Bastien Cazaux
email: bastien.cazaux@cs.helsinki.fi

Samuel Juhel
email: samuel.juhel@zaclys.net

Practical lower and upper bounds for the Shortest Linear Superstring

Keywords: 2012 ACM Subject Classification F, 2, 2 Keywords and phrases greedy -approximation -overlap -Concat-Cycles -cyclic coverlinear time -text compression

Given a set P of words, the Shortest Linear Superstring (SLS) problem is an optimisation problem that asks for a superstring of P of minimal length. SLS has applications in data compression, where a superstring is a compact representation of P , and in bioinformatics where it models the first step of genome assembly. Unfortunately SLS is hard to solve (NP-hard) and to closely approximate (MAX-SNP-hard). If numerous polynomial time approximation algorithms have been devised, few articles report on their practical performance. We lack knowledge about how closely an approximate superstring can be from an optimal one in practice. Here, we exhibit a linear time algorithm that reports an upper and a lower bound on the length of an optimal superstring. The upper bound is the length of an approximate superstring. This algorithm can be used to evaluate beforehand whether one can get an approximate superstring whose length is close to the optimum for a given instance. Experimental results suggest that its approximation performance is orders of magnitude better than previously reported practical values. Moreover, the proposed algorithm remainso efficient even on large instances and can serve to explore in practice the approximability of SLS.

Introduction

Let P := {s 1 , . . . , s |P | } be a set of input words, whose sum of lengths is denoted by ||P ||.

A superstring of P is a string that contains each of the input words as substrings. Without loss of generality, we assume that P is factor free, i.e., that no word of P is substring of another word of P . The Shortest Linear Superstring (SLS) problem -also known as Shortest Common Superstring -, asks for a superstring of P of minimal length.

A recent survey gives an idea of the variety of applications of SLS: from the most known ones, DNA assembly or text compression, to job scheduling or viral genomes compression 18:2 Practical lower and upper bounds for the Shortest Linear Superstring [START_REF] Gevezes | Optimization in Science and Engineering[END_REF]. Several variations of SLS have also been investigated in theory, e.g., with reversals [START_REF] Jiang | A note on shortest superstrings with flipping[END_REF][START_REF] Fici | On the greedy algorithm for the Shortest Common Superstring problem with reversals[END_REF], with strings of DNA [START_REF] Kececioglu | Combinatiorial algorithms for DNA sequence assembly[END_REF][START_REF] Cazaux | Shortest DNA cyclic cover in compressed space[END_REF], with multiplicities [START_REF] Crochemore | Algorithms for three versions of the shortest common superstring problem[END_REF][START_REF] Cazaux | Superstrings with multiplicities[END_REF]. SLS, which is studied since the 80's, has been proven NP-hard even for instances containing only words of length 3, and difficult to approximate (MAX-SNP-hard) [START_REF] Gevezes | Optimization in Science and Engineering[END_REF]. Several polynomial time approximation algorithms with constant ratios have been designed for SLS, and among them, the Greedy algorithm, which, unlike most other approximation algorithms for SLS, admits a linear time implementation [START_REF] Ukkonen | A Linear-Time Algorithm for Finding Approximate Shortest Common Superstrings[END_REF]. Currently, the approximation ratio of the Greedy algorithm is proven to be 3.5 [START_REF] Weinard | On the greedy superstring conjecture[END_REF] (see Algorithm Greedy in Appendix). The 28 years old, so called, Greedy conjecture states that the Greedy algorithm achieves an approximation ratio of 2, which is better than the best known approximation ratio of 2 + 11/30 [START_REF] Mucha | Lyndon words and short superstrings[END_REF][START_REF] Paluch | Better Approximation Algorithms for Maximum Asymmetric Traveling Salesman and Shortest Superstring[END_REF], the latter being achieved by a polynomial, but not linear time algorithm. Another example of approximation algorithm is Concat-Cycles, which linearises and concatenates the cyclic words obtained by solving the Shortest Cyclic Cover of Strings problem (SCCS) on the instance; Concat-Cycles has an approximation ratio of 4 [START_REF] Blum | Linear approximation of shortest superstrings[END_REF].

Importantly, algorithm Greedy for SLS breaks ties randomly, and is thus not deterministic. Example 1 illustrates the consequences of this non determinism in terms of approximation ratio.

Example 1. On the classical instance (with k > 0) P := {ab k , b k+1 , b k c}, Greedy can output either w b := ab k cb k+1 or w g := ab k+1 c as a superstring of P . The second one is optimal, while the first is the worst greedy superstring. This instance is the one used in [START_REF] Tarhio | A greedy approximation algorithm for constructing shortest common superstrings[END_REF] to bound the approximation ratio of Greedy by 2 (which tends to 2 when k → ∞). Some recent works have developed theoretical arguments suggesting that the Greedy algorithm achieves good approximation in general [START_REF] Ma | Why greed works for shortest common superstring problem[END_REF]. Experimental assessments on instances up to 1, 000 words of length up to 50 have shown that two approximation algorithms for SLS with ratio 3 and 4 return solutions within 1.28 times the optimal superstring length [START_REF] Romero | An Experimental Comparison of Approximation Algorithms for the Shortest Common Superstring Problem[END_REF]. To our knowledge, this article gives the only experimental results published so far, and clearly emphasises the gap between lower and upper bounds, as well as between theory and practice. Although the algorithms used in [START_REF] Romero | An Experimental Comparison of Approximation Algorithms for the Shortest Common Superstring Problem[END_REF] ran in short time on relatively small instances, their running times seem to increase non linearly with the instance size [19, Figure 5], indicating their limited scalability.

It would be useful to be able to determine rapidly, and before hand, whether an approximation algorithm would return a good approximate solution for a given instance. Obviously, such an algorithm should have a reasonable worst case approximation ratio, the best possible approximation in practice, should take linear time and be efficient enough to process large instances.

We propose an algorithm to compute a lower and an upper-bound on the size of an optimal solution for SLS. These two bounds, denoted respectively min and max , are defined in Section 3.

We shall obtain the following theorem.

Theorem 2. Let P be a set of strings and let w opt denote an optimal solution of SLS of P . We can compute in linear time in ||P || the values min and max such that:

min ≤ |w opt | ≤ max and max min ≤ 4.

Contributions.

Here, we exhibit a linear time algorithm to compute a lower and an upper bound, respectively min and max , on the size of a shortest superstring of P . Then we present experimental results of this algorithm on a series of instances of increasing sizes. These results show that min and max are extremely close to each other in practice. For more details, please see the web appendix at http://www.lirmm.fr/˜rivals/res/superstring. Notation We consider finite words over a finite alphabet Σ. The set of all finite words over Σ is denoted by Σ , and denotes the empty word. For a word x, |x| denotes the length of x. Given two words x and y, we denote by xy the concatenation of x and y.

Let s, t, u be three strings of Σ . We say that s overlaps t if and only if a suffix of s also is a prefix of t. We denote by ov(s, t) the longest overlap from s over t (also termed maximum overlap); let pr(s, t) be the prefix of s such that s = pr(s, t)ov(s, t), and let su(s, t) be suffix of t such that t = ov(s, t)su(s, t). The merge of s over t is the word pr(s, t)t. Note that neither the overlap nor the agglomeration are symmetrical.

Example 3. Consider two strings S := actgct and T := tgcttac. Then the longest overlap ov(S, T) = tgct, but the substring t also is an overlap from S over T . Then pr(S, T) = ac and su(S, T) = tac. Moreover, we see that ov(T, S) = ac, which differs from ov(S, T).

Throughout the article, the input is P := {s 1 , . . . , s |P | } a set of input words, and without loss of generality, we assume that P is substring free, i.e., no word of P is substring of another word of P .

Related Works

Significant research effort has been dedicated to designing approximation algorithms for SLS and to finding the best theoretical approximation ratios (see [START_REF] Golovnev | Approximating Shortest Superstring Problem Using de Bruijn Graphs[END_REF] for a list of algorithms). Both upper and lower bounds of approximation ratios have been studied [START_REF] Vassilevska | Explicit inapproximability bounds for the shortest superstring problem[END_REF] (see Figure 1). A crucial result regarding the design approximation algorithms for SLS is that a variant of SLS called, Shortest Cyclic Cover of Strings (SCCS), can be solved exactly and S E A 2 0 1 8

18:4

Practical lower and upper bounds for the Shortest Linear Superstring returns a set of cycling strings covering the words of P . This set of cyclic strings can in turn be linearised and combined in various ways to form good linear superstrings [START_REF] Blum | Linear approximation of shortest superstrings[END_REF]. A cover C is a set of strings such that any s i is a substring of at least one string of C. An optimal cover can be obtained by computing a cyclic cover on the distance graph, a complete digraph representing the words of P and their maximum overlaps, using the Hungarian algorithm in O(||P || + |P |

3) time once the graph is built [START_REF] Papadimitriou | Combinatorial optimization : algorithms and complexity[END_REF]. Blum et al. also proposes an improvement of this strategy: each cycle can be broken at an optimal point so as to create the shortest w i for c i . As the cycle word c i defines an order of occurrence for each word of P i in c i , this only requires to test any pair of successive words which is linear in ||P i ||. They show that a variant of the greedy algorithm for SLS, which they call MGreedy, does exactly that [START_REF] Blum | Linear approximation of shortest superstrings[END_REF]. In fact, we view MGreedy (see the web appendix) as an application of Algorithm LCGreedy, followed by a concatenation. In other words, MGreedy builds a linear cover of P (which is made of linear, rather than cyclic, strings), and concatenate those linear strings arbitrarily into a single linear superstring of P . Blum et al. show that this linear superstring is shorter than the one output by Concat-Cycles [START_REF] Blum | Linear approximation of shortest superstrings[END_REF].

In these two algorithms Concat-Cycles and MGreedy, each cycle contributes to adding some symbols to the final superstring. We propose to optimise such procedure by minimising the number of cycles in the Shortest Cyclic Cover obtained by a greedy algorithm for SCCS.

Remark on non-determinism

As indicated in introduction, all mentioned greedy algorithms -Greedy, SCGreedy, LCGreedy or MGreedy -break ties randomly when choosing the next overlap to use. Hence, none of these algorithms are deterministic, implying that two distinct executions may produce superstrings of different lengths or cyclic covers with different number of cycles. To our knowledge, most approximation algorithms designed to date use at least a greedy solution for SCCS to start with, and inherit from non-determinism.

Lower and upper bounds. Among others, Vassilevska has proven new lower bounds for the approximation ratio of SLS. She noticed the huge gap separating the best upper bounds and lower bounds [START_REF] Vassilevska | Explicit inapproximability bounds for the shortest superstring problem[END_REF].

Algorithm LCGreedyMin

Overview Compared to Concat-Cycles or MGreedy [START_REF] Blum | Linear approximation of shortest superstrings[END_REF], our algorithm builds a superstring based on a Shortest Cyclic Cover of P having a minimal number of cycles. Our algorithm proceeds as follows. First, it builds the Extended Hierarchical Overlap Graph (EHOG), a graph that encodes all overlaps between words of P but takes linear space. Embedded in the EHOG, it computes the Superstring Graph of P , which encodes the paths of all greedy solutions for SCCS. By finding an Eulerian path on each connected component of the Superstring Graph, it determines the node of minimal word depth of the component, and the shortest linearisation of each cyclic string. Moreover, this set of Eulerian paths constitutes an optimal Shortest Cyclic Cover of P ; more precisely, we get the permutation indicating in which order the words of P are merged in each component to form the cyclic strings. Then, we then compute min and max . We call our algorithm LCGreedyMin. Below, we describe the graphs needed by LCGreedyMin and the algorithm.

EHOG

We denote by Ov + (P) the set of all overlaps between two (not necessarily distinct) strings of P , i.e. Ov + (P) := {w | ∃ u and v ∈ P such that w is a prefix of u and w is a suffix of v}.

Definition 4. The Extended Hierarchical Overlap Graph of P , denoted by EHOG(P), is the directed graph (V E , P E ∪ S E) where V E = P ∪ Ov + (P), while P E is the set: {(x, y) ∈ (P ∪ Ov + (P)) 2 such that x is the longest proper prefix of y} and S E is the set: {(x, y) ∈ (P ∪ Ov + (P)) 2 such that y is the longest proper suffix of x}.

The EHOG has a node for each word of P and a node for any string that is an overlap between words of P . It can be seen that both types of nodes are also nodes of the Generalised Suffix Tree of P [START_REF] Gusfield | Algorithms on strings, trees, and sequences: computer science and computational biology[END_REF] -a Suffix Tree is a data structure that indexes all substrings of a text, while the Generalised Suffix Tree is the version that indexes several texts concatenated. Additionally, there are two types of arcs: one for recording the longest suffix relationship between nodes of V E , the other for the longest prefix relationship. The first type can be seen as the arcs of the generalised suffix tree, while the second type corresponds to its Suffix Links. It follows that the EHOG occupies less space than the Generalised Suffix Tree of P . Examples of EHOG can be viewed in [START_REF] Cazaux | Hierarchical Overlap Graph[END_REF].

Rationale of the EHOG. The words of P and all their overlaps (i.e., Ov + (P)) are nodes of the EHOG. Consider u, v two words of P . Following arcs of S E from u, one visits all its right overlaps in order of decreasing length. The first of such nodes that is an ancestor of v represents ov(u, v,). Hence, the merge of (u, v) is (bijectively) associated to the shortest path from u to v through ov(u, v,) in EHOG(P). Call this the merging path from u to v. As any superstring (that does not waste any symbol) is determined by the order in which words of P are merged (solely using maximum overlaps between successive words), we see that it corresponds to a unique succession of merging paths in the EHOG. Similarly, any cyclic cover of strings of P is uniquely associated with a collection of merging cycles that S E A 2 0 1 8

18:6

Practical lower and upper bounds for the Shortest Linear Superstring visit all nodes of P once in the EHOG. In fact, EHOG(P) encode all possible, interesting superstrings and cyclic covers of P .

Superstring Graph

Consider a shortest cyclic cover of strings of P found by algorithm CGreedy. Its cyclic strings induce merging cycles in EHOG(P), and hence a permutation of P representing the order in which words are merged. The Superstring Graph is the subgraph of EHOG(P) visited by such a shortest cyclic cover of strings of P (since it is shown in [5, Proposition 3] that all greedy shortest cyclic covers of P visit the same subgraph). This is the intuitive rationale of the Superstring Graph, for which now we provide a formal definition. Definition 5. The Superstring Graph of a set of strings P is the sub-graph of EHOG(P) = (V E , P E , S E) represented by the weight functions n and d on the nodes of V E such that:

n(u), d(u) =        1, 1 If u ∈ P, 0, -dif n,d (u) If u / ∈ P and dif n,d (u) ≤ 0, dif n,d (u), 0 If u / ∈ P and dif n,d (u) > 0,
where

dif n,d (u) = (v,u)∈S E n(v) - (u,v)∈P E d(v).
Among all overlaps stored in the EHOG, a shortest cyclic cover of P will use some overlaps to merge words, eventually more than once. An overlap is used if the cycles traversed the corresponding EHOG node. While building the SG, we compute a function Ov SG that indicates how many times a shortest cyclic cover use an overlap. Precisely, we define Ov SG as the function from the set of nodes of EHOG(P) = (V E , P E , S E) to N, such that

Ov SG (u) = min((v,u)∈S E n(v), (u,v)∈P E d(v)).
Algorithm 2 computes the superstring graph as well as the function Ov SG . The idea of the algorithm is to traverse the EHOG in reverse depth order and to compute the different weight functions (n, d, and Ov SG). Indeed, the weights (n, d, and Ov SG) of a node only depends on the weights of deeper nodes in the EHOG. Each node represents a string: the substring built by concatenating the labels from the root to that node. With deeper, we refer to the string depth of a node.

In [START_REF] Cazaux | A linear time algorithm for Shortest Cyclic Cover of Strings[END_REF], we gave a proof that the Superstring Graph is a graph that represents all greedy solutions of SCCS. Because the Superstring Graph is Eulerian, it has the following property: Indeed, taking a single cyclic path to cover each of its connected component is possible (a component could be covered by combining several cycles instead of only one); finding those paths takes a time that is linear in the number of nodes of the Superstring Graph.

Linearisation of cycles and computation of the bounds

Algorithm MGreedy [START_REF] Blum | Linear approximation of shortest superstrings[END_REF] first computes an optimal cycle cover of P , linearises each cycle optimally, and then concatenates the resulting linear strings. As above mentioned, it is not deterministic and instances like the one given in Example 1 shows that the resulting superstring may vary a lot. Indeed, the linearisation of each cycle increases the size of the final superstring. We introduce a variant of MGreedy, called MGreedyMin, which chooses a greedy (and thus optimal) solution of SCCS with the least number of cycles. We compute the bounds of Theorem 2 (min and max) based on such a cyclic cover of minimal cardinality.

Computation of min

The norm of a set Z of cyclic strings, denoted ||Z||, is the sum of the length of strings in Z. Proposition 3.2. Let C be a solution of the greedy algorithm for SCCS on P :

||C|| = ||P || - u∈V E Ov SG (u) × |u| .
Proof. Given a string v of P , we denote by next C (v) the string of P which follows directly v in the cyclic cover of strings C. As each greedy solution of SCCS is embedded in the Superstring Graph, we have

||C|| = v∈P |v| -|ov(v, next C (v))| = v∈P |v| -v∈P |ov(v, next C (v))| = ||P || -u∈V E |u| × |{v ∈ P | u = ov(v, next C (v))}| = ||P || -u∈V E |u| × Ov SG (u).
By nature, the norm of C is smaller than an optimal shortest superstring of P . But for some instances, their difference can be as large as desired (can tend to infinity when the norm of the input tends to infinity). Thus defining min as the norm of C would not guarantee that min and max are close. We define min as the maximum between 1/4 of max and the norm of C, which is an optimal cyclic cover for P .

Computation of max By definition, the Superstring Graph is a sub-graph of the EHOG. Denoting by G 1 , . . . , G m the different connected components of the Superstring Graph, we get that G 1 , . . . , G m partition the node set of the Superstring Graph. We define Cut(P) as the sum of the string depths (i.e., the length of the string represented by a node) of the smallest node of each connected component, i.

|w| = ||P || - u∈V E Ov SG (u) × |u| + Cut(P).
Proof. Let w g be a solution of MGreedyMin given by a greedy solution c min of SCCS with the least number of cycles. By the property of the Superstring Graph, c min = {c 1 , . . . , c m }, where for all i between 1 and m, c i is the cyclic string representing a Eulerian cycle in G i and c i is a cyclic superstring of a subset of P i of P . By the definition of MGreedyMin, we take w i the minimal linearisation of c i , i.e.

w i ∈ Arg min (sj k ,sj k+1)∈Pi×Pi
Linearisation(c i , s j k , s j k+1) S E A 2 0 1 8

18:8

Practical lower and upper bounds for the Shortest Linear Superstring

where Linearisation(c i , s j k , s j k+1) is the string obtain by breaking c i between s j k and s j k+1 where s j k and s j k+1 are successive in c i . Hence, we have

|w g | = m i=1 |w i | = m i=1 min (sj k ,sj k+1)∈Pi×Pi Linearisation(c i , s j k , s j k+1) = m i=1 min (sj k ,sj k+1)∈Pi×Pi |c i | + ov(s j k , s j k+1) = m i=1 |c i | + min (sj k ,sj k+1)∈Pi×Pi ov(s j k , s j k+1) = m i=1 |c i | + min u∈Gi |u| = m i=1 |c i | + m i=1 min u∈Gi |u| = ||c min || + Cut(P) = ||P || -u∈V E Ov SG (u) × |u| + Cut(P).
Indeed, by Proposition 3.2, we have

||c min || = ||P || -u∈V E Ov SG (u) × |u|.
By Proposition 3.3, we get that all solutions of MGreedyMin have the same length; we denote this length by max .

Clearly, as a solution of MGreedyMin is also a solution of MGreedy, it follows that |w opt | ≤ max ≤ 4 × |w opt |, where w opt denotes any optimal solution of SLS. This yields Theorem 2.

Difference between min and max

We have defined max as the length of a solution of the algorithm MGreedyMin, i.e.

max = ||P || - u∈V E Ov SG (u) × |u| + Cut(P).
The value of min is the maximum between the norm of an optimal solution of SCCS and max /4, i.e. With these definitions, we obtain the following proposition.

Proposition 3.4. Let P be a set of strings. The bounds min and max are invariant and maxmin ≤ Cut(P). By invariant, we mean that their computation is deterministic. Hence, although min and max depend on the instance P , their values do not vary upon the execution of MGreedyMin, unlike the solutions computed by Greedy, MGreedy, Concat-Cycles, and other approximation algorithms.

Implementation and experimental results

Here, we explain how each step of Algorithm MGreedyMin is implemented. First it builds the EHOG of P in memory: for this, we rely on the data structure named COvI, a compact implementation of the EHOG that can be used as an indexing and supports queries on overlaps [START_REF] Cánovas | The Compressed Overlap Index[END_REF]. The algorithm that builds COvI, first builds a compact version of the Aho-Corasick automaton of P [START_REF] Aho | Efficient string matching: An aid to bibliographic search[END_REF], then prunes its set of states (or nodes in the tree) to keep only nodes that represent overlaps between words of P . When visiting a node of the EHOG, we need to know the length of the substring it represents. In COvI, for each node this length is accessible in constant time. For a node u of the EHOG, we can also access in constant time

2.

Then instances of 500, 700, 900, 1, 000, 1, 200 and 1, 500 million words of length 100. Test were run using a single core on a desktop machine (x86_64 processor) running Linux 4.13.0-26-generic with 32 gigabytes of RAM.

Running times are displayed in Figure 2, and for each run, the largest memory consumption over the entire execution is shown in Figure 3. Most of the time is spent, and most of the memory used, while building the EHOG with COvI. Comparatively, the computation of min and max becomes rapidly at least an order of magnitude faster than COvIconstruction. The peak of memory for the largest instance, with 1.5 billion words, reached 22 gigabytes. In turn, COvIconstruction spends most of its time and space while building the Aho-Corasick automaton [START_REF] Cánovas | The Compressed Overlap Index[END_REF]. Thus, it would be advantageous to build the EHOG from a compressible and more compact index than COvI. However, the linear increases of running time and memory usage with the norm of the instances suggest that LCGreedyMin is very efficient and scalable.

Our algorithm computes the length of an approximate superstring. However, with some modifications, it could also output the computed superstring rather than only its length. Surprisingly, for 67% of the instances min and max are equal. In the remaining instances their difference (i.e., maxmin) is at most 0.0001% of the norm of the instance. This shows that most instances are entirely or almost "solved" with LCGreedyMin. This is coherent with theoretical results [START_REF] Ma | Why greed works for shortest common superstring problem[END_REF].

Results on real data

We used a publicly available set of genomic reads obtained from an Illumina sequencing machine. The reads of length 100 make up a coverage on the E. coli genome of 50x, meaning that every position appears on average in 50 reads. Such data are designed for genome assembly purposes and thus contain a huge number of overlaps between the reads. The set contains 4, 503, 422 reads for a norm of 454, 845, 622 symbols.

Our algorithm ran on a simple core of a standard laptop equipped with 8 gigabytes of RAM; it took 272 seconds and used less than 5.5 gigabytes of memory. The EHOG had 46, 566, 901 nodes. The Shortest Cyclic Cover had length 187, 250, 434, min was equal to 187, 250, 434, while max was 187, 250, 672 symbols long (41% of ||P ||), making a difference of 710 symbols. Hence, the results on real data confirm our observations on synthetic data.

Conclusions

Here, we provide an algorithm to compute practical lower and upper bounds on the length of an optimal superstring. Importantly, those bounds are computed in a deterministic way. They appear to be very tight in practice on synthetic and genomic data (although there is little to compare to due to the lack of published experiments on approximation of known algorithms). Theorem 2 gives an upper bound of 4 for the ratio between max and min .

Empirically, this ratio is several orders of magnitude lower, meaning that the superstring is very close to the optimum. This result does not contradict the existence of a lower bound for SLS approximation ratio (see Figure 1 or [START_REF] Vassilevska | Explicit inapproximability bounds for the shortest superstring problem[END_REF]). For SLS, improving MGreedy into TGreedy algorithm led to an approximation ratio of 3. The same improvement is possible with our algorithm MGreedyMin and also would lead to the same ratio. This is left for future work. Unfortunately, it is complex to understand why MGreedyMin yields an empirical ratio so close to the optimum. Several factors come into play. First, it turns out that the Shortest Cyclic Cover of P often contains a single cyclic word. In that case, this optimal cyclic cover also is an optimal cyclic superstring, which is necessarily shorter than the optimal linear superstring. Second, the cyclic superstring often corresponds to a path that uses the empty word as an overlap. In that case, the cyclic superstring can be cut between the two corresponding words and makes up a shortest linear superstring of exactly the same length, which is then optimal [START_REF] Cazaux | A linear time algorithm for Shortest Cyclic Cover of Strings[END_REF]. Another fact is important: if a cyclic string c k of the cyclic cover merges at least two words of P , say s i and s j , then the difference between a shortest superstring of these words and c k is smaller than the shortest word occurring in c k .

The fact that MGreedyMin concatenates in an arbitrary order the linear strings to form a superstring makes no sense in DNA assembly or in genomics applications. The order of strings obtained by merging reads (which are called contigs) are determined a posteriori by a subsequent step of assembly pipelines named scaffolding using additional data like optical or genomic maps, long reads, or chromosomal capture data (Hi-C).

B l u m e t a l . 1 9 9 1 TFigure 1

 11 Figure 1All the ratios of approximation (in blue) and inapproximation (in red) for the problem SLS by year.

Proposition 3 . 1 (

 31 [START_REF] Cazaux | A linear time algorithm for Shortest Cyclic Cover of Strings[END_REF]). Let P be a set of strings. One can compute in O(||P ||) time a greedy solution of SCCS with the least number of cyclic strings by computing an Eulerian path on each connected component of the Superstring Graph.

Proposition 3 . 3 .

 33 e., Cut(P) = Let w a solution of MGreedyMin. We have that :

min = max max 4 ,

 4 ||P || -u∈V E Ov SG (u) × |u| .

Figure 2

 2 Figure 2Execution times in function of the norm of the input set for i/ building the index (red dots) and for ii/ computing the Superstring graph and the solution (blue dots).

Figure 3

 3 Figure 3 Memory peak (black dots) during execution in function of the norm of the input set.

 Blum et al. also state in their seminal article that a greedy algorithm computes a minimal cover of strings of P[START_REF] Blum | Linear approximation of shortest superstrings[END_REF]. Recently, it was shown how to implement this greedy algorithm for SCCS in linear time in ||P || [5,Theorem 6]; see Algorithm 1. Algorithm 1, called CGreedy, minimises the norm of the Cyclic Cover of Strings, but also its cardinality, that is its number of cyclic words[START_REF] Cazaux | A linear time algorithm for Shortest Cyclic Cover of Strings[END_REF] Theorem 7].

Algorithm 1: Algorithm CGreedy .We denote any cyclic string w by w . 1 Input: a set of strings P ; Output: C, a Cyclic Cover of Strings of P ; 2 C := ∅; 3 while |P | > 0 do 4 u and v in P (not necessarily distinct) such that ov(u, v) is maximised;

5 if u = v then C := C ∪ { pr(u, v) }; 6 else P := P \ {u, v} ∪ {pr(u, v)ov(u, v)su(u, v)}; 7 return C

Cyclic cover based approximation algorithms

The first approximation algorithm based on a shortest cyclic cover is Concat-Cycles from

[START_REF] Blum | Linear approximation of shortest superstrings[END_REF]

. Concat-Cycles computes C a Shortest Cyclic Cover of P . For 1 ≤ i ≤ |C|, each cyclic string c i of C covers a subset of words of P ; let us denote this subset P i := {s j1 , . . . , s j |c i | }. For each c i , it derives a linear string w i , which is a partial superstring of P i , by breaking c i between two words of P i , say s j k and s j k+1 , by concatenating pr(s j k , s j k+1). Hence, |w i | ≤ |c i | + s j k+1 . Then, Concat-Cycles concatenates the words w i for 1 ≤ i ≤ |C| in an arbitrary order, which yields a superstring of P . Concat-Cycles achieves an approximation ratio of 4 for SLS [2,

Theorem 8]

.

Acknowledgements: This work is supported by the Institut de Biologie Computationnelle (ANR-11-BINF-0002) and Défi MASTODONS C3G from CNRS.

p pr (u) (resp. p su (u)), which denotes the node of the EHOG corresponding to the longest prefix (resp. suffix) of u.

Then, computing the Superstring Graph from the EHOG is done with Algorithm 2.

Proposition 4.1. Algorithm 2 builds a superstring graph in time linear in ||P ||.

Algorithm 2: Computing the Superstring Graph 1 Input: EHOG(P); Output: Let Comp be the table of size |V E | that maps each node of the superstring graph to its connected component, and all other nodes to 0. 1 Input: T : an integer table, u: element of T , k: an integer; Output: T updated;

Proof. The superstring graph being Eulerian, if there is a path q from a node u to a node v, there is another path from v to u that do not share any edge with q. Using this property, it is possible to recursively follow all paths in the superstring graph from a node to itself while marking all traversed nodes. Applying this process on every node of graph allows to discover all its connected components. The number of arcs of the superstring graph is linear in ||P ||, and during the whole process each arc of the superstring graph is visited once and only once, implying that Algorithm 4 takes linear time.

Empirical results

We performed experimental tests to check how close the bounds min and max are from an optimal superstring length. We used one synthetic dataset and one real dataset from a genomic experiment on the E. coli genome (Strain K-12 substrain MG1655); the data is available at https://github.com/PacificBiosciences/DevNet/wiki/EcoliK12MG1655HybridAssembly.

Results on synthetic data

We randomly generated large sets of words of length 100 for a DNA alphabet (4 symbols). The model for random words is an unbiased Bernoulli model. The instances have an increasing number of words. 1. From 200, 000 to 4, 000, 000 words with a step of 200, 000 words. The norm of such instances goes from 20 to 400 million symbols. For each size of instances, we ran 10 generations and executions, and took the average times, and memory usages.