
HAL Id: lirmm-01932804
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01932804v1

Submitted on 11 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying software components from object-oriented
APIs based on dynamic analysis

Anas Shatnawi, Hudhaifa Shatnawi, Mohamed Aymen Saied, Zakarea
Al-Shara, Houari Sahraoui, Abdelhak-Djamel Seriai

To cite this version:
Anas Shatnawi, Hudhaifa Shatnawi, Mohamed Aymen Saied, Zakarea Al-Shara, Houari Sahraoui, et
al.. Identifying software components from object-oriented APIs based on dynamic analysis. ICPC
2018 - 26th International Conference on Program Comprehension, May 2018, Gothenburg, Germany.
pp.189-199, �10.1145/3196321.3196349�. �lirmm-01932804�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01932804v1
https://hal.archives-ouvertes.fr

Identifying Software Components from Object-Oriented APIs
Based on Dynamic Analysis

Anas Shatnawi
University of Milan-Bicocca

Milan, Italy
anas.shatnawi@unimib.it

Hudhaifa Shatnawi
Maharishi University of Management

Fairfield, Iowa, USA
hshatnawi@mum.edu

Mohamed Aymen Saied
Concordia University

Montreal, Quebec, Canada
med.aymen.saied@gmail.com

Zakarea Al Shara
University of Montpellier

Montpellier, France
zakarea.alshara@gmail.com

Houari Sahraoui
University of Montreal

Montreal, Quebec, Canada
sahraouh@iro.umontreal.ca

Abdelhak Seriai
University of Montpellier

Montpellier, France
seriai@lirmm.fr

ABSTRACT
The reuse at the component level is generallymore effective than the
one at the object-oriented class level. This is due to the granularity
level where components expose their functionalities at an abstract
level compared to the fine-grained object-oriented classes. More-
over, components clearly define their dependencies through their
provided and required interfaces in an explicit way that facilitates
the understanding of how to reuse these components. Therefore,
several component identification approaches have been proposed
to identify components based on the analysis object-oriented soft-
ware applications. Nevertheless, most of the existing component
identification approaches did not consider co-usage dependencies
between API classes to identify classes/methods that can be reused
to implement a specific scenario. In this paper, we propose an ap-
proach to identify reusable software components in object-oriented
APIs, based on the interactions between client applications and
the targeted API. As we are dealing with actual clients using the
API, dynamic analysis allows to better capture the instances of API
usage. Approaches using static analysis are usually limited by the
difficulty of handling dynamic features such as polymorphism and
class loading. We evaluate our approach by applying it to three Java
APIs with eight client applications from the DaCapo benchmark.
DaCapo provides a set of pre-defined usage scenarios. The results
show that our component identification approach has a very high
precision.

KEYWORDS
Software components, reverse engineering, object-oriented APIs,
dynamic analysis, source code, understandability, reuse

ACM Reference Format:
Anas Shatnawi, Hudhaifa Shatnawi, Mohamed Aymen Saied, Zakarea Al
Shara, Houari Sahraoui, and Abdelhak Seriai. 2018. Identifying Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196349

Components from Object-Oriented APIs Based on Dynamic Analysis. In
ICPC ’18: ICPC ’18: 26th IEEE/ACM International Confernece on Program
Comprehension , May 27–28, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3196321.3196349

1 INTRODUCTION
Decades of research have shown that developing software applica-
tions based on Application Programming Interfaces (APIs) improves
software reuse by offering pre-implemented and tested functionali-
ties [1] [2] [3] [4]. For Object-Oriented (OO) APIs, the basic unit is a
class, which encapsulates its functionalities and specifies the public
interface for using them [4]. Reusing and understanding large OO
APIs, e.g., JDK and .NET framework APIs, are complex tasks due
to large numbers of included classes and methods [1] [4] [5] [6].
Considering JDK 1.8.0 as an example, we have approximately 4240
classes used to provide its functionalities to software applications
[7]. Thus, it is a challenge to understand this large number of classes
to identify needed functionalities [8].

On the other hand, API classes/methods are reused based on
reuse scenarios represented by the combinations of API classes or
methods that offer the required functionalities to software appli-
cations [1] [4]. However, different applications rely on different
scenarios, depending on their needs of API functionalities [8]. This
leads to the possibility to have a large number of scenarios, cor-
responding to different combinations of API classes/methods [8].
To help support understanding these reuse scenarios, several re-
search approaches have been proposed to abstract high level views
of these scenarios in terms of frequent co-usage patterns between
API classes/methods. The frequent co-usage patterns are identified
based on the analysis of how software applications (called client
applications) have (re)used API classes/methods [1] [9] [8] [10] [11]
[12] [13]. These abstracted co-usage patterns of API classes/methods
are used to support software engineers to perform several engi-
neering tasks; API reengineering [1], API documenting [10], API
understanding [11], API policy enforcing [14] [15], etc.

Identifying components in OO APIs is another alternative to im-
prove APIs’ documentation by providing an abstract high-level view
of the provided funcltionalities. In addition to the documentation
motivation, the identified components can also help migrating OO
APIs into component-based ones if desired. Such a reegineering pro-
cess does not only support feeding component-based repositories,
but it also allows one to get the benefits of the component-based

ar
X

iv
:1

80
3.

06
23

5v
1

 [
cs

.S
E

]
 1

6
M

ar
 2

01
8

https://doi.org/10.1145/3196321.3196349
https://doi.org/10.1145/3196321.3196349

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden A. Shatnawi, H. Shatnawi, M. A. Saied, Z. Al Shara, H. Sahraoui, A. Seriai

software engineering by developing large-scale software applica-
tions using selected components and integrating them together
based on flexible architectures [16]. It has been admitted that soft-
ware components are more reusable and understandable software
modules than object-oriented classes. This admission is based on
the granularity level where components are coarse-grainedmodules
compared to the fine-grained object-oriented classes [17]. Further-
more, components clearly define their dependencies through their
provided and required interfaces in an explicit way that facilitates
the understanding of how to reuse these components. These are the
motivations of several component identification approaches that
have been proposed to identify components based on the analysis
of source code of OO software [18] [16] [19].

Existing component identification approaches are designed to
identify components from OO source code of software applications.
They only rely on OO dependencies (e.g., method invocations, shar-
ing types, etc.) to identify dependencies between classes. However,
in the context of software OOAPIs, co-usage dependencies between
API classes should also be considered to identify classes/methods
that can be reused to implement a specific scenario. This requires
the analysis of source code of APIs and their client applications.
Therefore, approaches designed for OO applications cannot be ap-
plied directly to OO APIs. To the best of our knowledge, the only
approach proposed to identify components from OO APIs is one de-
scribed in [1] and [20]. This approach is based on the static analysis
of the source code of OO APIs and their client applications. As we
are dealing with actual clients using the OO API, dynamic analysis
allows to better capture the instances of API usage. Approaches
using static analysis are usually limited by the difficulty of handling
dynamic features such as polymorphism and class loading.

In this paper, we propose an approach to identify reusable com-
ponents in OO APIs. Our approach is based on the dynamic analysis
of interactions between client applications and the targeted OO API.
Thus, we generate the execution traces for the different usage sce-
narios implemented in client applications. These execution traces
realize dependencies between API classes through their method
invocations. We assume that components are identified in terms
of API classes that are frequently reused together by client appli-
cations. Therefore, we consider that groups of methods frequently
appearing together in execution traces form provided interfaces
of components, and the owner API classes of these methods con-
stitute the structure of that candidate component. To evaluate our
approach, we applied it to three Java APIs with their clients from
the DaCapo benchmark. The results show that the precision of our
component identification approach is 98%.

The rest of this paper is organized as follows. Section 2 presents
the framework behind our approach. Section 3 describes the process
of identifying execution traces related to usage scenarios of client
applications of APIs. In Section 4, we identify graph representations
of APIs methods based on the relationships appeared in execution
scenarios using a proposed quality function. Section 5 shows how
classes composing components are identified based on a graph-
based clustering algorithm. Evaluation results are presented in
Section 6. Related works are discussed in Section 7. Conclusion and
future work are presented in Section 8.

2 THE PROPOSED APPROACH FRAMEWORK
In this section, we provide an overview, summarize the principles
and propose the process of the proposed approach.

2.1 Approach Overview
Our approach identifies reusable components based on the dynamic
analysis of interactions between client applications and the targeted
API. We define a software component as a collection of classes that
participate to implement one or more functionalities for client
applications of an API. The provided interfaces, of this component,
are API methods that have been invoked together frequently by
client applications. Conversely, the required interfaces are API
methods that have been invoked by the component classes and
belong to other API components’ classes.

Classes composing a component are identified based on their in-
voked methods (provided interfaces). To determine which methods
are invoked jointly, we analyze execution traces of client applica-
tions using the API. As for dynamic analysis, we need representative
usage scenarios, we rely on use cases of client applications to iden-
tify such representative scenarios, and execute them to produce
the traces. The execution traces highlight the dependencies be-
tween API methods. We consider methods that appear frequently
together in execution traces as provided interfaces of a component.
The owner classes of these methods define the structure of the
component implementation.

We want to package each collection of API methods frequently
used together to form a provided interface of a reusable component,
without changing the internal structure of the API (i.e., we do not
aim to identify architectural view of the API). Therefore, we allow a
class to be a part of more than one component as different subsets of
its methods can participate with various groups of methods related
to other classes to implement different functionalities.

To evaluate the quality of a candidate collection of API methods
to form a component provided interface, we define quality function
that analyzes dependencies between API methods based on the
identified execution traces. We cluster API methods using this
quality function.

2.2 Approach Principles
The principles of our approach are summarized as follows.

• A component is defined as a group of classes identified
through its potential provided interfaces.
• A provided interface of a component is a set of methods used
frequently together in execution traces.
• A required interface of a component is a set of methods
used by this component and belonging to other components’
classes.
• A class can belong to several components since different
subsets of its methods can be included in different component
interfaces.
• Execution traces are used to identify the dependencies be-
tween API methods. Thus, they guide the component identi-
fication process.

Identifying Components from Object-Oriented APIs Based on Dynamic Analysis ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Figure 1: The process of component identification from
object-oriented APIs

2.3 Approach Process
To implement our approach, we propose a process, presented in
Figure 1, based on the following three steps:

(1) Identifying execution traces: execution traces are identi-
fied based on usage scenarios related to client applications
of APIs. Each executing trace is realized in terms of a call
tree that represents the dynamic relationships between API
methods corresponding to a usage scenario.

(2) Building graph representations of APIs: to facilitate the
problem definition, we rely on graph representations to high-
light dependencies between methods of an API. These depen-
dencies are identified based on the strength of relationships
between methods in the call trees.

(3) Identifying classes composing components:we apply a
graph-based clustering algorithm to partition the graph into
sub-graphs. Each sub-graph represents a group of methods
forming a provided interface of a component, while their
classes represent the component implementation.

3 IDENTIFYING EXECUTION TRACES
In this section, we discuss how to identify execution traces related
to APIs based on usage scenarios of client applications.

An execution trace is a set of methods that represent the execu-
tion of a usage scenario of a client application of the targeted API.
These methods can be represented in terms of a call tree defined
as a directed tree T = ⟨V ,E⟩, where V is a set of vertices referring
to a set of API methods and E is a set of edges. An edge ⟨V 1,V 2⟩
refers to that a method V1 invokes a method V2. The root of the
tree represents the starting point of the execution trace.

Figure 2: Example of call tree corresponding to usage sce-
nario

3.1 Executing Usage Scenarios to Identify Call
Trees

We execute each usage scenario to identify the set of methods
corresponding to its implementation. A method representing the
entry of a usage scenario is considered as the call tree root. Then,
we follow method calls to identify the other nodes. When a method
invokes a method, a new node is added to the tree with an edge
from the first node to the class node, and so on.

Methods related to the call tree’s nodes can be classified into
three categories: methods implemented in application’s classes,
method of API classes used by application’s classes to access API
functionalities and method of API classes that have got called by
the second category’s methods (from API method used by method
of application’s classes). Figure 2 shows an example of a call tree
that is composed of 4 application methods, which are A, C, D and
E, and 6 API methods, which are B, F, G, H, L and K. The B and F
methods have been invoked from an application class, while G and
K methods have been called from an API method.

3.2 Removing Application’s Methods from Call
Trees

Since our goal is to analyze interdependencies between API meth-
ods, we prune the identified call trees by removing methods related
to application classes. For each call tree, we perform a Breadth First
Search algorithm starting from the root node. If a child is an API
method, then we leave it. Otherwise, we remove the node. The
children of the removed node are attached to the parent of the
removed node. This process is continued until verifying all tree
levels. For example, Figure 3 shows the pruned tree of the call tree
presented in Figure 2. As it is noticed, the tree size is significantly
reduced which decreases the complexity of analyzing call trees. For
instance, it is reduced from 21 to 13 nodes.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden A. Shatnawi, H. Shatnawi, M. A. Saied, Z. Al Shara, H. Sahraoui, A. Seriai

Figure 3: Pruned call tree of one in Figure 2

4 BUILDING GRAPH REPRESENTATIONS OF
APIS

We represent an API in terms of an undirected weighted graph G
= ⟨V ,E⟩, where V is the set of API methods and E is the set of
edges between the vertices V. An edge links the vertices (u,v) if
they appeared together in call trees. The weight associated to each
edge is based on the strength of relationship of its vertices in call
trees. We distinguish three attributes that should be analyzed in
call trees to measure the strength of these relationships. These are
call frequency, call distance and call weight.

4.1 Call Frequency
This attribute refers to the relationship between numbers of co-
occurrence of a group of methods in call trees and their cohesive.
Methods frequently appeared in call trees are likely participating
to provide related functionalities. For instance, in the call trees
presented in Figure 4, the call frequency of A and B is 2 times, and
it is 1 for A and L. Thus, A and B are likely cohesive than A and L.

The call trees are identified from different applications developed
by different development teams. Thus, we propose to measure the
call frequency based on two cases related to methods frequently
used together in call trees of the same applications by the same
team or different applications of different teams. We consider that
methods used by different development teams will provide a global
view of their reuse frequency (i.e., global frequency) compared to
methods used by the same development team (i.e., local frequency).

Local frequency measures how many methods are used together
in the same applications (the same developers). It is measured based
on the average number of appearances of a group of methods in
one application. We calculate the ratio between the number of call
trees containing the methods to the total number of call trees in
each application (c.f. Equation 2).

Global frequencymeasures howmanymethods are used together
in different applications. Global frequency is calculated based on
the average number of applications that contain the methods to the

Figure 4: An example of three call trees

total number of applications (c.f. Equation 3). The call frequency of
a group of methods is the mean value of local and global frequencies
of all pairs of methods.

Equation 1 measures the call frequency for a set of methods E,
where Co-occur(c,v) returns 1 if the methods c and v exist in the
call tree t, otherwise it returns 0. T(a) refers to the set of call trees
of the application a in the set of applications apps.

(1)CallFreq(E) =
∑
c,vϵE,c ̸=v

LFreq(c,v)+GFreq(c,v)
2

(|E |∗(|E |−1))/2

(2)LFreq(c,v) =

∑
aϵapps

∑
tϵT (a)Co−occur (c,v)

|T (a) |
|apps |

(3)GFreq(c,v) =
NumberO f AppsContaininд(c,v)

|apps |

4.2 Call Distance
This attribute is related to the distance between methods in call
trees, which refers to the strength of their interactions. As much
as methods are closer in call trees they have high probabilities to
provide same functionalities. For example, in the first call tree in
Figure 4, the distance between A and B is 1, while it is 3 between A
and E. Thus, A and B have higher probability to be cohesive than A
and E.

We define Equation 4 to measure the call distance of a group of
methods E. For each pair of methods, it calculates the mean distance
of this pair in all call trees using Equation 5. Then, the call distance
is the average value of the mean values of all pairs.

(4)CallDist (E) =
∑
c,vϵE,c ̸=v Distance(c,v)

(|E |∗(|E |−1))/2

(5)Distance(c,v) =

∑
aϵapps

∑
tϵT (a) dis (c,v,t)
|T (a) |

|apps |

(6)dis(c,v, t) = 1 − (avдDistance(c,v, t)
2 ∗ дetTreeDepth(t))

Identifying Components from Object-Oriented APIs Based on Dynamic Analysis ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Where avgDistance(c,v,t) finds the average distance between the
methods c and v in a call tree t. It returns 2*getTreeDepth(t) if the
methods c and v do not appear in a call tree.

4.3 Call Weight
This attribute is related to theweight of the co-occurrence of a group
of methods in call trees. Methods that are co-located in the same
call trees have different weight of co-occurrences. This affects to the
degree of their interaction, and consequently their cohesive. The
weight depends on the number of calls in the call trees. For example,
in Figure 4, D and E appear together in call tree (1) and call tree
(3), but with different weights. This means that their appearance
has different impact to their cohesive. In fact, it is clear that their
appearance in call tree (3) has a higher impact than in call tree (1).

We measure the call weight based on the number of edges in call
trees. For a group of methods, the call weight is the average call
weight of all pairs in this group. Since the call weight of a pair of
methods in such a call tree is the fraction between the number of
direct call between these methods and the total number of edges in
the call tree. For our example (D and E), it is 20% in call tree (1) and
100% in call tree (3), thus it is 60% in average. Equation 7 measures
the call weight of a collection of methods E:

(7)CallWeiдht (E) =
∑
c,vϵE,c ̸=vWeiдht (c,v)

(|E |∗(|E |−1))/2

(8)Weiдht (c,v) =
∑
aϵapps

∑
tϵT (a)Wei(c,v, t)
|apps |

Where Wei(c,v,t) is the wight between the methods c and v in
the call tree t. It is calculated using Equation 9.

(9)Wei(c,v, t) =
NumberO f DirectCall (c,v, t)

TotalNumberO f Call (t)
For evaluating the quality of a group of methods E, we define

Equation 10 as a linear combination of the three functions evaluat-
ing each attribute.

Q(E) =
1∑
i λi
· (λ1 ·CallFreq(E)+λ2 ·CallDist (E)+λ3 ·CallWдht (E))

(10)

Where λ1, λ2 and λ3 are weight values, situated in [0-1]. These
are used by the API expert to weight each attribute as needed.

5 IDENTIFYING COMPONENTS THROUGH
THEIR PROVIDED INTERFACES

As we mentioned previously, methods composing provided inter-
faces of components are grouped based on a graph-based clustering
algorithm. We select a clustering algorithm that allows overlapping
between clusters. The idea behind that is to allow a method to ap-
pear in different clusters (component provided interfaces) as when
it is used frequently with different groups of method.

5.1 Identifying Overlapping Clustering of
Methods

The identification of methods composing component interfaces is
based on the identification of a set of subgraphs, where they have ac-
cepted quality values. We define the component provided interface

as a subgraph G∗ = ⟨V ∗, E∗⟩ where the average weight of edges in
E∗ maximizes the quality function, the set of methods correspond-
ing to the verticesV ∗ represents the component provided interfaces.
The identification of an optimal set of subgraphs needs to identify
all possible candidate subgraphs that can be extracted from the
graph. Then, the selection of subgraphs is made by choosing ones
that maximize the quality function. Nevertheless, this is considered
as NP-Complete problem since the time complexity is exponential.
Thus, we propose to use a heuristic clustering algorithm to find a
near optimal set of subgraphs. We use the OClustR [21] clustering
algorithm. We select this algorithm as it is a graph-based clustering
algorithm that is able to identify overlapping clusters. In addition,
there is no need to identify the number of the needed clusters as we
do not have any idea about the number of components that should
be identified.

Based onOClustR, the problem is to identify a set of subgraphsW
= {G∗1,G

∗
2, ...,G

∗
k }, where the graph G is covered byW (i.e. ∪ki=1V

∗
i

= V, such that G∗i covers a vertex v if v belongs to V ∗i). Finding
the minimum number of subgraphs, i.e. the set W, is known as a
vertex cover problem. A vertex cover is a smallest subset of ver-
tices V^ ⊆ V, such that each vertex v ∈ V is either a part of V^ or
directly connected, i.e. an adjacent vertex, to another vertex u ∈ V^.
Nevertheless, a vertex cover is classified as NP-Complete problem
[Ref]. Thus, OClustR proposed an approximation algorithm that
aims at mining a near optimal set of vertices V^, such that graphs
corresponding to V^ cover G and maximizing the quality of the
corresponding component as well. This algorithm identifies the
subgraphs based on two steps. The first step aims at mining the
initial subgraphs (clusters). The second step goals at refining the
initial subgraphs by minimizing the number of clusters, since they
may include useless subgraphs, and the overlapping between them.

5.1.1 Mining initial clusters. This step aims at identifying the
set of initial subgraphsW, such that each subgraphG∗i is a weighted
star subgraph, (ws-graph) for short, in G. A ws-graph G∗i = ⟨V ∗,E∗⟩
have a vertex c ∈ V ∗, c is called the center of G∗i , where there
is an edge connecting c with the other vertices in V ∗, the other
vertices are called satellites. Here, the problem is to identify a set
of center vertices Z = {c1, c2, ..., ck }, where each vertex ci ∈ Z is
the center of the subgraph G∗i ∈W . In order to identify the set Z,
all vertices should be investigated. The investigation is based on
an iterative process. At each iteration, one vertex v is added to Z.
This is continued until Z reaches the condition of covering G. The
selection of a vertex v to be added to Z is based on an evaluation
criterion. This criterion depends on two factors. The first one aims
at maximizing the cover of G at each iteration and controlling the
overlapping between the ws-graphs. This factor is called Relative
Density, (RD) for short. The second factor goals at keeping the
quality of the component corresponding to the ws-graph related to
a vertex v, since a vertex that provides a high coverage of G could
produce a low quality component corresponding to our quality
fitness function. This factor is called Relative Compactness, (RC) for
short.

RD is related to the number of satellite vertices that could be cov-
ered by ws-graph corresponding to a center vertex v. Since vertices
having higher degree, i.e. vertices having more satellites, produce
ws-graphs that contribute more to cover G, the selection of a vertex

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden A. Shatnawi, H. Shatnawi, M. A. Saied, Z. Al Shara, H. Sahraoui, A. Seriai

should take the vertex degree into account. In some cases, this way
is not sufficient since some of the satellite vertices maybe already
covered by another center vertex r that is added to Z in a previous
iteration. Thus, we need to take the number of satellite vertices
that will be covered by selecting a vertex v in the current iteration,
i.e. we exclude satellite vertices already covered by another center
vertices. We measure RD of a vertex v ∈ V based on Equation 11.
The higher value of RD the better vertex to be selected, where its
value is situated in [0-1].

(11)RD(v) =
NumberO f UncoverSatelliteVertices

TotalNumberO f SatelliteVertices

RC is related to the quality of a ws-graph corresponding to v
compared to its satellite vertices. This means that we investigate
if a vertex v is the best vertex that maximizing the quality among
its satellite vertices. Therefore, we measure RC based on the ratio
between the number of satellite vertices that produces ws-graphs
having lower quality values than the ws-graph corresponding to
v and the total number of satellite vertices. Where the quality of a
ws-graph is the average weight values between all pairs of vertices
included by the ws-graph. We calculate RC based on Equation 12,
where SatelliteCompactness is the number of satellites s such that the
quality of ws-graph of s is grater than the quality of the ws-graphs
of v. The higher value of RC the better vertex to be selected, where
its value is situated in [0-1].

(12)RC(v) =
SatelliteCompactness

TotalNumberO f SatelliteVertices

Based on these factors, we firstly sort the vertices in a decreasing
order based on their relative quality; the average of their RD and
RC, denoted by RQ. Then, these vertices are iteratively added to
the set Z with respect to one of these conditions: (1) a vertex is not
covered and (2) it is covered but at lease there is one of its satellites
that is not covered. This continues until covering graph G.

Algorithm 1: Identifying initial clusters
Input: undirected weighted graph G = ⟨V ,E⟩
Output: A Set of center vertices Z
L←− G(V);
Sort L in a decreasing order based on RQ;
for each v ∈ L do

if v.uncovered() || v.hasUncoveredsatellites() then
Z←− Z ∪ {v};

end
end
return Z;

5.1.2 Refining the initial clusters. This step aims at enhancing
the initial clusters, identified in the previous step. The goal is at
reducing the number of resulted clusters as well as the overlapping
between them. The process of identifying the set Z is a greedy
one since it selects the vertex having the highest quality at each
iteration. Thus, this may lead to the situation of adding a useless
vertex u to Z. The identification of a useless subgraphG∗u is based
on howmuch its satellites are shared with otherG∗s. The worst case
is that u ∈ Z, such that G is still covered by the G∗s corresponding

to Z − {u}, i.e. u and its satellites are covered by other G∗s . The
average case is that u ∈ Z, such that G∗u shares most of its satellites
with the other G∗s corresponding to Z − {u}. In these case, the G∗u
is considered as a useless subgraph and u should be deleted from Z.

According to that, G∗u is considered as a useless if it meets two
conditions. The first one is that u is a satellite vertex of at lease
another G∗v . The second condition is that V ∗u shares more than
half of its satellite vertices with another G∗s . Once a useless G∗u is
identified, u is removed from Z, and the non-shared satellites are
distributed to anotherG∗. We select theG∗ that covers u as it covers
the center ofG∗u . In case that there is more than oneG∗ covering u,
we select G∗ having the grater number of satilletes. By doing this,
we allow producing clusters having many vertices.

Algorithmically, we refine the initial clusters G∗ as follows. It
firstly sorts the vertices of Z in a descending order based on their
degrees and sign all of them as unvisited. Then, starting from the
vertex having the highest degree, each vertex v is analyzed. The
analysis consists of removing from Z any vertex u ∈ Z such that
u is a satellite of G∗v (u ∈ V ∗v) and G∗u is considered as useless G∗.
Then, all satellite verices of G∗u is added to G∗v since G∗v is the one
having the grater number of satilletes among u adjacent vertices.
Once all satellite verices in G∗v are analyzed, v is signed as visited
and G∗v is considered as a final cluster.

Algorithm 2: Refining initial clusters
Input: A Set of center vertices Z
Output: A Set of Clusters C
L←− G(V);
Sort Z in a decreasing order based on their degree;
for each v ∈ Z do

v.isVisited(false)
end
for each v ∈ Z do

for each u ∈ satellites of G∗v do
if u ∈ Z && u.isNotVisited() then

if G∗u is useless then
G∗v ←− G∗v ∪G∗u ;
Z←− Z − {u};

end
else

u.isVisited(true)
end

end
end
C←− C ∪ {V ∗v };

end
return C;

6 EVALUATION RESULTS
6.1 Description of APIs and their Client

Applications
We evaluate our approach using real usage scenarios from DaCapo
Benchmarks [22]. We select DaCapo because it is composed of a

Identifying Components from Object-Oriented APIs Based on Dynamic Analysis ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Table 1: Data set description

API name Size (classes) # of app. clients App. client names
ACL 23 2 Tomcat, Fop
ASM 99 2 Jython, Pmb
XML 302 4 Xalan, Pmd, Fop, Batik

set of open-source real Java applications coupled with collections
of pre-defined usage scenarios.

To show the applicability of our approach in several context, we
select from DaCapo three widely used Java APIs of three different
size (i.e., 23, 99 and 302 classes) and from three different domains.
The first one is the Apache Commons Logging (ACL) API1 that con-
tains 23 classes, and offers a log interfaces and a middleware/tooling
developer with a simple logging abstraction. The second one is the
ASM API 2 consists of 99 classes. It provides functionalities related
to Java bytecode manipulation and analysis. The third API is the
XML API3 that is composed of 302 classes. It offers functionalities
for processing XML files.

DaCapo only provides a limited number of usage scenarios of
software applications developed based on these three APIs. We are
able to identify only eight client applications that use methods of
classes of the APIs. These applications are as follows.
• Tomcat implements J2EE technologies like Servlet and JavaServer
Pages.
• Fop is an output-independent print formatter that parses
and formats XSL-FO files.
• Xalan is an XSLT processor for transforming XML docu-
ments.
• Batik is a Scalable Vector Graphics (SVG) toolkit that renders
a number of SVG files. Xalan, Fop and Batik use classes from
the XML API.
• Pmd is a source code analyzer for Java code. It uses two
APIs; XML and ASM ones.
• Jython is a python interpreter written in Java to execute
and interpret Python programs. It is a client for the ASM
API.
• Lusearch and Luindex are respectively a text search tool
and a text indexing for a corpus of data comprising the works
of Shakespeare and the King James bible. Both applications
are clients of the Licene API.

Table 1 shows the description of the collected dataset. For each
API, we provide the number of included classes, the number of
applications considered as clients of this API and the names corre-
sponding to the client applications.

6.2 Evaluation Process
Our evaluation process is based on four steps. First, we have dis-
cussed the results of identifying call trees related to execution traces
of usage scenarios of client applications of APIs. Then, we have
shown the results of identifying groups of methods that are consid-
ered as provided interfaces of components. Next,we have presented
1Available at: https://commons.apache.org/proper/commons-logging/guide.html
2Available at: http://www-etud.iro.umontreal.ca/ saiedmoh/asm-
3.3.1/doc/javadoc/user/index.html
3Available at: https://xerces.apache.org/xerces2-j/javadocs/api/index.html

how we evaluate the resulting components based on functionalities
provided by methods representing their provided interfaces. Next,
we have provided a discussion about dynamic and static analysis
component identification approaches. Finally, we have discussed
threats to validity related to the results of our approach.

6.3 Results of Identifying Call Trees Based on
Executing Usage Scenarios

We rely on BTrace4 dynamic tracing tool to collect execution traces
related to usage scenarios. BTrace supports the execution of a Java
program based on its bytecode and dynamically collect the methods
related to this execution. We configure BTrace to run each client
application only once since we are not interested in performance
analysis.

Table 2 shows the results related to the identified call trees of
execution traces of usage scenarios of client applications of APIs.
For each call tree, we present the tree’s size in terms of the number
of included nodes, the number of distinct API methods included
in this call tree, the tree’s height, the minimum, maximum and
average method’ repetition in this call tree.

The results show that the call trees have small heights compared
to the large number of nodes included in the trees. The average
height of call trees related to ACL, XML and ASM APIs is respec-
tively 12.5 ((12+13)/2), 7.5 ((7+4+14+5)/4) and 18.5 ((10+27)/2), while
the average trees size is respectively 472676 and 1946555 nodes.
This means that execution traces go deeply by 12.5, 7.5 and 18.5
methods in average respectively for ACL, XML and ASM APIs.

Indeed, the root of a call tree represents an execution scenario,
and its children nodes represents the set ofmethods directly invoked
in the source code of client applications to access API’s functionali-
ties. Each sub-tree that corresponds to a root child explains internal
dependencies related to method invocation between API methods
to provide the invoked functionality by the corresponding root
child. For example, the height of a call tree of 18 nodes refers to the
maximum number of API methods that are invoked corresponding
to an API method invocation directly invoked by client applications.

Another observation is that the call trees are widely distributed
in a horizontal way, i.e., each node in a call tree has a large number
of children relatively to its height. Therefore, API methods have
dense interactions with each others such that each API method
invokes a bunch of other API methods. In addition to that, we find
that some API methods have been invoked only once compared to
some other ones which have been invoked 198972.5 times in average
(averagemax node repetition). Many groups of methods are invoked
in similar frequently at the same time. These are interested to be in
a same provided interface, even if they belong to different classes.

6.4 Results of Component Identification
The results of our clustering algorithm are shown in Table 3. For
each API, we present the number of identified components, the
average size of provided interfaces in terms of methods and the
average component size in terms of included classes.

Respectively for ACL, ASM and XML APIs, the results show that
the average number of methods that need to be used together to

4Available at: https://kenai.com/projects/btrace

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden A. Shatnawi, H. Shatnawi, M. A. Saied, Z. Al Shara, H. Sahraoui, A. Seriai

Table 2: The results of call trees identification

Call tree Total no. of nodes No. of API unique methods Tree height Min method repetition Max method repetition Average method repetition
ACL1 1983448 40 12 1 971877 49586.2
ACL2 467328 81 13 1 233231 5769.48
XML1 79844 57 4 1 11040 1400.77
XML2 116013 79 7 1 25392 1468.52
XML3 245 25 14 1 20 9.8
XML4 1694602 84 5 1 769600 20173.83
ASM1 3366089 106 10 1 589875 31755.56
ASM2 527021 28 27 1 232285 18822.18

Table 3: The results of component identification

API # of identified
components

Avg. provided interface
size (methods)

Avg. component
size (classes)

ACL 9 11 2.14
ASM 24 5.08 2.13
XML 22 6.72 3.25

Table 4: Examples of identified components

API Component provided interface names

ACL

org.apache.commons.logging.impl.SimpleLogrun,
org.apache.commons.logging.impl.LogFactoryImplcreateLogFromClass,
org.apache.commons.logging.impl.SimpleLoggetContextClassLoader,
org.apache.commons.logging.impl.SimpleLog,
org.apache.commons.logging.impl.SimpleLogclass,
org.apache.commons.logging.impl.SimpleLogaccess,
org.apache.commons.logging.impl.SimpleLoggetResourceAsStream,
org.apache.commons.logging.impl.LogFactoryImpldiscoverLogImplementation,
org.apache.commons.logging.impl.LogFactoryImplnewInstance,
org.apache.commons.logging.impl.SimpleLog

ASM

org.objectweb.asm.commons.EmptyVisitorvisitCode,
org.objectweb.asm.commons.EmptyVisitorvisitTableSwitchInsn,
org.objectweb.asm.commons.EmptyVisitorvisitIntInsn,
org.objectweb.asm.commons.EmptyVisitorvisit,
org.objectweb.asm.commons.EmptyVisitorvisitMethodInsn,
org.objectweb.asm.commons.EmptyVisitorvisitInsn,
org.objectweb.asm.commons.EmptyVisitorvisitJumpInsn,
org.objectweb.asm.commons.EmptyVisitorvisitMethod

XML

javax.xml.parsers.DocumentBuilderFactoryisIgnoringElementContentWhitespace,
javax.xml.parsers.DocumentBuilderFactoryisNamespaceAware,
javax.xml.parsers.DocumentBuilderFactory,
javax.xml.parsers.DocumentBuilderFactoryisCoalescing,
javax.xml.parsers.DocumentBuilderFactoryisExpandEntityReferences,
org.xml.sax.InputSourcegetByteStream,
javax.xml.parsers.SecuritySupportgetContextClassLoader,
javax.xml.parsers.DocumentBuilder,
javax.xml.parsers.DocumentBuilderFactorynewInstance,
javax.xml.parsers.DocumentBuilderparse,
javax.xml.parsers.SecuritySupport,
org.xml.sax.InputSourcegetCharacterStream,
javax.xml.parsers.DocumentBuilderFactoryisValidating,
javax.xml.parsers.DocumentBuilderFactoryisIgnoringComments,
org.xml.sax.InputSourcegetEncoding

access an API functionality is 9, 24 and 22 methods. These methods
offer functionalities of 2.14, 2.13 and 3.25 owner classes in average.

For each API, Table 4 shows an example of a group of object-
oriented API classes representing the implementation of identified
component provided interfaces. To enable their reuse for software
developers, these groups need to be transformed to confirm an exit-
ing component model. It worths to mention some works that can be
used by the user of our approach to transform these object-oriented

implementation of identified components to be confirmed to com-
ponent models. Alshara et al. [23] [24] provided initial approaches
for transforming object-oriented component implementation to be
confirmed to several component models (e.g., OSGi [25] and Fractal
[26]).

6.5 Results of Evaluating Identified
Components

The identified components are evaluated based on the function-
alities offered by their provided interfaces. For each component,
we evaluate how much of the methods composing its provided
interface are related to provide the same API functionalities. The
quality of each provided interface is calculated based on the ratio
between the number of related methods to the total number of
methods composing this interface (c.f. Equation 13). We rely on the
API documentations to identify each method’s functionality. Then,
among a group of methods composing the provided interface, we
select ones that have related functionalities to at least one method
in this group.

For a pair of methods, we consider them as functional-related if
one of these two cases is applied. The first one refers to identify di-
rect indication(s) in the API documentations stated the correlation.
The second one is based on human experts where their experiences
allow them to decide if the two methods is functional-related. The
number of selected methods represents the numerator in Equa-
tion 13. The authors perform the evaluation themselves. To avoid
bias, each component was evaluated by at least three authors. The
average represents the final evaluation result of this component.

(13)Evaluation(Component) =
NoO f RelatedMethods

TotalNo.O f Methods

The precision of our approach is the average of the resulting
values by applying Equation 13 to components of an API. Figure 5
shows the precision. The results show that our approach is able to
correctly identify components where their provided interfaces are
composed of functional-related API methods with 98% precision
((100%+93%+100%)/3). During our evaluation, we note that a compo-
nent can be composed of one class and a subset of its methods forms
the provided interface of this component. The same class forms
another component with different subset of methods as provided
interface. We consider these as correctly identified components that
offer (sub)functionalities related to their provided interfaces. Each
component can be (re)used as stand-alone or composed with other
ones to generate higher level components (composite components).

Identifying Components from Object-Oriented APIs Based on Dynamic Analysis ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Moreover, we observe that the same set of classes can form
different components using different subsets of their methods as
provided interfaces, i.e., component having the same classes but
different provided interfaces. By checking the functionality of each
method in these components, we find that they are related to same
functionalities, but in different contexts. As it is noticed, some
classes are parts of several components since different subset of
their methods are part of these components. We look to the position
of these classes as correct when the corresponding methods are
harmonic with other methods in a given component. In XML API,
we identify a component that its provided interface consists of
14 methods belonging to 11 different classes. After checking the
functionality offered by these methods, we find that methods of
7 classes are related to the same functionality, while the other 4
classes are not related to each other since they are helper classes.

Figure 5: The precision of component identification

6.6 Dynamic vs Static Analysis
The dynamic analysis approach is very expensive (run-time startup,
collect usage scenarios ...), if we compare it to the static analysis
which can only rely on source code files. However, dynamic analy-
sis is more accurate as it contributes to provide real dependencies
that cannot be recovered only by static analysis. Such dependen-
cies are those related to late-dynamic binding, method overriding
polymorphism and implicit dependencies in configuration files.
These dependencies can exist extensively or rarely depending on
the application context and framework.

On the other hand, the dynamic analysis approach relies on
usage scenarios to cover API functionalities. However, some API
functionalities may not be covered by the usage scenarios imple-
mented in the selected client applications (thus, they will not be
covered by the identified components). We recommend to select
client applications that cover the maximum number of possible
usage scenarios, which can be a strong constraint in some cases.

We compare the two approaches by applying our approach and
the static approach presented in [1] and [20] into the collected APIs
and client applications. We find that both approaches construct
different abstractions of the same functionalities. Components iden-
tified by dynamic analysis can be composed to form components
resulting from static analysis. In terms of functionality-related, the

two approaches provide similar results. We interpret this similarity
by the fact that the studied APIs do not rely on the dependencies
that are not detected based on the static analysis approach (e.g., im-
plicit dependencies). In this context, we would like to recommend
to rely on the dynamic analysis approach for APIs that do rely
on late-dynamic binding, methods overriding polymorphism and
implicit dependencies in configuration files to codify dependencies.

6.7 Threats to Validity
We identify two types of threats to validity concerning the proposed
approach; internal validity and external validity.

6.7.1 Threats to Internal Validity. Two aspects concern the in-
ternal threats to validity:

(1) We need to rely on human expert opinions to evaluate the
results. However, it is not easy to access the experts of the
APIs. The authors considered themselves as experts since
each author has at least more than 8 years of experience in
software development.

(2) Our evaluation does not consider the recall as we are not able
to identify how many API methods are actually related to a
functionality and not extracted by the approach. However,
the recall depends on the coverage of the usage scenarios
and does not rely on our approach. Any API method used
in at least one usage scenario will be a part of at least one
component.

6.7.2 Threats to External Validity. We identified two aspects
related to the external threats to validity:

(1) We evaluated our approach based on APIs and client ap-
plications written using Java. The proposed approach can
be generalized not only for other object-oriented languages
(e.g., C++), but also for procedural ones (e.g, C, Pascal). The
idea is that our approach does not care about the implement-
ing programing language since its input is a set of call trees.
The nodes in these call trees can refer either to methods or
procedures/routines. The main difference is that identified
components will be groups of procedures.

(2) The selection of API client applications may impact identi-
fied components as different applications use API methods
following different scenarios. Thismay impact the reusability
of identified components for new independent applications.
However, we assume API functionalities are (re)used fol-
lowing similar patterns by developers. This assumption was
successfully utilized and proven in several research papers
[1] [8] [10] [12]. We recommend selecting as much as possi-
ble of API client applications to minimize the influence of
domain-specific API usages.

7 RELATEDWORK
To the best of our knowledge, there is only one approach proposed
to identify components from object-oriented APIs [1] [20]. It iden-
tifies components as groups of API classes that are frequently used
together by the client applications of an API and structurally depen-
dent. To identify co-usage relationships between classes, Frequent-
Pattern Growth algorithm was used where transactions are col-
lections of API classes used by a client application. However, the

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden A. Shatnawi, H. Shatnawi, M. A. Saied, Z. Al Shara, H. Sahraoui, A. Seriai

approach presented in [1] [20] does not trace the API method calls
from client applications to deepen in the API as the proposed ap-
proach does to identify relationships between API classes. Instead,
it relies on a static analysis technique to analyze structural depen-
dencies in the source code of APIs. Recently developed software
systems contains implicit dependencies resulted form the use of late
dynamic-binding, Java-reflection and container-services offered by
the frameworks. These implicit dependencies are difficult to be
detected using static analysis techniques [27].

All of these existing component identification approaches that
are designed to identify components from OO software applications
are not be directly applied to OO APIs. The reason is that they
only relied on OO dependencies (e.g., method invocations, sharing
types, etc.) to identify dependencies between classes, while co-usage
dependencies between API classes should also be considered to
identify classes/methods that can be reused to implement a specific
scenario.

In the following three paragraphs, we discuss the related work on
component identification in standalone applications using dynamic
and static analysis, as well as the identification of usage patterns.

Dynamic Analysis Component Identification from Appli-
cations. In [19], the authors presented an approach to identify
component-based architectures from object-oriented applications.
The identification is based on execution traces derived from use
case scenarios. Classes frequently appearing in traces represent a
candidate component. Grouping these classes is done by a cluster-
ing algorithm and a heuristic search, simulated annealing. Both
techniques rely on a quality function. This quality function only
considers the call frequency metric, which is insufficient without
including metrics like our call weight and call distance. In [28],
the authors presented an approach to extract an architecture view
of object-oriented software using the analysis of execution traces.
This research contribution lacks details on how such a process can
be automated, and only the visualization aspect is discussed. In [29],
the authors relied on the execution traces to recover two artifacts:
1) information that is used to update use cases’ documentations,
and 2) component-based architecture by mapping the traced classes
into clusters. Execution traces are identified from the business tasks
of end-users, i.e., the records of what classes have been executed
during a user usage.

Static Analysis Component Identification from Applica-
tions. In [30], the authors used the Knowledge Discovery Meta-
model to represent the software elements, at different levels of
abstraction, and their structural dependencies. They used a vertical
clustering algorithm to identify software components as groups of
classes, and a horizontal clustering algorithm to recover the lay-
ered architecture view of the identified components. In [31], the
authors proposed an approach to identify component interfaces of
object-oriented components identified using reverse engineering
approaches. Classes of a component are analyzed to structure the
required and provided interfaces. They extract a set of methods
invoked by other components. These methods are then grouped by
means of formal concept analysis. Some other approaches relied
on the analysis of several software applications at the same time
to identify components cross these applications [32] [33] [16]. For
example, in [16], components are identified as groups of classes

frequently presented in different applications and structural depen-
dent.

Frequent Usage Patterns of API entities. Several approaches
have been proposed to identify abstract reuse scenarios in terms
of frequent usage patterns of API entities. These frequent usage
patterns are not themselves direct reusable entities, but they help
improving the reusability and understandability of APIs. We classi-
fied these existing approaches following their goals, usage-order
consideration, the granularity of the API entities under the study,
and the algorithm used to identify usage patterns. Generally the
goal of usage-pattern identification approaches can be: (i) to pro-
vide examples to support recommendation systems [34] [35], (ii)
to support the documentation of APIs at different levels of abstrac-
tion [34] [36] [5], (iii) to predict bugs resulted from incorrect usage
scenarios [12], etc. The patterns were identified with respect to the
order in which the API elements are used in some approaches [34]
[36], while other approaches do not take into account such an order
[12] [37] [5]. The granularity of the API elements that compose
the identified patterns is at the method-level [34] [36] [5] or the
class-level [1][37]. In [13], multi-level patterns are identified. As
for the algorithms to identify the patterns, the approaches used as-
sociation rules mining [37], frequent-pattern growth [1], clustering
algorithms [36] [5] or a heuristic defined by the authors [34] [12].
Some approaches relied on a combination of many algorithms like
Principle Component Analysis and clustering algorithm [35].

8 CONCLUSION AND FUTUREWORK
We propose an approach that aims to identify reusable software
components based on the dynamic analysis of interactions between
client applications and the targeted API. The approach relies on co-
usage and objected-oriented dependencies to define relationships
between classes of APIs. To do so, we execute usage scenarios of
client applications of APIs to collect execution traces. Our approach
packages groups of methods frequently appearing together in the
collected traces as component provided interfaces, and their owner
classes define the structure of components’ implementation. These
groups of methods are identified based on a graph-based clustering
algorithm from the information in execution traces.

To evaluate our approach, we experimented with the DaCoPo
benchmarks, focusing on three of its APIs and eight client applica-
tions. We considered pre-defined usage scenarios that are already
provided by DaCoPo. The evaluation results show that the precision
of our approach is up to 98%.

We will consider three future directions to investigate

(1) We plan to transform the object-oriented implementation of
the identified component provided interfaces into service-
oriented interfaces to have truly reusable interfaces.

(2) We want to extend the approach evaluation by considering
more APIs and client applications to generalize the approach
results.

(3) We will also provide a visualization framework, that develop-
ers can use to identify reusable components of an API. They
will have to load a set of client application using the API
of interest, run the client applications while the framework
is collecting the execution traces, and produces reusable
components.

Identifying Components from Object-Oriented APIs Based on Dynamic Analysis ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

REFERENCES
[1] Anas Shatnawi, Abdelhak-Djamel Seriai, Houari Sahraoui, and Zakarea Alshara.

Reverse engineering reusable software components from object-oriented apis.
Journal of Systems and Software, 131:442–460, 2017.

[2] Minhaz F Zibran, Farjana Z Eishita, and Chanchal K Roy. Useful, but usable?
factors affecting the usability of apis. In 2011 18th Working Conference on Reverse
Engineering (WCRE), pages 151–155. IEEE, 2011.

[3] Mohamed Aymen Saied, Hani Abdeen, Omar Benomar, and Houari Sahraoui.
Could we infer unordered api usage patterns only using the library source code?
In Proceedings of the 2015 IEEE 23rd International Conference on Program Compre-
hension, pages 71–81. IEEE Press, 2015.

[4] EvanMoritz, Mario Linares-Vásquez, Denys Poshyvanyk, Mark Grechanik, Collin
McMillan, and Malcom Gethers. Export: Detecting and visualizing api usages in
large source code repositories. In Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering, pages 646–651. IEEE Press, 2013.

[5] Mohamed Aymen Saied and Houari Sahraoui. A cooperative approach for com-
bining client-based and library-based api usage pattern mining. In 2016 IEEE 24th
International Conference on Program Comprehension (ICPC), pages 1–10. IEEE,
2016.

[6] Martin P Robillard and Robert Deline. A field study of api learning obstacles.
Empirical Software Engineering, 16(6):703–732, 2011.

[7] R Liguori and P Liguori. Java 8 Pocket Guide. " O’Reilly Media, Inc.", 2014.
[8] Gias Uddin, Barthélémy Dagenais, and Martin P Robillard. Temporal analysis

of api usage concepts. In 34th International Conference on Software Engineering,
pages 804–814. IEEE Press, 2012.

[9] Mohamed Aymen Saied, Omar Benomar, Hani Abdeen, and Houari Sahraoui.
Mining multi-level api usage patterns. In 2015 IEEE 22nd International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 23–32. IEEE,
2015.

[10] João Eduardo Montandon, Hudson Borges, Daniel Felix, and Marco Tulio Valente.
Documenting apis with examples: Lessons learned with the apiminer platform.
In 2013 20th Working Conference on Reverse Engineering (WCRE), pages 401–408.
IEEE, 2013.

[11] Mohamed Aymen Saied, Houari Sahraoui, and Bruno Dufour. An observational
study on api usage constraints and their documentation. In 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 33–42. IEEE, 2015.

[12] Martin Monperrus, Marcel Bruch, and Mira Mezini. Detecting missing method
calls in object-oriented software. In European Conference on Object-Oriented
Programming, pages 2–25. Springer, 2010.

[13] Hamzeh Eyal Salman. Identification multi-level frequent usage patterns from
apis. Journal of Systems and Software, 130:42–56, 2017.

[14] Oliviero Riganelli, Daniela Micucci, and Leonardo Mariani. Policy enforcement
with proactive libraries. In Proceedings of the 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pages 182–192.
IEEE Press, 2017.

[15] Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yliès Falcone. Verify-
ing policy enforcers. In International Conference on Runtime Verification, pages
241–258. Springer, 2017.

[16] Anas Shatnawi and Abdelhak-Djamel Seriai. Mining reusable software com-
ponents from object-oriented source code of a set of similar software. In IEEE
14th International Conference on Information Reuse and Integration (IRI), pages
193–200. IEEE, 2013.

[17] Seza Adjoyan, Abdelhak-Djamel Seriai, and Anas Shatnawi. Service identification
based on quality metrics object-oriented legacy system migration towards soa.
In SEKE: Software Engineering and Knowledge Engineering, pages 1–6. Knowledge
Systems Institute Graduate School, 2014.

[18] Abderrahmane Seriai, Salah Sadou, and Houari A Sahraoui. Enactment of com-
ponents extracted from an object-oriented application. In European Conference
on Software Architecture, pages 234–249. Springer, 2014.

[19] Simon Allier, Salah Sadou, Houari Sahraoui, and Régis Fleurquin. From
object-oriented applications to component-oriented applications via component-
oriented architecture. In 9thWorking IEEE/IFIP Conference on Software Architecture
(WICSA), pages 214–223. IEEE, 2011.

[20] Anas Shatnawi, Abdelhak Seriai, Houari Sahraoui, and Zakarea Al-Shara. Mining
software components from object-oriented apis. In International Conference on
Software Reuse, pages 330–347. Springer, 2015.

[21] Airel Pérez-Suárez, José F Martínez-Trinidad, Jesús A Carrasco-Ochoa, and José E
Medina-Pagola. Oclustr: A new graph-based algorithm for overlapping clustering.
Neurocomputing, 121:234–247, 2013.

[22] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z Guyer, et al. The dacapo benchmarks: Java benchmarking development
and analysis. In ACM Sigplan Notices, volume 41, pages 169–190. ACM, 2006.

[23] Zakarea Al-Shara, Abdelhak-Djamel Seriai, Chouki Tibermacine, Hinde Lilia
Bouziane, Christophe Dony, and Anas Shatnawi. Materializing architecture
recovered from oo source code in component-based languages. In ECSA: European
Conference on Software Architecture, 2016.

[24] Zakarea Al-Shara, Abdelhak-Djamel Seriai, Chouki Tibermacine, Hinde Lilia
Bouziane, Christophe Dony, and Anas Shatnawi. Migrating large object-oriented
applications into component-based ones. In GPCE: Generative Programming:
Concepts and Experiences, volume 51, pages 55–64, 2015.

[25] OSGi Alliance. Osgi service platform, release 3. IOS Press, Inc., 2003.
[26] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-

Bernard Stefani. The fractal component model and its support in java. Software:
Practice and Experience, 36(11-12):1257–1284, 2006.

[27] Anas Shatnawi, Hafedh Mili, Ghizlane El Boussaidi, Anis Boubaker, Yann-Gaël
Guéhéneuc, Naouel Moha, Jean Privat, and Manel Abdellatif. Analyzing program
dependencies in java ee applications. In Proceedings of the 14th International
Conference on Mining Software Repositories, pages 64–74. IEEE Press, 2017.

[28] Bas Cornelissen. Dynamic analysis techniques for the reconstruction of architec-
tural views. In 14th Working Conference on Reverse Engineering (WCRE), pages
281–284. IEEE, 2007.

[29] Philippe Dugerdil and David Sennhauser. Dynamic decision tree for legacy
use-case recovery. In 28th Annual ACM Symposium on Applied Computing, pages
1284–1291. ACM, 2013.

[30] Ghizlane El Boussaidi, Alvine Boaye Belle, Stephane Vaucher, and Hafedh Mili.
Reconstructing architectural views from legacy systems. In 2012 19th Working
Conference on Reverse Engineering (WCRE), pages 345–354. IEEE, 2012.

[31] Abderrahmane Seriai, Salah Sadou, Houari Sahraoui, and Salma Hamza. Deriving
component interfaces after a restructuring of a legacy system. In 2014 IEEE/IFIP
Conference on Software Architecture (WICSA), pages 31–40. IEEE, 2014.

[32] Anas Shatnawi, Abdelhak-Djamel Seriai, and Houari Sahraoui. Recovering
software product line architecture of a family of object-oriented product variants.
Journal of Systems and Software, 131:325–346, 2017.

[33] Anas Shatnawi, Abdelhak Seriai, and Houari Sahraoui. Recovering architectural
variability of a family of product variants. In International Conference on Software
Reuse, pages 17–33. Springer, 2015.

[34] J.E. Montandon, H. Borges, D. Felix, and M.T. Valente. Documenting apis with
examples: Lessons learned with the apiminer platform. In 20th Working Conf. on
Reverse Engineering (WCRE), pages 401–408, 2013.

[35] G. Uddin, B. Dagenais, and M. P. Robillard. Temporal analysis of api usage
concepts. In Proc. of the 2012 Inter. Conf. on Software Engineering, ICSE 2012,
pages 804–814, Piscataway, NJ, USA, 2012. IEEE Press.

[36] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct and
high-coverage api usage patterns from source code. In Proc. of the 10th Working
Conf. on Mining Software Repositories, MSR ’13, pages 319–328, Piscataway, NJ,
USA, 2013. IEEE Press.

[37] M. Bruch, T. Schäfer, and M. Mezini. Fruit: Ide support for framework under-
standing. In Proc. of the 2006 OOPSLA Workshop on Eclipse Technology eXchange,
eclipse ’06, pages 55–59, New York, NY, USA, 2006. ACM.

	Abstract
	1 Introduction
	2 The Proposed Approach Framework
	2.1 Approach Overview
	2.2 Approach Principles
	2.3 Approach Process

	3 Identifying Execution Traces
	3.1 Executing Usage Scenarios to Identify Call Trees
	3.2 Removing Application's Methods from Call Trees

	4 Building Graph Representations of APIs
	4.1 Call Frequency
	4.2 Call Distance
	4.3 Call Weight

	5 Identifying Components Through their Provided Interfaces
	5.1 Identifying Overlapping Clustering of Methods
	5.1.1 Mining initial clusters
	5.1.2 Refining the initial clusters

	6 Evaluation Results
	6.1 Description of APIs and their Client Applications
	6.2 Evaluation Process
	6.3 Results of Identifying Call Trees Based on Executing Usage Scenarios
	6.4 Results of Component Identification
	6.5 Results of Evaluating Identified Components
	6.6 Dynamic vs Static Analysis
	6.7 Threats to Validity
	6.7.1 Threats to Internal Validity
	6.7.2 Threats to External Validity

	7 Related Work
	8 Conclusion and Future Work
	References

