
HAL Id: lirmm-01929399
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01929399

Submitted on 21 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Practical lower and upper bounds for the Shortest
Linear Superstring

Bastien Cazaux, Samuel Juhel, Eric Rivals

To cite this version:
Bastien Cazaux, Samuel Juhel, Eric Rivals. Practical lower and upper bounds for the Shortest Linear
Superstring. SEA: Symposium on Experimental Algorithms, Jun 2018, L’Aquilla, Italy. pp.18:1–18:14,
�10.4230/LIPIcs.SEA.2018.18�. �lirmm-01929399�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01929399
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Practical lower and upper bounds for the Shortest
Linear Superstring
Bastien Cazaux
Department of Computer Science, University of Helsinki, Helsinki, Finland;
L.I.R.M.M., CNRS, Université Montpellier, Montpellier, France
Institute of Computational Biology, Montpellier, France
bastien.cazaux@cs.helsinki.fi

Samuel Juhel
L.I.R.M.M., CNRS, Université Montpellier, Montpellier, France
Institute of Computational Biology, Montpellier, France
samuel.juhel@zaclys.net

Eric Rivals
L.I.R.M.M., CNRS, Université Montpellier, Montpellier, France
Institute of Computational Biology, Montpellier, France
rivals@lirmm.fr

https://orcid.org/0000-0003-3791-3973

Abstract
Given a set P of words, the Shortest Linear Superstring (SLS) problem is an optimisation
problem that asks for a superstring of P of minimal length. SLS has applications in data compres-
sion, where a superstring is a compact representation of P , and in bioinformatics where it models
the first step of genome assembly. Unfortunately SLS is hard to solve (NP-hard) and to closely
approximate (MAX-SNP-hard). If numerous polynomial time approximation algorithms have
been devised, few articles report on their practical performance. We lack knowledge about how
closely an approximate superstring can be from an optimal one in practice. Here, we exhibit
a linear time algorithm that reports an upper and a lower bound on the length of an optimal
superstring. The upper bound is the length of an approximate superstring. This algorithm can
be used to evaluate beforehand whether one can get an approximate superstring whose length is
close to the optimum for a given instance. Experimental results suggest that its approximation
performance is orders of magnitude better than previously reported practical values. Moreover,
the proposed algorithm remainso efficient even on large instances and can serve to explore in
practice the approximability of SLS.
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1 Introduction

Let P := {s1, . . . , s|P |} be a set of input words, whose sum of lengths is denoted by ||P ||.
A superstring of P is a string that contains each of the input words as substrings. Without
loss of generality, we assume that P is factor free, i.e., that no word of P is substring of
another word of P . The Shortest Linear Superstring (SLS) problem – also known as Shortest
Common Superstring –, asks for a superstring of P of minimal length.

A recent survey gives an idea of the variety of applications of SLS: from the most known
ones, DNA assembly or text compression, to job scheduling or viral genomes compression
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[10]. Several variations of SLS have also been investigated in theory, e.g., with reversals
[13, 9], with strings of DNA [14, 4], with multiplicities [8, 7]. SLS, which is studied since
the 80’s, has been proven NP-hard even for instances containing only words of length 3, and
difficult to approximate (MAX-SNP-hard) [10]. Several polynomial time approximation
algorithms with constant ratios have been designed for SLS, and among them, the Greedy
algorithm, which, unlike most other approximation algorithms for SLS, admits a linear time
implementation [21]. Currently, the approximation ratio of the Greedy algorithm is proven
to be 3.5 [23] (see Algorithm Greedy in Appendix). The 28 years old, so called, Greedy
conjecture states that the Greedy algorithm achieves an approximation ratio of 2, which
is better than the best known approximation ratio of 2 + 11/30 [16, 17], the latter being
achieved by a polynomial, but not linear time algorithm. Another example of approximation
algorithm is Concat-Cycles, which linearises and concatenates the cyclic words obtained
by solving the Shortest Cyclic Cover of Strings problem (SCCS) on the instance;
Concat-Cycles has an approximation ratio of 4 [2].

Importantly, algorithm Greedy for SLS breaks ties randomly, and is thus not determin-
istic. Example 1 illustrates the consequences of this non determinism in terms of approxi-
mation ratio.

I Example 1. On the classical instance (with k > 0) P := {abk, bk+1, bkc}, Greedy can
output either wb := abkcbk+1 or wg := abk+1c as a superstring of P . The second one is
optimal, while the first is the worst greedy superstring. This instance is the one used in [20]
to bound the approximation ratio of Greedy by 2 (which tends to 2 when k →∞).

Some recent works have developed theoretical arguments suggesting that the Greedy al-
gorithm achieves good approximation in general [15]. Experimental assessments on instances
up to 1, 000 words of length up to 50 have shown that two approximation algorithms for SLS
with ratio 3 and 4 return solutions within 1.28 times the optimal superstring length [19]. To
our knowledge, this article gives the only experimental results published so far, and clearly
emphasises the gap between lower and upper bounds, as well as between theory and practice.
Although the algorithms used in [19] ran in short time on relatively small instances, their
running times seem to increase non linearly with the instance size [19, Figure 5], indicating
their limited scalability.

It would be useful to be able to determine rapidly, and before hand, whether an approxi-
mation algorithm would return a good approximate solution for a given instance. Obviously,
such an algorithm should have a reasonable worst case approximation ratio, the best possible
approximation in practice, should take linear time and be efficient enough to process large
instances.

We propose an algorithm to compute a lower and an upper-bound on the size of an
optimal solution for SLS. These two bounds, denoted respectively `min and `max, are defined
in Section 3.

We shall obtain the following theorem.

I Theorem 2. Let P be a set of strings and let wopt denote an optimal solution of SLS of
P . We can compute in linear time in ||P || the values `min and `max such that:

`min ≤ |wopt| ≤ `max and
`max
`min

≤ 4.

Contributions. Here, we exhibit a linear time algorithm to compute a lower and an
upper bound, respectively `min and `max, on the size of a shortest superstring of P . Then
we present experimental results of this algorithm on a series of instances of increasing sizes.
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Figure 1 All the ratios of approximation (in blue) and inapproximation (in red) for the problem
SLS by year.

These results show that `min and `max are extremely close to each other in practice. For
more details, please see the web appendix at http://www.lirmm.fr/˜rivals/res/superstring.

Notation We consider finite words over a finite alphabet Σ. The set of all finite words over
Σ is denoted by Σ?, and ε denotes the empty word. For a word x, |x| denotes the length of
x. Given two words x and y, we denote by xy the concatenation of x and y.

Let s, t, u be three strings of Σ?. We say that s overlaps t if and only if a suffix of s also is
a prefix of t. We denote by ov(s, t) the longest overlap from s over t (also termed maximum
overlap); let pr(s, t) be the prefix of s such that s = pr(s, t)ov(s, t), and let su(s, t) be suffix
of t such that t = ov(s, t)su(s, t). The merge of s over t is the word pr(s, t)t. Note that
neither the overlap nor the agglomeration are symmetrical.

I Example 3. Consider two strings S := actgct and T := tgcttac. Then the longest overlap
ov(S, T ) = tgct, but the substring t also is an overlap from S over T . Then pr(S, T ) = ac

and su(S, T ) = tac. Moreover, we see that ov(T, S) = ac, which differs from ov(S, T ).

Throughout the article, the input is P := {s1, . . . , s|P |} a set of input words, and without
loss of generality, we assume that P is substring free, i.e., no word of P is substring of another
word of P .

2 Related Works

Significant research effort has been dedicated to designing approximation algorithms for SLS
and to finding the best theoretical approximation ratios (see [11] for a list of algorithms).
Both upper and lower bounds of approximation ratios have been studied [22] (see Figure 1).

A crucial result regarding the design approximation algorithms for SLS is that a variant
of SLS called, Shortest Cyclic Cover of Strings (SCCS), can be solved exactly and
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returns a set of cycling strings covering the words of P . This set of cyclic strings can in turn
be linearised and combined in various ways to form good linear superstrings [2]. A cover C
is a set of strings such that any si is a substring of at least one string of C. An optimal
cover can be obtained by computing a cyclic cover on the distance graph, a complete digraph
representing the words of P and their maximum overlaps, using the Hungarian algorithm
in O(||P || + |P |3) time once the graph is built [18]. Blum et al. also state in their seminal
article that a greedy algorithm computes a minimal cover of strings of P [2]. Recently, it was
shown how to implement this greedy algorithm for SCCS in linear time in ||P || [5, Theorem
6]; see Algorithm 1. Algorithm 1, called CGreedy, minimises the norm of the Cyclic Cover
of Strings, but also its cardinality, that is its number of cyclic words [5, Theorem 7].

Algorithm 1: Algorithm CGreedy .We denote any cyclic string w by 〈w〉.
1 Input: a set of strings P ; Output: C, a Cyclic Cover of Strings of P ;
2 C := ∅;
3 while |P | > 0 do
4 u and v in P (not necessarily distinct) such that ov(u, v) is maximised;
5 if u = v then C := C ∪ {〈pr(u, v)〉};
6 else P := P \ {u, v} ∪ {pr(u, v)ov(u, v)su(u, v)};
7 return C

Cyclic cover based approximation algorithms The first approximation algorithm based on
a shortest cyclic cover is Concat-Cycles from [2]. Concat-Cycles computes C a Shortest
Cyclic Cover of P . For 1 ≤ i ≤ |C|, each cyclic string ci of C covers a subset of words of
P ; let us denote this subset Pi := {sj1 , . . . , sj|ci|

}. For each ci, it derives a linear string wi,
which is a partial superstring of Pi, by breaking ci between two words of Pi, say sjk

and
sjk+1 , by concatenating pr(sjk

, sjk+1). Hence, |wi| ≤ |ci| +
∣∣sjk+1

∣∣. Then, Concat-Cycles
concatenates the words wi for 1 ≤ i ≤ |C| in an arbitrary order, which yields a superstring
of P . Concat-Cycles achieves an approximation ratio of 4 for SLS [2, Theorem 8].

Blum et al. also proposes an improvement of this strategy: each cycle can be broken at
an optimal point so as to create the shortest wi for ci. As the cycle word ci defines an order
of occurrence for each word of Pi in ci, this only requires to test any pair of successive words
which is linear in ||Pi||. They show that a variant of the greedy algorithm for SLS, which
they call MGreedy, does exactly that [2]. In fact, we view MGreedy (see the web appendix)
as an application of Algorithm LCGreedy, followed by a concatenation. In other words,
MGreedy builds a linear cover of P (which is made of linear, rather than cyclic, strings), and
concatenate those linear strings arbitrarily into a single linear superstring of P . Blum et al.
show that this linear superstring is shorter than the one output by Concat-Cycles [2].

In these two algorithms Concat-Cycles and MGreedy, each cycle contributes to adding
some symbols to the final superstring. We propose to optimise such procedure by minimising
the number of cycles in the Shortest Cyclic Cover obtained by a greedy algorithm for SCCS.

Remark on non-determinism As indicated in introduction, all mentioned greedy algo-
rithms – Greedy, SCGreedy, LCGreedy or MGreedy – break ties randomly when choosing
the next overlap to use. Hence, none of these algorithms are deterministic, implying that
two distinct executions may produce superstrings of different lengths or cyclic covers with
different number of cycles. To our knowledge, most approximation algorithms designed to
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date use at least a greedy solution for SCCS to start with, and inherit from non-determinism.

Lower and upper bounds. Among others, Vassilevska has proven new lower bounds for
the approximation ratio of SLS. She noticed the huge gap separating the best upper bounds
and lower bounds [22].

3 Algorithm LCGreedyMin

Overview Compared to Concat-Cycles or MGreedy [2], our algorithm builds a superstring
based on a Shortest Cyclic Cover of P having a minimal number of cycles. Our algorithm
proceeds as follows. First, it builds the Extended Hierarchical Overlap Graph (EHOG),
a graph that encodes all overlaps between words of P but takes linear space. Embedded
in the EHOG, it computes the Superstring Graph of P , which encodes the paths of all
greedy solutions for SCCS. By finding an Eulerian path on each connected component of the
Superstring Graph, it determines the node of minimal word depth of the component, and the
shortest linearisation of each cyclic string. Moreover, this set of Eulerian paths constitutes
an optimal Shortest Cyclic Cover of P ; more precisely, we get the permutation indicating in
which order the words of P are merged in each component to form the cyclic strings. Then,
we then compute `min and `max. We call our algorithm LCGreedyMin.

Below, we describe the graphs needed by LCGreedyMin and the algorithm.

3.1 EHOG
We denote by Ov+(P ) the set of all overlaps between two (not necessarily distinct) strings of
P , i.e. Ov+(P ) := {w | ∃ u and v ∈ P such that w is a prefix of u and w is a suffix of v}.

I Definition 4. The Extended Hierarchical Overlap Graph of P , denoted by EHOG(P ), is
the directed graph (VE , PE ∪ SE) where VE = P ∪ Ov+(P ), while PE is the set:
{(x, y) ∈ (P ∪ Ov+(P ))2 such that x is the longest proper prefix of y} and SE is the set:
{(x, y) ∈ (P ∪ Ov+(P ))2 such that y is the longest proper suffix of x}.

The EHOG has a node for each word of P and a node for any string that is an overlap
between words of P . It can be seen that both types of nodes are also nodes of the Generalised
Suffix Tree of P [12] – a Suffix Tree is a data structure that indexes all substrings of a text,
while the Generalised Suffix Tree is the version that indexes several texts concatenated.
Additionally, there are two types of arcs: one for recording the longest suffix relationship
between nodes of VE , the other for the longest prefix relationship. The first type can be
seen as the arcs of the generalised suffix tree, while the second type corresponds to its Suffix
Links. It follows that the EHOG occupies less space than the Generalised Suffix Tree of P .
Examples of EHOG can be viewed in [6].

Rationale of the EHOG. The words of P and all their overlaps (i.e., Ov+(P )) are
nodes of the EHOG. Consider u, v two words of P . Following arcs of SE from u, one visits
all its right overlaps in order of decreasing length. The first of such nodes that is an ancestor
of v represents ov(u, v,). Hence, the merge of (u, v) is (bijectively) associated to the shortest
path from u to v through ov(u, v,) in EHOG(P ). Call this the merging path from u to v.
As any superstring (that does not waste any symbol) is determined by the order in which
words of P are merged (solely using maximum overlaps between successive words), we see
that it corresponds to a unique succession of merging paths in the EHOG. Similarly, any
cyclic cover of strings of P is uniquely associated with a collection of merging cycles that

SEA 2018
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visit all nodes of P once in the EHOG. In fact, EHOG(P ) encode all possible, interesting
superstrings and cyclic covers of P .

3.2 Superstring Graph

Consider a shortest cyclic cover of strings of P found by algorithm CGreedy. Its cyclic
strings induce merging cycles in EHOG(P ), and hence a permutation of P representing the
order in which words are merged. The Superstring Graph is the subgraph of EHOG(P )
visited by such a shortest cyclic cover of strings of P (since it is shown in [5, Proposition
3] that all greedy shortest cyclic covers of P visit the same subgraph). This is the intuitive
rationale of the Superstring Graph, for which now we provide a formal definition.

I Definition 5. The Superstring Graph of a set of strings P is the sub-graph of EHOG(P ) =
(VE , PE , SE) represented by the weight functions n and d on the nodes of VE such that:

(
n(u), d(u)

)
=


(
1, 1
)

If u ∈ P,(
0,−difn,d(u)

)
If u /∈ P and difn,d(u) ≤ 0,(

difn,d(u), 0
)

If u /∈ P and difn,d(u) > 0,

where

difn,d(u) =
∑

(v,u)∈SE

n(v)−
∑

(u,v)∈PE

d(v).

Among all overlaps stored in the EHOG, a shortest cyclic cover of P will use some overlaps
to merge words, eventually more than once. An overlap is used if the cycles traversed the
corresponding EHOG node. While building the SG, we compute a function OvSG that
indicates how many times a shortest cyclic cover use an overlap. Precisely, we define OvSG
as the function from the set of nodes of EHOG(P ) = (VE , PE , SE) to N, such that

OvSG(u) = min(
∑

(v,u)∈SE

n(v),
∑

(u,v)∈PE

d(v)).

Algorithm 2 computes the superstring graph as well as the function OvSG. The idea of
the algorithm is to traverse the EHOG in reverse depth order and to compute the different
weight functions (n, d, and OvSG). Indeed, the weights (n, d, and OvSG) of a node only
depends on the weights of deeper nodes in the EHOG. Each node represents a string: the
substring built by concatenating the labels from the root to that node. With deeper, we
refer to the string depth of a node.

In [5], we gave a proof that the Superstring Graph is a graph that represents all greedy
solutions of SCCS. Because the Superstring Graph is Eulerian, it has the following property:

I Proposition 3.1 ([5]). Let P be a set of strings. One can compute in O(||P ||) time a greedy
solution of SCCS with the least number of cyclic strings by computing an Eulerian path on
each connected component of the Superstring Graph.

Indeed, taking a single cyclic path to cover each of its connected component is possible
(a component could be covered by combining several cycles instead of only one); finding
those paths takes a time that is linear in the number of nodes of the Superstring Graph.
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3.3 Linearisation of cycles and computation of the bounds
Algorithm MGreedy [2] first computes an optimal cycle cover of P , linearises each cycle
optimally, and then concatenates the resulting linear strings. As above mentioned, it is
not deterministic and instances like the one given in Example 1 shows that the resulting
superstring may vary a lot. Indeed, the linearisation of each cycle increases the size of the
final superstring. We introduce a variant of MGreedy, called MGreedyMin, which chooses a
greedy (and thus optimal) solution of SCCS with the least number of cycles. We compute the
bounds of Theorem 2 (`min and `max) based on such a cyclic cover of minimal cardinality.

Computation of `min The norm of a set Z of cyclic strings, denoted ||Z||, is the sum of the
length of strings in Z.
I Proposition 3.2. Let C be a solution of the greedy algorithm for SCCS on P :

||C|| = ||P || −
∑

u∈VE

OvSG(u)× |u| .

Proof. Given a string v of P , we denote by nextC(v) the string of P which follows directly
v in the cyclic cover of strings C. As each greedy solution of SCCS is embedded in the
Superstring Graph, we have

||C|| =
∑

v∈P |v| − |ov(v, nextC(v))|
=

∑
v∈P |v| −

∑
v∈P |ov(v, nextC(v))|

= ||P || −
∑

u∈VE
|u| × |{v ∈ P | u = ov(v, nextC(v))}|

= ||P || −
∑

u∈VE
|u| ×OvSG(u).

J

By nature, the norm of C is smaller than an optimal shortest superstring of P . But
for some instances, their difference can be as large as desired (can tend to infinity when
the norm of the input tends to infinity). Thus defining `min as the norm of C would not
guarantee that `min and `max are close. We define `min as the maximum between 1/4 of `max
and the norm of C, which is an optimal cyclic cover for P .

Computation of `max By definition, the Superstring Graph is a sub-graph of the EHOG.
Denoting by G1, . . . , Gm the different connected components of the Superstring Graph, we
get that G1, . . . , Gm partition the node set of the Superstring Graph. We define Cut(P ) as
the sum of the string depths (i.e., the length of the string represented by a node) of the

smallest node of each connected component, i.e., Cut(P ) =
m∑

i=1
min
u∈Gi

|u|.

I Proposition 3.3. Let w a solution of MGreedyMin. We have that :

|w| = ||P || −
∑

u∈VE

OvSG(u)× |u|+ Cut(P ).

Proof. Let wg be a solution of MGreedyMin given by a greedy solution cmin of SCCS with
the least number of cycles. By the property of the Superstring Graph, cmin = {c1, . . . , cm},
where for all i between 1 and m, ci is the cyclic string representing a Eulerian cycle in Gi

and ci is a cyclic superstring of a subset of Pi of P . By the definition of MGreedyMin, we
take wi the minimal linearisation of ci, i.e.

wi ∈ Arg min
(sjk

,sjk+1 )∈Pi×Pi

∣∣Linearisation(ci, sjk
, sjk+1)

∣∣

SEA 2018
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where Linearisation(ci, sjk
, sjk+1) is the string obtain by breaking ci between sjk

and sjk+1

where sjk
and sjk+1 are successive in ci.

Hence, we have

|wg| =
∑m

i=1 |wi|
=

∑m
i=1 min(sjk

,sjk+1 )∈Pi×Pi

∣∣Linearisation(ci, sjk
, sjk+1)

∣∣
=

∑m
i=1 min(sjk

,sjk+1 )∈Pi×Pi

(
|ci|+

∣∣ov(sjk
, sjk+1)

∣∣ )
=

∑m
i=1 |ci|+ min(sjk

,sjk+1 )∈Pi×Pi

∣∣ov(sjk
, sjk+1)

∣∣
=

∑m
i=1 |ci|+ minu∈Gi |u|

=
∑m

i=1 |ci|+
∑m

i=1 minu∈Gi
|u|

= ||cmin||+ Cut(P )
= ||P || −

∑
u∈VE

OvSG(u)× |u|+ Cut(P ).

Indeed, by Proposition 3.2, we have ||cmin|| = ||P || −
∑

u∈VE
OvSG(u)× |u|. J

By Proposition 3.3, we get that all solutions of MGreedyMin have the same length; we
denote this length by `max.

Clearly, as a solution of MGreedyMin is also a solution of MGreedy, it follows that |wopt| ≤
`max ≤ 4× |wopt|, where wopt denotes any optimal solution of SLS. This yields Theorem 2.

Difference between `min and `max We have defined `max as the length of a solution of the
algorithm MGreedyMin, i.e.

`max = ||P || −
∑

u∈VE

OvSG(u)× |u|+ Cut(P ).

The value of `min is the maximum between the norm of an optimal solution of SCCS and
`max/4, i.e.

`min = max
(`max

4 , ||P || −
∑

u∈VE

OvSG(u)× |u|
)
.

With these definitions, we obtain the following proposition.
I Proposition 3.4. Let P be a set of strings. The bounds `min and `max are invariant and
`max − `min ≤ Cut(P ).
By invariant, we mean that their computation is deterministic. Hence, although `min and
`max depend on the instance P , their values do not vary upon the execution of MGreedyMin,
unlike the solutions computed by Greedy, MGreedy, Concat-Cycles, and other approxima-
tion algorithms.

4 Implementation and experimental results

Here, we explain how each step of Algorithm MGreedyMin is implemented. First it builds
the EHOG of P in memory: for this, we rely on the data structure named COvI, a compact
implementation of the EHOG that can be used as an indexing and supports queries on
overlaps [3]. The algorithm that builds COvI, first builds a compact version of the Aho-
Corasick automaton of P [1], then prunes its set of states (or nodes in the tree) to keep only
nodes that represent overlaps between words of P . When visiting a node of the EHOG, we
need to know the length of the substring it represents. In COvI, for each node this length is
accessible in constant time. For a node u of the EHOG, we can also access in constant time
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ppr(u) (resp. psu(u)), which denotes the node of the EHOG corresponding to the longest
prefix (resp. suffix) of u.

Then, computing the Superstring Graph from the EHOG is done with Algorithm 2.

I Proposition 4.1. Algorithm 2 builds a superstring graph in time linear in ||P ||.

Algorithm 2: Computing the Superstring Graph
1 Input: EHOG(P ); Output: VSG, n(VE), d(VE) and OvSG(VE);
2 VSG ← ∅;
3 ∀u ∈ VE : OvSG

′(u)← 0; n′(u)← 0; d′(u)← 0;
4 Q← a reverse depth order on the nodes of EHOG(P );
5 for u ∈ Q do
6 (s, p)←

(
psu(u), ppr(u)

)
;

7 if u is a leaf then
8 (n′(u), d′(u))← (1, 1);
9 else

10 OvSG
′(u)← min

(
n′(u), d′(u)

)
;

11 if n′(u) > d′(u) then
(
n′(u), d′(u)

)
←
(
n′(u)− d′(u), 0

)
;

12 else
(
n′(u), d′(u)

)
←
(
0, d′(u)− n′(u)

)
;

13 n′(s)← n′(s) + n′(u);
14 d′(p)← d′(p) + d′(u);
15 if d′(u) 6= 0 or n′(u) 6= 0 then VSG ← VSG ∪ {u} ;
16 return VSG, n′, d′ and OvSG

′

Proof. Complexity : Finding a reverse depth order on the nodes of EHOG(P ) may be done
in linear time. The for loop is executed once for each node of EHOG(P ), and there are at
most ||P || nodes. All operations inside the loop are assignations or comparisons of integers.
Correctness : Since when starting the for loop (line 5), we have n′(u) =

∑
(v,u)∈SE

n(v)
and d′(u) =

∑
(u,v)∈PE

d(v), at the end of the loop (line 15), we get n′(u) = n(u) and
d′(u) = d(u). J

Let Comp be the table of size |VE | that maps each node of the superstring graph to its
connected component, and all other nodes to 0.

I Proposition 4.2. Algorithm 3 computes Comp in time linear in ||P ||.

Algorithm 3: Algorithm to build the table Comp.
1 Input: EHOG(P ), VSG, n(VE) and d(VE); Output: Comp;
2 Comp← Table of size |VE | initialised to 0;
3 nb← 1;
4 for u ∈ VE do
5 Update_Component_Table(u, Comp, nb);
6 nb← nb+ 1;
7 return Comp
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Algorithm 4: Algorithm Update_Component_Table.
1 Input: T : an integer table, u: element of T , k: an integer; Output: T updated;
2 if T [u] = 0 then
3 if n(u) 6= 0 then
4 T [u]← k;
5 v ← Parent of u in (VE , SE);
6 Update_Component_Table(v, T, k);
7 for all children v of u in (VE , PE) do
8 if d(v) 6= 0 then
9 T [u]← k;

10 Update_Component_Table(v, T, k);

Proof. The superstring graph being Eulerian, if there is a path q from a node u to a node
v, there is another path from v to u that do not share any edge with q. Using this property,
it is possible to recursively follow all paths in the superstring graph from a node to itself
while marking all traversed nodes. Applying this process on every node of graph allows to
discover all its connected components. The number of arcs of the superstring graph is linear
in ||P ||, and during the whole process each arc of the superstring graph is visited once and
only once, implying that Algorithm 4 takes linear time. J

I Proposition 4.3. Let P be a set of strings. We can compute Cut(P ) in linear time in ||P ||.

Proof. By Proposition 4.2, we can compute the table Comp in linear time. Using Comp, we
can easily obtain the node with the least string depth of each connected component. J

I Proposition 4.4. Let P be a set of strings. We can compute `min and `max in linear time
in ||P ||.

Proof. By Proposition 3.3, we have that `max = ||P ||−
∑

u∈VE
OvSG(u)×|u|+Cut(P ). By

Proposition 4.1, Algorithm 2 computes OvSG(VE) in linear time in ||P ||. By Proposition 4.3,
we can compute Cut(P ) in linear time in ||P ||. Hence, it follows that we can compute `max
in linear time in ||P ||.

By Proposition 3.2, we have that `min := max
(

`max
4 , ||P || −

∑
u∈VE

OvSG(u) × |u|
)
can

be computed in linear time in ||P ||. J

4.1 Empirical results
We performed experimental tests to check how close the bounds `min and `max are from an op-
timal superstring length. We used one synthetic dataset and one real dataset from a genomic
experiment on the E. coli genome (Strain K-12 substrain MG1655); the data is available at
https://github.com/PacificBiosciences/DevNet/wiki/EcoliK12MG1655HybridAssembly.

Results on synthetic data We randomly generated large sets of words of length 100 for a
DNA alphabet (4 symbols). The model for random words is an unbiased Bernoulli model.
The instances have an increasing number of words.
1. From 200, 000 to 4, 000, 000 words with a step of 200, 000 words. The norm of such

instances goes from 20 to 400 million symbols. For each size of instances, we ran 10
generations and executions, and took the average times, and memory usages.

https://github.com/PacificBiosciences/DevNet/wiki/E coli K12 MG1655 Hybrid Assembly
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Figure 2 Execution times in function of the norm of the input set for i/ building the index (red
dots) and for ii/ computing the Superstring graph and the solution (blue dots).

2. Then instances of 500, 700, 900, 1, 000, 1, 200 and 1, 500 million words of length 100.
Test were run using a single core on a desktop machine (x86_64 processor) running Linux
4.13.0-26-generic with 32 gigabytes of RAM.

Running times are displayed in Figure 2, and for each run, the largest memory consump-
tion over the entire execution is shown in Figure 3. Most of the time is spent, and most of
the memory used, while building the EHOG with COvI. Comparatively, the computation of
`min and `max becomes rapidly at least an order of magnitude faster than COvIconstruction.
The peak of memory for the largest instance, with 1.5 billion words, reached 22 gigabytes. In
turn, COvIconstruction spends most of its time and space while building the Aho-Corasick
automaton [3]. Thus, it would be advantageous to build the EHOG from a compressible and
more compact index than COvI. However, the linear increases of running time and memory
usage with the norm of the instances suggest that LCGreedyMin is very efficient and scalable.

Our algorithm computes the length of an approximate superstring. However, with some
modifications, it could also output the computed superstring rather than only its length.
Surprisingly, for 67% of the instances `min and `max are equal. In the remaining instances
their difference (i.e., `max−`min) is at most 0.0001% of the norm of the instance. This shows
that most instances are entirely or almost "solved" with LCGreedyMin. This is coherent with
theoretical results [15].

Results on real data We used a publicly available set of genomic reads obtained from an
Illumina sequencing machine. The reads of length 100 make up a coverage on the E. coli
genome of 50x, meaning that every position appears on average in 50 reads. Such data are
designed for genome assembly purposes and thus contain a huge number of overlaps between
the reads. The set contains 4, 503, 422 reads for a norm of 454, 845, 622 symbols.

Our algorithm ran on a simple core of a standard laptop equipped with 8 gigabytes of
RAM; it took 272 seconds and used less than 5.5 gigabytes of memory. The EHOG had
46, 566, 901 nodes. The Shortest Cyclic Cover had length 187, 250, 434, `min was equal to
187, 250, 434, while `max was 187, 250, 672 symbols long (41% of ||P ||), making a difference
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Figure 3 Memory peak (black dots) during execution in function of the norm of the input set.

of 710 symbols. Hence, the results on real data confirm our observations on synthetic data.

5 Conclusions

Here, we provide an algorithm to compute practical lower and upper bounds on the length
of an optimal superstring. Importantly, those bounds are computed in a deterministic way.
They appear to be very tight in practice on synthetic and genomic data (although there is
little to compare to due to the lack of published experiments on approximation of known
algorithms). Theorem 2 gives an upper bound of 4 for the ratio between `max and `min.
Empirically, this ratio is several orders of magnitude lower, meaning that the superstring is
very close to the optimum. This result does not contradict the existence of a lower bound for
SLS approximation ratio (see Figure 1 or [22]). For SLS, improving MGreedy into TGreedy
algorithm led to an approximation ratio of 3. The same improvement is possible with our
algorithm MGreedyMin and also would lead to the same ratio. This is left for future work.

Unfortunately, it is complex to understand why MGreedyMin yields an empirical ratio so
close to the optimum. Several factors come into play. First, it turns out that the Shortest
Cyclic Cover of P often contains a single cyclic word. In that case, this optimal cyclic
cover also is an optimal cyclic superstring, which is necessarily shorter than the optimal
linear superstring. Second, the cyclic superstring often corresponds to a path that uses the
empty word as an overlap. In that case, the cyclic superstring can be cut between the two
corresponding words and makes up a shortest linear superstring of exactly the same length,
which is then optimal [5]. Another fact is important: if a cyclic string ck of the cyclic
cover merges at least two words of P , say si and sj , then the difference between a shortest
superstring of these words and ck is smaller than the shortest word occurring in ck.

The fact that MGreedyMin concatenates in an arbitrary order the linear strings to form
a superstring makes no sense in DNA assembly or in genomics applications. The order of
strings obtained by merging reads (which are called contigs) are determined a posteriori by
a subsequent step of assembly pipelines named scaffolding using additional data like optical
or genomic maps, long reads, or chromosomal capture data (Hi-C).
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