5: Y|k′
`
| ← Y|k′

`
| × T [`][sign(k′`)]

6: W ← size of c in bits

7: for i from W − 1 downto 0 do

8: X ← X2

9: for j from c− 1 downto 1 do

10: if bit i of j is non zero then

11: X ← X × Yj

12: return (X)

The above algorithm can be implemented in a constant time fashion. Indeed there is no if control attached to

the digits of the exponent. Then, the algorithm consists in a constant and regular sequence of multiplications and

squarings as soon as a multiplication with a 1 is computed as any other multiplication.

Example 4. We consider the exponent k = 90164410 along with the multiplicative splitting recoding computed in

Example 3.

((−1, 1, 6), (−1, 1, 6), (−1, 3, 7), (1, 3, 1)) and k′4 = 0. (12)
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We present the computation of gk using Algorithm 9. In terms of storage, one computes the values

T [i][s][j] = gR
i·s·|j−1|R with


0 ≤ i ≤ `− 1,

1 ≤ j ≤ dR/ce = 12,

s ∈ {−1, 1}.

One has the following values of
∣∣j−1∣∣

R
for 1 ≤ j ≤ 12

{1, 45, 30, 67, 18, 15, 51, 78, 10, 9, 81, 52}.

This brings us to store the following values in G:

T [i][1] = {g89i , g89i·45, g89i·30, g89i·67, g89i·18, g89i·15,

g89
i·51, g89

i·78, g89
i·10, g89

i·9, g89
i·81, g89

i·52}

T [i][−1] = {g−89i , g−89i·45, g−89i·30, g−89i·67, g−89i·18,

g−89
i·15, g−89

i·51, g−89
i·78, g−89

i·10, g−89
i·9,

g−89
i·81, g−89

i·52}.

The execution of Algorithm 9 is shown step by step in Table V

Table V

EXAMPLE OF AN EXECUTION TRACE FOR AN EXPONENTIATION BASED ON MULTIPLICATIVE SPLITTING RECODING WITH R PRIME

Iter. Step Coeff Value

i = 0 4:

s0 = −1
k
(0)
0 = 1

k
(0)
0 = 6

Y1 ← Y1 × T [0][s0][k
(1)
0 ]

= 1× g−15

i = 1 4:

s1 = −1
k
(0)
1 = 1

k
(1)
1 = 6

Y1 ← Y1 × T [1][s1][k
(1)
1 ]

= g−15 × g−89·15

= g−1350

i = 2 4:

s2 = −1
k
(0)
2 = 3

k
(1)
2 = 7

Y3 ← Y3 × T [2][s3][k
(1)
2 ]

= 1× g−892·51

= g−403971

i = 3 4:

s3 = 1

k
(0)
3 = 3

k
(1)
3 = 1

Y3 ← Y3 × T [3][s3][k
(1)
3 ]

= g−403971 × g89
3·1

= g300998

- 5: k′4 = 0 Y0 ← Y0 × T [`][sign(k′4)] = g59969536

-

7:

to

11:

-

gk =
∏c−1

j=1 Y
j
j

= g3·300998−1350

= g901644

C. Complexity

Let us now evaluate the complexity of Algorithm 9. Concerning the amount of storage it consists in 2(dR/ce ×

+1)`+ 2 elements of G.
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For the online complexity, we evaluate the cost of each step of Algorithm 9 based on the following:

• the multiplications in Step 4 are performed even in case of Y
k
(0)
i

= 1, in order to ensure the constant time of

the computation;

• the same applies for Step 5.

The number of operations in the final reconstruction is evaluated as follows:

• the squaring in Step 8 is not performed in the first loop iteration (X = 1);

• This first multiplication in Step 11 is skipped since it is an affectation. The other multiplications in Step 11

are performed even in case of Yj = 1, again to ensure a constant computation time.

We denote by H the sum of the j Hamming weights for each j from c− 1 downto 1 (for loop in Step 7). The

value of H is as follows for the different values of c can be found in Table II.

The contribution of each step is given in Table VI along with the total complexity.

Table VI

EXPONENTIATION COMPLEXITY AND STORAGE FOR THE PROPOSED APPROACH WITH A PRIME RADIX R RECODING.

Complexity

Step Operation Complexity

`× Step 4 Y
k
(0)
i

× T [i][si][k
(1)
i ] 1 M

1× Step 5 Y|k′
`
| × T [`][sign(k′`)] 1 M

(W − 1)× Step 12 X2 1 S

(H− 1)× Step 15 X × Yj 1 M

TOTAL (`+H) M +(W − 1) S

TOTAL STORAGE 2(dR/ce+ 1)`+ 2 elements of G

V. COMPLEXITY AND EXPERIMENTATION COMPARISON

A. Complexity comparison

In Table VII we give the complexities in terms of the number of online operations and storage amount of the

state of the art approaches (Section II) and the two proposed approaches in Section III and IV. All the approaches

presented in the above table can be implemented in constant time except the Square-and-multiply, Fixed base NAFw

and the proposed approach with R = m0m1.

Let us first see when the Fixed-base Comb method is better than the Fixed-base Radix-R exponentiation. We

denote wC the window size of the Comb method and wR the one of the Radix-R method. In order to have both

methods with the same number of online operations in G, we take wC = 2wR: in this case, both methods require

t/wR online operations in G. Then, considering the storage amount when wC = 2wR, one can see that the Comb

method requires 22wR while the Radix-R method needs t
wR

2wR elements of G. In other words, for a fixed number
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Table VII

COMPLEXITIES AND STORAGE AMOUNTS OF EXPONENTIATION ALGORITHM, AVERAGE CASE, BINARY EXPONENT LENGTH t.

Constant #Mul #Squ. Storage

time
(#values

in G)

Square-and-mult. (Algo. 1) no t
2

t− 1 0

Fixed-base Radix-R(∗) (Algo. 2) yes t
w
− 1 0 t

w
2w

Fixed-base Comb (Algo. 3) yes t
w
− 1 t

w
− 1 2w

Fixed base NAFw (Algo. 3) no t
w
(1−

(
w

w+1

)w
) (e− 1)w t

e
2w−2

Proposed(∗) with R = m0m1 (Algo. 6) no t
w

m1+1
m1

−m1 +H+ 1 W − 1 (2w/m1 + 1) t
w

+ 1

Proposed(∗) with R prime (Algo. 9) yes t
w

+H W − 1 (2w+1/c+ 1) t
w

+ 1

(∗) We assume that R is a w bit integer

t/wR of online computation, the Comb method is better than the Radix-R as soon as 2wR < t
wR

which is the case

for small wR, i.e., for small amount of storage.

If we now consider the Fixed base NAFw, we can notice that it does not compare favorably with the radix-R

approach. Indeed for e = 1 we would have almost the same number of online multiplications whereas the amount

of data in the NAFw is larger by a factor of w. For larger value of e the number of squarings would increase

quickly rendering the approach not competitive. Moreover the Fixed base NAFw has the major drawback to not be

constant time.

It is more difficult to formally compare the proposed approaches with the Comb and Radix-R approaches. Indeed,

they involve a third parameter (c or m1), which means that for a fixed number of online operations, we would have

to find the proper parameter which minimizes the amount of storage. We can still notice that for a given c (resp.

m1) we divide by c (resp. m1) the amount of storage compared to the Radix-R approach while having an increase

of online computation (H and W ). This means that the proposed approaches can be competive only for small c

and m1.

To have a clearer idea of the impact of the proposed approach so we follow the strategy used in [17]. Indeed, for

practical sizes of group and exponent and for different level of online operations, we evaluate the best choice of

parameters which minimizes the amount of precomputation. In the sequel we give the results for DSA and ECDSA,

for the fields and curves recommended by the NIST.

B. Complexities and timings for modular exponentiation

In this subsection we focus on exponentiation in ((Z/pZ)∗,×) used in DSA. We evaluate and compare the

complexities of the best method of the literature, i.e., Fixed-base Comb (Algorithm 3) and Fixed-base Radix-R

November 19, 2018 DRAFT



21

(Algorithm 2), with the complexity of our proposed approaches based on a multiplicative splitting recoding of the

exponent (Algorithm 6 for R = m0m1 and Algorithm 9 for R prime).

In the sequel of this subsection, we provide complexity evaluations in terms of modular multiplications MM,

under the assumption of modular squaring MS = 0.86 MM, which is the average value of our implementations for

the NIST DSA recommended field sizes. We warn the reader to keep in mind that the Fixed-base Comb, Radix-R

and Algorithm 9 are constant time, and that Algorithm 6 is not, i.e., the only one weak against timing attacks.

The NIST provides recommended key sizes and corresponding field sizes (respectively the size of the primes q

and p, see NIST SP800-57 [4]). This standardized sizes are as follows:

Table VIII

NIST RECOMMENDED KEY AND FIELD SIZES

Security level 80 112 128 192 256

Key size (bits) 160 224 256 384 512

Field size (bits) 1024 2048 3072 7680 15360

Fig. 1 gives the general behavior of the four algorithms in terms of storage (y axis) with respect to the number

of online operations (x axis). In the figure, we present three of the field sizes recommended in the NIST standards

(see [4]) and the behavior is roughly the same for all sizes, although the benefit of our approach with R = m0m1

is lower for smaller sizes. One can see that the Fixed-base Comb method is the best for small storage amount. Our

m0m1 approach (Algorithm 6) is better for larger amount of storage, however, the Fixed-base Radix-R method is

the best when the storage is increasing. One can see that the R prime multiplicative splitting approach (Algorithm 9)

is less efficient than the R = m0m1 for small storage amounts. The reason is that this requires some additional

computations to get a constant time execution, while the m0m1 approach is not constant time and is thus slightly

more efficient. Nevertheless, one can see a range of storage/complexity trades-off where the R prime multiplicative

splitting approach is the best of the constant-time ones.

Table IX shows numerical application of the complexity comparison between the Fixed-base Comb (Algorithm

3), the Fixed-base Radix-R (Algorithm 2) and the approaches based on our multiplicative splitting recodings

(Algorithm 6 and Algorithm 9). For an equivalent number of MMs, we provide the minimum amount of storage.

We can notice the following:

• For all key sizes, we do not provide the results for small amount of storage (values for w < 8). For such

storage, the Fixed-base Comb method is the best. One may notice that the Fixed-base Radix-R approach

involves the largest storage amount at this complexity level.

• Comparison of the two proposed approaches: R = m0m1 vs R prime. We would like to evaluate the

improvements provided by the new approach (Algorithm 9) compared to (Algorithm 6) which was presented at
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Figure 1. Complexity comparison, Fixed base modular exponentiation NIST DSA, key size 256, 384 and 512 bits (field size 3072, 7360 and

15360 bits).
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WAIFI 2016. The results in Table IX show that the exponentiation with multiplicative splitting with R = m0m1

and R prime are close from each other. But the approach with R = m0m1 is generally slightly better than the

one with R prime. But, as noticed earlier, this is the price to pay to get a constant-time algorithm.

• Comparison of constant time approaches. We consider the Fixed-base Comb, Radix-R and multiplicative

splitting with R prime approaches. A thorough analysis of the complexities shows that the proposed approach

is interesting for intermediate level of online computation. Specifically from Table IX, for a 224 bit key size,

one notices that there are not many cases where the proposed multiplicative splitting approach is interesting.

However, for the other key sizes t = 256, 384 and 512, one can see a lot of cases where the amount of storage
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is reduced by 50% compared to Comb and Radix-R approaches.

Remark 1. One may notice that the largest memory storage sizes exceed the common values of Random Access

Memory, and in some cases, the maximum allowed for the malloc function of the standard C library for memory

allocation. Nevertheless, the storage savings proposed by our method and Fixed-base Radix-R ones allow to keep

the level of storage under the limit for lower complexities.

Table IX

STORAGE AMOUNT COMPARISON FOR FIXED-BASE COMB, FIXED-BASE RADIX-R AND MODULAR EXPONENTIATION WITH

MULTIPLICATIVE SPLITTING RECODING FOR NIST RECOMMENDED EXPONENT SIZES

Key size t = 224 bits Key size t = 256 bits

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R R = m0m1 R-prime

45
127.5 kB 345 kB 108 kB 240 kB

w = 9 R = 31 (m0,m1) = (R, c) =

(11, 9) (97, 7)

37
511.5 kB 594 kB 242 kB 541 kB

w = 11 R = 61 (31, 7) (179, 5)

30
4095.5 kB 1386 kB 770 kB 1205 kB

w = 14 R = 179 (127, 7) (179, 5)

24
32767.5 kB 4230 kB 4173 kB 4489 kB

w = 17 R = 677 (877, 7) (1223, 3)

19
524287.5 kB 27084 kB 50409 kB 27954 kB

w = 21 R = 5417 (13441, 5) (6211, 2)

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R R = m0m1 R-prime

46
383 kB 845 kB 241 kB 494 kB

w = 10 R = 47 (m0,m1) = (R, c) =

(17, 11) (97, 5)

39
1535 kB 1454 kB 579 kB 1116 kB

w = 12 R = 97 47; 7 223; 5

32
12287 kB 3179 kB 2070 kB 3084 kB

w = 15 R = 257 211; 6 409; 3

26
98303 kB 9846 kB 9642 kB 10207 kB

w = 18 R = 937 1223; 6 1699; 3

20
1572863 kB 66676 kB 225482 kB 85558 kB

w = 22 R = 8467 37579; 5 12007; 2

Key size t = 384 bits Key size t = 512 bits

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R R = m0m1 R-prime

63
1918 kB 4081 kB 969 kB 2274 kB

w = 11 R = 67 (m0,m1) = (R, c) =

(19, 11) (127, 6)

50
15358 kB 10087 kB 3742 kB 7182 kB

w = 14 R = 191 101; 11 433; 5

41
122878 kB 26655 kB 17284 kB 22891 kB

w = 17 R = 677 541; 6 937; 3

35
983038 kB 80357 kB 64768 kB 65837 kB

w = 20 R = 2381 2381; 6 3191; 3

30
7864318 kB 246070 kB 315053 kB 235255 kB

w = 23 R = 8467 13441; 5 13441; 3

26
62914558 kB 951217 kB 3256278 kB 1030642 kB

w = 26 R = 37579 165397; 5 43973; 2

24
503316478 kB 1750756 kB - kB - kB

w = 29 R = 74699 − −

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R R = m0m1 R-prime

86
3836 kB 9841 kB 1940 kB 5004 kB

w = 11 R = 59 (m0,m1) = (R, c) =

(13, 11) (163, 9)

73
15356 kB 17855 kB 4747 kB 10005 kB

w = 13 R = 127 (41, 10) (241, 6)

60
122876 kB 46775 kB 16224 kB 29979 kB

w = 16 R = 409 (179, 11) (739, 5)

52
491516 kB 93110 kB 54680 kB 76505 kB

w = 18 R = 937 (677, 7) (1223, 3)

48
983036 kB 156091 kB 106185 kB 136971 kB

w = 19 R = 1699 (1489, 10) (2381, 3)

41
7864316 kB 489112 kB 355573 kB 477551 kB

w = 22 R = 6211 (5417, 7) (6211, 2)

35
62914556 kB 2048419 kB 2113890 kB 1949934 kB

w = 25 R = 30347 (37579, 7) (47269, 3)

1) Implementation results: Implementation strategies. We review hereafter the main implementation strategies

and test process for modular exponentiation for NIST recommended sizes. This applies for the four considered
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exponentiation algorithms. The algorithms were coded in C, compiled with gcc 4.8.3 and run on the same

platform.

• Multi-precision multiplication and squaring. We used the low level functions performing multi-precision

multiplication and squaring of the GMP library as building blocks of our codes (GMP 6.0.0, see GMP

library [1]). According to the GMP documentation, the classical schoolbook algorithm is used for small sizes,

and Karatsuba and Toom-Cook subquadratic methods for size ≥ 2048 bits.

• Modular reduction. This operation implements the Montgomery representation and modular reduction method,

which avoid multi-precision division in the computation of the modular reduction. This approach was presented

by Montgomery in [18]. We use the block Montgomery algorithm suggested by Bosselaers et al. in [5]. In

this algorithm, the multi-precision operations combine full size operand with one word operand and are also

available in the GMP library [1].

• Multiplicative splitting recoding with R = m0m1 and R prime. The conversion in radix-R needs multi-

precision divisions. These operations are implemented using the GMP library [1]. The size of these operations

is decreasing along the algorithm, and this is managed through GMP. The other operations are classical long

integer operations. At Step 11 in Algorithm 5 (resp. Step 5 in Algorithm 8), an inversion modulo m0 (resp.

R) is required. This operation is performed using the Extended Euclidean Algorithm, over long integer data.

For the considered exponent sizes, the cost of the recoding is negligible. This is explained by the small size

of the exponent in comparison with the size of the data processed during the modular exponentiation (see

Table VIII). The timings given in the next subsection include this recoding.

• Test processing. The tests involve a few hundred datasets, which consist of random exponent inputs and

an exponentiation base with the precomputed stored values. We compute 2000 times the corresponding

exponentiation for each dataset and keep the minimum number of clock cycles. This avoids the cold-cache

effect and system issues. The timings are obtained by averaging the timings of all datasets.

Tests results and comparison. The four considered exponentiation algorithms were coded in C, compiled with gcc

4.8.3 and run on the following platform: the CPU is an Intel XEONr E5-2650 (Ivy bridge), and the operating

system is CENTOS 7.0.1406. On this platform, the Random Access Memory is 12.6 GBytes. One notices that the

performance results include the Radix-R recoding and the multiplicative splitting of the digits for R = m0,m1 and

R prime.

We show the performance results in Fig. 2 which gives a global overview. The implementation results confirm

the complexity evaluation, for key sizes of 224, 256, 384, and 512 bits. However, the best results are for 384 and

512 bits.

In Table X, we provide the most significant results. The gains shown are roughly in the same order of magnitude

as the one of the complexity evaluation. In particular, for the largest key size (512 bits), the storage of our approach

with R = m0m1 is nearly ten times less than the one required with the Fixed-base Comb method, and nearly 14%

less than the one required for the Fixed-base Radix-R method, for the same level of clock-cycles. In the same time,
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Table X

IMPLEMENTATION RESULTS FOR MODULAR EXPONENTIATION IN TERMS OF CLOCK CYCLES AND STORAGE (KB). TEST PERFORMED ON AN

INTEL XEON E5-2650 (IVY BRIDGE), GCC 4.8.3, CENTOS 7.0.1406.

Scalar multiplication

State of the art methods Proposed approach

Security Level of Fixed-base Comb Radix R R = m0m1 R prime

level clock- Time Storage w Time Storage R Time Storage (m0,m1) Time Storage (R, c)

-cycles (#CC) (kB) (#CC) (kB) (#CC) (kB) (#CC) (kB)

112 bits

(key 224 bits,

field 2048 bits)

220000 221108 1023.5 12 227838 829 91 219864 580 (89,6) 217104 1191 (257,3)

207000 210074 2047.5 13 206888 1324 163 207072 766 (127,7) 206813 1553 (347,3)

148000 149690 65535 18 147877 7289 1223 146156 21599 (5417,6) 149490 17661 (3719,2)

128 bits

(key 256 bits,

field 3072 bits)

505000 524539 1535 12 502981 1411 91 501466 897 (79,6) 509581 1420 (307, 5)

450000 449397 6143 14 445871 2251 163 446444 2056 (211,6) 458936 2372 (307, 3)

354000 356892 98303 18 354640 6414 571 354071 12843 (1721,7) 353662 15283 (1699, 2)

192 bits

(key 384 bits,

field 7680 bits)

444000 4442590 1918 11 4492191 3430 53 4409584 1134 (23, 10) 4494471 2171 (127, 6)

353000 3554339 15358 14 3524896 8290 163 3551437 4164 (113, 10) 3534620 7100 (433, 5)

270000 2736341 245758 18 2543480 45221 1223 2743399 29961 (1031, 7) 2795363 31915 (1381, 3)

256 bits

(key 512 bits,

field 15360 bits)

1860000 18632429 15536 13 19260731 13765 91 18550238 4745 (41, 10) 18683547 8653 (257, 7)

1500000 14848261 122876 16 15401002 34418 163 14812616 22111 (257, 11) 15541482 27853 (641, 5)

1240000 12477816 983036 19 12193232 119061 1223 12499600 102820 (1381, 7) 12802926 101886 (1699, 3)

our approach with R prime gives equivalent results for low levels of storage, and better results for higher levels of

storage.

C. Complexities and timings for scalar multiplication

In this subsection, we present complexity results and timings of the fixed base scalar multiplication over elliptic

curves recommended by NIST.

1) Complexity comparison: In the fixed-base elliptic curve scalar multiplication case, the main difference with

the modular exponentiation is the negligible cost of the inversion of a group element (i.e. an elliptic curve point).

This allows to half the memory requirements, by only storing the points corresponding of the positive sign si in the

recoded coefficients. We provide in appendix A the version of the scalar multiplication algorithm with multiplicative

splitting with R prime which takes advantage of a cheap point subtraction.

When computing the complexities, we noticed that the approach using a multiplicative splitting recoding with

R = m0m1 was never better than the one with R prime. In addition, the approach with R = m0m1 does not provide

a constant time computation. That is why we do not consider the approach with R = m0m1 in remainder of this

subsection. Specifically, we only deal with constant-time approaches: Fixed-base Comb, Radix-R and multiplicative

splitting with R prime.

We compare explicit complexities for practical situations, which are the three elliptic curves standardized by

NIST: P256, P384, P521. One can find in [12] the Weierstrass curve equations of these three NIST curves which

are reviewed in the appendix. For the arithmetic on these curves, we use the Jacobian coordinate system, which

provides the fastest curve operations. We use the complexities in terms of operations in Fp of point addition and
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Figure 2. Performance comparison, Fixed base modular exponentiation NIST DSA, key size 224, 256, 384 and 512 bits (field size 2048, 3072,

7360 and 15360 bits).

doubling for a Weierstrass curves of [2] to derive the complexity of the considered fixed-base scalar multiplication.

The complexities of the curve operations in terms of the number of modular multiplications (MM) and squarings

(MS) are as follows:
Addition: 12MM + 4MS,

Doubling: 4MM + 4MS,

Mixed-Addition: 7MM + 4MS.

The resulting complexities of the considered scalar multiplication approaches are reported in Table XI and Fig. 3

assuming that MS = 0.8MM .

Fig. 3 gives the general behavior of the storage for a given amount of online computation. This figure shows that,

as expected, for small amount of storage the Fixed-base Comb is always the best approach. For larger complexities

the proposed approach with a prime radix R is the best choice.
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Considering the results in Table XI, one notices that for the four considered methods, one has a slight difference

in comparison with the modular exponentiation case. Indeed, for all key sizes and for most of the levels of online

computation the proposed approach shows the lowest amount of storage. This is due to the relative cost of the

doubling of point and the mixed and full Jacobian addition of points:

• Since the doubling is much cheaper than the additions, this is beneficial to the Fixed-base Comb method and

the proposed approach with R prime. Specifically, Fixed-base Comb is the best approach for small amount of

storage, that is up to several tens of kilobytes, for the three curves P256, P384 and P521. For larger amounts

of storage, the other methods remain more efficient.

• The proposed approach which uses a multiplicative splitting recoding with a prime radix R is the best for

the following levels of online computations: for P256 and #MM ∈ {176, ..., 405}, for P384 and #MM ∈

{264, ..., 475} and for P521 and #MM ∈∈ {352, ..., 651}.

2) Implementation results: We now present implementation strategies and results for the constant time fixed-base

scalar multiplication over NIST prime curves P256, P384, P521.

Implementation strategies. The implementation strategies and test processes are the same as the ones presented in

Subsection V-B1 for modular exponentiation. We review most of them and provides the specific strategies adapted

to the considered elliptic curves.

• Curve operations. We use the curve operations in Jacobian coordinate system, which provides the lowest

complexities for the considered NIST curves. The doubling formula is from [3], the mixed addition is from [15]

and the full-addition is from [2].

• Field operations We use the low level functions performing multi-precision addition, subtraction, multiplication

and squaring of the GMP library as building blocks of our codes (GMP 6.0.0, see GMP library [1]). According

to the GMP documentation, the classical schoolbook algorithm is used for small sizes. For the inversion, we

use the binary extended Euclidean algorithm, with some specific assembly code portion, which is presented

by Brown et al. in [6]. The field reductions use also the algorithms presented by Brown et al. in [6].

• Radix R conversion and recoding. The algorithm and the code is the same as the one previously used for

modular exponentiation case. However, the size of the scalar in this case is the same as the one of the field

elements representing the elliptic curve point coordinates. The computation time of the recoding is no more

negligible in this case, as shown by the tests of the conversion alone, and the multiplicative splitting recoding

computation (including the conversion). We provide in Table XIII the results of these tests. One sees that the

impact of the recoding is at most 8% of the scalar multiplication computation time without recoding, in the

worst cases. The most important part of the recoding time is the computation of the multiplicative splittings

of the scalar digits, with the repeated use of the Truncated EEA.

Due to the relative cost of the recoding in the multiplicative splitting with R prime, and to the fact that the

recoding itself is not regular as implemented, we provide timings without the recoding, considering that in

ECDSA, one can directly generate a random scalar k in a multiplicative splitting form and then process the
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Table XI

STORAGE AMOUNT COMPARISON FOR CONSTANT TIME FIXED-BASE SCALAR MULTIPLICATION OVER NIST CURVES P256, P384, P521

NIST Curve P256

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R Regular R-prime

441
64 kB 162 kB 73 kB

w = 10 R = 59 R = 163;C = 5

405
128 kB 222.5 kB 100 kB

w = 11 R = 89 127; 3

317
1024 kB 566 kB 334 kB

w = 14 R = 283 571; 3

264
8192 kB 1522.5 kB 1142 kB

w = 17 R = 937 2381; 3

211
65536 kB 6235 kB 5581 kB

w = 20 R = 4751 8929; 2

176
1048576 kB 22192 kB 22156 kB

w = 24 R = 19727 66467; 3

NIST Curve P384

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R Regular R-prime

669
96 kB 365 kB 127 kB

w = 12 R = 59 R = 149;C = 6

475
1536 kB 1352.5 kB 661 kB

w = 14 R = 307 491; 3

370
24576 kB 5734 kB 2901 kB

w = 18 R = 1699 2729; 3

299
393216 kB 26693 kB 17643 kB

w = 22 R = 9491 13441; 2

264
3145728 kB 71250 kB 51532 kB

w = 25 R = 29231 43973; 2

NIST Curve P521

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R Regular R-prime

915
144 kB 678 kB 234 kB

w = 10 R = 53 R = 157;C = 7

651
2304 kB 2547 kB 1146 kB

w = 14 R = 283 739; 5

493
36864 kB 12750.5 kB 6733 kB

w = 18 R = 1889 3191; 3

405
589824 kB 47627 kB 35915 kB

w = 22 R = 8467 13441; 2

352
4718592 kB 153675 kB 133905 kB

w = 25 R = 31223 57709; 2
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Figure 3. Complexity comparison for constant time Fixed-base scalar multiplication on elliptic Weierstrass curves P256, P384 and P521
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digital signature (this strategy was proposed in [7] to avoid costly scalar recoding in double base representation).

• Test processing. The test processing is the same as the one used for the modular exponentiation. This involves a

few hundred of datasets, which are random scalars and a fixed base with precomputed data. To get the timings,

we perform 2000 times the scalar multiplication and keep the minimal number of clock-cycles. This is meant

to avoid the cold-cache effect and system interruptions. The final timings are the average of the dataset timings.

Test results and comparison. The algorithms were coded in C, compiled with gcc 4.8.3. The test were performed

on a platform which has the following characteristics: an Intel XEON E5-2650 (Ivy bridge), a RAM of 12.6GBytes
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Table XII

IMPLEMENTATION RESULTS FOR FIXED BASE SCALAR MULTIPLICATION FOR CONSTANT TIME ALGORITHMS. TEST PERFORMED ON AN

INTEL XEON E5-2650 (IVY BRIDGE), GCC 4.8.3, CENTOS 7.0.1406.

Scalar multiplication

State of the art methods Proposed approach

Security Level of Fixed-base Comb radix R R-splitting rec.

level Clock-cycles Time Storage w Time Storage R Time Storage (R, c)

(#CC) (kB) (#CC) (kB) (#CC) (kB)

128 bits

(NIST curve P256)

370000 378184 64 12 376370 74 19 366057 37 (71,5)

276000 275230 1024 14 276917 231 89 276660 170 (257,3)

205000 207456 32768 19 206777 1120 641 203414 1012 (1699,2)

192 bits

(NIST curve P384)

575000 575854 192 11 571975 283 41 583590 86 (79,5)

460000 461271 1536 14 470537 547 97 451846 354 (233,3)

375000 376114 24576 18 372952 1861 433 378733 1214 (997,3)

349000 359578 49151 19 360786 2069 491 354919 1911 (1699,3)

256 bits

(NIST curve P521)

450000 446633 288 11 451280 572 41 449550 146 (97,7)

364000 363615 2304 14 362166 1621 157 367299 726 (433,5)

289000 289085 73728 19 288394 7217 937 290146 6243 (2897,3)

Table XIII

RECODING TESTS, FOR SIZES 256, 384 AND 521 BITS: WORST CASE COMPUTATION TIME IN CLOCK CYCLES

Recoding

Scalar size
256 bits 384 bits 521 bits

#CC #CC #CC

Radix R conversion 1200 1640 2250

R-splitting conversion 14400 21600 27500

and a CENTOS 7.0.1406 operating system.

In Table XII, we report some of the most significant results obtained for the three following approaches: Fixed-

base Comb, Fixed-base radix-R and the one based on multiplicative splitting recoding with a prime radix R. These

results show that, except in the last case (P521 and 290000 clock-cycles), our approach provides the smallest

storage amount for each considered level of clock-cycles. This is consistent with the complexity evaluation shown

in Table XI and Fig. 3. Specifically, for a fixed amount of online computation the proposed approach reduce by

roughly 50% the amount of storage.

VI. CONCLUSION

In this paper, we considered fixed base modular exponentiation and elliptic curve scalar multiplication. These

operations are intensively used in NIST standards for digital signature algorithm. In particular, they are used for

remote authentication of web server. We proposed algorithms for modular exponentiation and scalar multiplication

based on a multiplicative splitting recoding of the digits of the exponent or scalar. The multiplicative splitting

provides more freedom in the distribution of the computational cost into storage and online computation. We

evaluated the complexities of the proposed approaches for the security levels recommended by the NIST. We could
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show that, for a fixed level of computation, the proposed approaches reduce the amount of stored data in most

of the considered practical cases. Specifically the storage requirement is reduced by at least 50% in most cases

and up to 3 times for the largest NIST standardized key sizes. These complexity results were confirmed by the

implementation tests done on an Intel XEON E5-2650.
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APPENDIX

We review here the NIST recommended curves (see [12]) used in our implementations. Over a finite field Fp,

one has:
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• Equation of Weierstrass curve:

y2 = x3 + ax+ b

with a = −3 and b ∈ Fp.

The NIST curves used :

• P256:

One has p = 2256 − 2224 + 2192 + 296 − 1, that is

p = 0xffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff

ffffffff

and

b = 0x5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e

27d2604b

Curve subgroup generator:

XG = 0x6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945

d898c296

YG = 0x4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068

37bf51f5

• P384:

One has p = 2384 − 2128 − 296 + 232 − 1, that is

p = 0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

fffffffe ffffffff 00000000 00000000 ffffffff

and

b = 0xb3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 0314088f

5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

Curve subgroup generator:

XG = 0xaa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98 59f741e0

82542a38 5502f25d bf55296c 3a545e38 72760ab7

YG = 0x3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c e9da3113

b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f

• P521:

One has p = 2521 − 1, that is

p = 0x01ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
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ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff

and

b = 0x0051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3 b8b48991

8ef109e1 56193951 ec7e937b 1652c0bd 3bb1bf07 3573df88 3d2c34f1 ef451fd4

6b503f00

Curve subgroup generator:

XG = 0x00c6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139 053fb521 f828af60

6b4d3dba a14b5e77 efe75928 fe1dc127 a2ffa8de 3348b3c1 856a429b f97e7e31

c2e5bd66

YG = 0x0118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468 17afbd17

273e662c 97ee7299 5ef42640 c550b901 3fad0761 353c7086 a272c240 88be9476

9fd16650

Before proceeding to the proof of Lemma 1 we need to recall the following lemma which states some classical

properties of the Extended Euclidean Algorithm. A proof of this lemma can be found in [19].

Lemma 2. Let vi and ri be the two sequences of coefficients computed in Algorithm 7. They satisfy the following

properties:

i) (−1)i−1vi ≥ 1 for all i ≥ 1.

ii) vi+1ri − viri = (−1)iR for all i ≥ 1.

The proof is a direct consequence of Lemma 2: statements i) and ii) imply that for i ≥ 1

ri−1|vi|+ ri|vi−1| = R. (13)

So if ric−1 is the last remainder such that ric−1 ≥ c then we have ric < c. Then taking i = ic in (13) leads to

ric−1|vic |+ ric |vic−1| = R then one gets |vic | ≤ R/ric−1 ≤ R/c.

We consider an elliptic curve E(Fp) a point P on the curve and a scalar k. The scalar multiplication based

on a multiplicative splitting recoding with prime R is shown in Algorithm 10. Table XIV gives the complexity

evaluation.
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Algorithm 10 Fixed-base scalar multiplication based on multiplicative splitting recoding with prime radix R

Require: A prime integer R ,a scalar k =
∑`−1

i=0 kiR
i with = {(si, k(0)i , k

(1)
i ), 0 ≤ i < `, (k′`)} its multiplicative

splitting recoding using W -bit split c and a fixed point P ∈ E(Fp).

Ensure: X = k · P

1: Precomputation.

Store T [i][j]← (
∣∣j−1∣∣

R
·Ri) ·P for i = 0, . . . , `− 1, j = 1, . . . , dR/ce and T [`][1]← R` ·P and T [i][0]← O

for i = 0, . . . , `− 1.

2: X ← O, Yj ← O for 1 ≤ j ≤ c

3: for i from 0 to `− 1 do

4: Y
k
(0)
i
← Y

k
(0)
i

+ (si) · T [i][k(1)i ]

5: Y|k′`| ← Y|k′`| + (sign(k′`)) · T [`][1]

6: for i from W downto 0 do

7: X ← 2×X

8: for j from c− 1 downto 1 do

9: if bit i of j is non zero then

10: X ← X + Yj

11: return (X)

Table XIV

COMPLEXITY EVALUATION OF SCALAR MULTIPLICATION BASED ON MULTIPLICATIVE SPLITTING RECODING WITH R PRIME

Complexity

Step Operation Cost

`×Step 3 Y
k
(0)
i

+ si · T [i][k
(1)
i ] 1MixedAdd

1×Step 5 Y|k′
`
| + sign(k′`) · T [`][1] 1MixedAdd

(W − 1)×Step 7 X ← 2×X 1Doubling

(H− 1)×Step 10 X ← X + Yj 1Addition

TOTAL
(` + 1)×MixedAdd

+(W − 1)×Doubling + (H− 1)× Addition

TOTAL

STORAGE
`× (dR/ce+ 1) + 1 points on E(Fp)
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