
HAL Id: lirmm-01932810
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01932810v1

Submitted on 23 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reusing Platform-specific Models in Model-Driven
Architecture for Software Product Lines

Frédéric Verdier, Abdelhak-Djamel Seriai, Raoul Taffo Tiam

To cite this version:
Frédéric Verdier, Abdelhak-Djamel Seriai, Raoul Taffo Tiam. Reusing Platform-specific Models in
Model-Driven Architecture for Software Product Lines. MODELSWARD 2018 - 6th International
Conference on Model-Driven Engineering and Software Development, Jan 2018, Funchal, Portugal.
pp.106-116, �10.5220/0006582601060116�. �lirmm-01932810�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01932810v1
https://hal.archives-ouvertes.fr


Reusing Platform-specific Models in Model-Driven Architecture for
Software Product Lines

Frédéric Verdier1,2, Abdelhak-Djamel Seriai1 and Raoul Taffo Tiam2

1LIRMM, University of Montpellier / CNRS, 161 rue Ada, 34095, Montpellier, France
2Acelys Informatique, Business Plaza bât. 3 - 159 rue de Thor, 34000, Montpellier, France

Keywords: Reuse, Model-Driven Architecture, Software Product Line, Variability, Platform-specific Model.

Abstract: One of the main concerns of software engineering is the automation of reuse in order to produce high quality
applications in a faster and cheaper manner. Model-Driven Software Product Line Engineering is an approach
providing solutions to systematically and automatically reuse generic assets in software development. More
specifically, some solutions improve the product line core assets reusability by designing them according to
the Model-Driven Architecture approach. However, existing approaches provide limited reuse for platform-
specific assets. In fact, platform-specific variability is either ignored or only partially managed. These issues
interfere with gains in productivity provided by reuse.
In this paper, we first provide a better understanding of platform-specific variability by identifying variation
points in different aspects of a software based on the well-known ”4+1” view model categorization. Then we
propose to fully manage platform-specific variability by building the Platform-Specific-Model using two sub-
models: the Cross-Cutting Model, which is obtained by transformation of the Platform-Independent Model,
and the Application Structure Model, which is obtained by reuse of variable platform-specific assets. The
approach has been experimented on two concrete applications. The obtained results confirm that our approach
significantly improves the productivity of a product line.

1 INTRODUCTION

Software development industry has been evolving
from hand-craft to semi-automatic processes to im-
prove productivity and quality. An approach to
achieve this goal is reuse (Jacobson et al., 1997).

Model-Driven Engineering (MDE) (Schmidt,
2006) permits to design more reusable assets than
source code sections by improving their genericity.
MDE consists in designing an application with mod-
els which are abstractions of a system. Models
are managed using model transformation operations
to target another abstraction level producing another
model or source code.

More specifically, Model-Driven Architecture
(MDA) is an approach based on MDE. It specifies a
separation of concerns for assets based on 3 abstrac-
tion levels which starts from the representation of the
client’s needs in the Computation-Independent Model
(CIM). The CIM is transformed into the representa-
tion of the platform-independent software conception
in the Platform-Independent Model (PIM). Then the
PIM is refined into a Platform-Specific Model (PSM)

which includes platform specificities. Finally, the
PSM is transformed into the product source code.

While MDE and MDA permit to design highly
reusable assets, Software Product Line Engineering
(SPLE) permits to systematically identify, organize
then select and integrate assets of any nature in new
applications depending on the client’s needs. A Soft-
ware Product Line is a ”set of software-intensive
systems that share a common, managed set of fea-
tures satisfying the specific needs of a particular mar-
ket segment or mission and that are developed from
a common set of core assets in a prescribed way”
(Clements and Northrop, 2001). SPLE defines two
parallel development processes (Pohl et al., 2005).
The domain engineering phase focuses on the iden-
tification and design of reusable core assets which are
organized according to the commonalities and vari-
abilities of the product line applications. In the appli-
cation engineering phase, reusable assets are derived
to produce a new application fitting the client’s needs.

Some approaches (Deelstra et al., 2003; Kim
et al., 2005) propose to combine MDA and SPLE to
capitalize on advantages of each. To do so, they con-

106
Verdier, F., Seriai, A-D. and Tiam, R.
Reusing Platform-specific Models in Model-Driven Architecture for Software Product Lines.
DOI: 10.5220/0006582601060116
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 106-116
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



sider MDA models as the core assets of a product line.
Nevertheless, those approaches focus primarily

on reuse of CIM and PIM assets, not on PSM as-
sets which are obtained through transformation of
the PIM. However, adding platform-specific imple-
mentation variants increases the complexity of trans-
formation operations. That is why the majority of
approaches either ignore or only partially manage
platform-specific variability. In this case, the pro-
duced source code can contain unwanted implemen-
tation patterns caused by ignored variants and must be
modified manually. Those issues interfere with gains
in productivity provided by reuse (in terms of cost re-
duction, quality, etc.).

We propose to improve productivity by fully man-
aging platform-specific variability. We believe that
transformation operations cannot efficiently manage
variability. That is why we propose to build the PSM
as a combination of two sub-models: one obtained by
transformation of the PIM; and the other one obtained
by reuse of variable platform-specific assets defined
in the domain engineering. To do so, we first iden-
tify how platform-specific variability impacts the soft-
ware implementation. Then we propose to structure
the PSM to distinguish assets obtained through trans-
formation of the PIM and reused assets. Platform-
specific reusable assets are organized according to
platform-specific variability. Finally, we conducted
experiments on two concrete applications to validate
the approach.

The remaining of the paper is structured as fol-
lows. Firstly, impacts of platform-specific variability
on software are described in Section 2. Then, the pro-
posed structure of the PSM is explained in Section 3.
Section 4 details how our solution has been validated.
A state of the art is presented in Section 5. Lastly, we
conclude in Section 6.

2 PLATFORM-SPECIFIC
VARIABILITY

Platform-specific variability consists of variation
points that appear only when a specific platform or
technology is selected. Each variation point repre-
sents a decision impacting the source code related to
the use of the selected platforms.

Platform-specific variability consists of a large
amount of different variation points in numerous parts
of a software.

2.1 Identifying Platform-specific
Variability

To describe the impacts of platform-specific variabil-
ity on an application implementation, we identified
platform-specific variation points in different parts of
a system. Those parts are based on the ”4+1” view
model (Kruchten, 1995). This model is composed of
5 views defining the different parts of a system: the
logical view, the process view, the physical view, the
development view and the scenario view.

In the following, we focus on views in which we
identified platform-specific variation points:

Platform-specific Variability in the Process View.
The process view describes how the main blocks of
system functionalities interact with each other. This
view captures concurrency, inter-process communica-
tion, distribution of blocks, etc.

One of the elements the process view can describe
is the messaging system between the software and
some distant system.

A messaging system design can vary entirely from
a framework to another. For example, a system imple-
mentation using RabbitMq describes the map of the
message exchanges while a system implementation
using Kafka describes the structure of messages with-
out managing how those messages are sent. For each
platform, the different possible configurations can be
reused and organized with a variation point specific to
this platform.

Platform-specific Variability in the Physical View.
The physical view describes the infrastructure of the
system and how it is deployed.

Then, the physical view can describe the hardware
peripherals the software interacts with. For exam-
ple, mobile applications often interact with different
captors which can be specific to the device they are
deployed on and the operating system. The hetero-
geneity of hardware devices in mobile applications is
identified in (Usman et al., 2017). But this variety of
devices is different in each operating system. Conse-
quently, this variation point cannot be included in the
PIM without adding platform specificities.

Platform-specific Variability in the Development
View. The development view describes how func-
tional blocks are implemented (using layer, compo-
nent or class diagrams for example).

One of the elements the development view can de-
scribe is the persisted data structure in the system us-
ing a database management system.

Reusing Platform-specific Models in Model-Driven Architecture for Software Product Lines

107



Some database management systems like MySQL
in Figure 1 can encode generic primitive types (like
String) with different concrete types (VARCHAR and
TEXT). Those types differ in their length to fit differ-
ent use cases. The available types differ from a tech-
nology to another one. In fact, MongoDB provides
only one concrete type to encode string fields. Conse-
quently, the PIM cannot be responsible to solve those
variation points without including platform specifici-
ties in the model. Then, by selecting MySQL, a new
platform-specific variation point is included for each
field corresponding to the variety of available types.

Figure 1: Variability of types for a field depending on the
database management system used.

We identified platform-specific variability in three
aspects of the software design. It is now possible to
understand what are the impacts of platform-specific
variability on reuse.

2.2 Impacts of Platform-specific
Variability on Reuse

In MDA and SPLE combinations, platform-specific
variability influence on reuse is not as visible as im-
pacts of variability in higher abstraction levels.

In fact, if platform-specific variability is ignored,
only one platform-specific asset variant is always se-
lected. In our example, ignoring the String variation
point for MySQL implies that only one concrete type
is always selected such as TEXT. Then, the code must
be manually modified to use the right concrete type
for each field.

However, according to (Brambilla et al., 2017), it
is preferable to produce source code from only one
source of information to be able to identify how a
source code section is produced (through code gen-
eration or manual development). In this way, it is
possible to produce the application source code incre-
mentally (e.g. after multiple iterations of code gen-
eration). Moreover, modifying generated source code
can be expensive. In fact, developers must manually
identify where corrections are required. Some mod-
ifications can have large impacts on the application
implementation. In our example, changing the con-
crete type of a field modifies the database structure
implementation as well as functional data validation

rules implementation. Impacts can also vary depend-
ing on how MySQL is combined with other technolo-
gies. For example, if an Object Relational Mapping
is used like the Hibernate framework (O’Neil, 2008),
the mapping logic is also impacted.

Similarly, if platform-specific variability is par-
tially managed, some platform-specific asset variants
are ignored. Then, it leads to the same consequences
previously mentioned.

Existing approaches rely on PIM to PSM and
PSM to text transformation operations to realize
platform-specific variation points. They do not man-
age platform-specific variability efficiently (refer to
Section 5 for a description of related works) and thus,
productivity gains provided by reuse are reduced. We
propose to cater the platform-specific variability man-
agement problem by reusing platform-specific assets
designed at the PSM abstraction level.

3 REUSE AT THE
PLATFORM-SPECIFIC MODEL
(PSM) ABSTRACTION LEVEL

In order to efficiently reuse platform-specific imple-
mentation patterns, we propose a way to capitalize on
SPLE techniques to manage platform-specific vari-
ability. Assets defined at the PSM abstraction level
are considered as variable core assets similarly to as-
sets defined in higher abstraction levels.

To do so, the PSM is first structured to distinguish
its elements obtained by transformation of the PIM
from those obtained by derivation of platform-specific
core assets. Then, two different mechanisms are used
to represent platform-specific variability. Finally, as-
sets are composed to obtain the application engineer-
ing PSM.

Figure 2: Content of the PSM and how it is obtained.

As depicted in Figure 2, the content of an appli-
cation engineering PSM is composed of more fine-
grained models: the Cross-Cutting Models (CCM),
which are resulting of the PIM transformation, and
the Application Structure Models (ASM), which are

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

108



obtained by deriving reusable models of the same na-
ture.

3.1 Cross-Cutting Model (CCM)

The CCM is obtained by transformation of the PIM.
Consequently, CCMs do not contain reusable assets
and so, are not produced in the domain engineering.

A CCM describes the application realization in-
cluding the business domain, functionalities, graph-
ical user interfaces as well as cross-domain features
such as security management protocols.

Section 2 showed that PIM to PSM transforma-
tion operations could not manage platform-specific
variability efficiently. That is why they must not de-
fine any platform-specific reusable asset. This implies
that those operations are responsible to translate PIM
information to the PSM formalism but must not add
information that is not described in the PIM. In this
way, generic concepts in the PIM are translated to
platform-specific concepts.

For example, a string field in a PIM class diagram
is transformed into a class diagram field in PSM typed
as String if Java is used or string if C# is selected.
However, PIM to PSM transformation operations can-
not add new information like the database architec-
ture.

Therefore, a CCM is similar to the PIM it comes
from. Its formalism can change in different develop-
ment contexts. In fact, different companies can use
different diagrams to model their softwares. For ex-
ample, the CCM can be composed of different UML
diagrams such as component, class and sequence di-
agrams. An excerpt of CCM using a class diagram is
depicted in Figure 3.

Similarly to the PIM, the CCM cross-cuts the
source code. Thus, it is necessary to bridge the gap
between source code and Cross-Cutting Models. This
bridge is realized by ASMs.

3.2 Application Structure Model (ASM)

ASMs are platform-specific reusable models designed
in the domain engineering as variable core assets.
They are reused to design the application PSM.

An ASM represents an application physical struc-
ture to generate. Variable ASMs are reusable physi-
cal structure patterns. A pattern describes the use of
a platform, for defined concerns, as a tree of imple-
mentation structure elements (such as files, folders,
libraries and distant systems) and sub-patterns.

Therefore, ASMs are specific to platforms. How-
ever, they are independent from business domains.

Consequently, an ASM can be reused in several prod-
uct lines to produce applications using the described
set of technologies.

ASM elements define the concrete implementa-
tion by referencing the PSM to text transformation
operations to use for each file to generate. In this way,
those operations can have well defined and separated
responsibilities:

• An operation produces the implementation of us-
ing a specific platform for a defined concern.

• An operation produces local implementation sec-
tions such as the content of a method, a single file
or a set of similar files.

• An operation can use intermediate PSM to PSM
refinement operations if required. Those oper-
ations refine the PSM with the addition of new
information (for example, the description of the
database architecture).

Then, ASMs promote the use of template-based
approaches (Czarnecki and Helsen, 2003) to realize
PSM to text transformations. In fact, a template is re-
sponsible to describe the code to produce for a source
code section such as a method or a file.

Domain engineering ASMs can describe how any
platform is used with its generic formalism. In fact, an
application implementation is always structured using
elements such as files and folders.

An application engineering ASM represents the
software physical structure to generate for an appli-
cation. It is built as a composition of derived domain
engineering ASMs. It reuses and modify the physical
structure of the product line applications and, there-
fore, its architectural components that are related to
specific platforms.

For example, an excerpt of an absence demand
scheduler software PSM is depicted in Figure 3.
Elements with the stereotype Pattern are ASMs.
The ASM named MySQLDatabase describes how a
MySQL database is implemented. It defines a sub-
tree composed of two sub-patterns (DomainDefinition
and MySQLDatabase). In this way, if the content of a
sub-pattern evolves, the content of MySQLDatabase
is also impacted. Elements with the stereotype File
represent a file to generate. The element named Do-
mainClass references a generation template. The lat-
ter produces a file implementing a C# class for each
class defined in the CCMs.

Domain engineering Application Structure Mod-
els are variable assets. The following section de-
scribes how the ASM variability is represented.

Reusing Platform-specific Models in Model-Driven Architecture for Software Product Lines

109



Figure 3: PSM of the absence demand scheduler.

3.3 Realizing Variability in the PSM
Abstraction Level

Representing the variability in the PSM abstraction
level lets developers choose which platform-specific
reusable solution to integrate among several variants.
In this way, it is possible to reuse more efficiently a
wider range of platform-specific assets by using vari-
ability management to organize them.

In the PSM abstraction level, only ASMs are
reusable variable assets. Then, variability can be rep-
resented only on them.

ASMs variation points are platform-specific de-
cisions performed by developers. Platform-specific
variation points allow to reuse alternative file struc-
tures and configure the PSM to text transformation
operations they reference.

We distinguish two mechanisms to realize vari-
ability in models:

Asset Variants. Those variation points provide
choices between different variants which we
commonly see in SPLE approaches.
In Figure 3, applications can use a specific
MySQL database or use an already existing
database. Both cases are handled with specific
variants (ApplicationDatabaseMigrations and Ex-
ternalDatabaseMapping assets) of the ASM
MySQLMigration.

Model Attributes. Models are configurable as ad-
vised in (Deelstra et al., 2003). In this way, their
genericity is improved. Those variation points can
have an uncountable number of solutions unlike
asset variants.
Figure 3 provides an example of model attribute
related to the variability of MySQL types de-
scribed in Section 2.1. A default variant is cho-
sen for each type. In this way, string fields are by
default typed by VARCHAR and integer fields are
typed by INT. However, VARCHAR have a lim-
ited length that does not fit to long string like de-
scriptions. That is why the description field of
AbsenceDemand is typed as TEXT which has an
unlimited length.

An application engineering PSM is a composition of
CCMs obtained by transformation of the PIM with
derived domain engineering ASMs. The following
section describes how this composition is realized.

3.4 Composing CCMs and ASMs

The application PSM is obtained by composing the
CCM (obtained by transformation of the PIM) with
reused ASMs (obtained by derivation of domain en-
gineering ASMs). CCMs and ASMs are loosely cou-
pled to simplify the PSM construction. This is possi-
ble for two reasons.

On the one hand, CCMs cross-cut the source code.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

110



They do not rely on specific source code areas. Thus,
their definition is independent from ASMs which de-
fine the source code structure.

On the other hand, when an ASM depends on the
application engineering CCM content, the domain en-
gineering ASM declares model attributes to define
those dependencies. Then, in application engineering,
solving the ASM dependencies consists in solving its
model attributes. Although this resolution is manual,
dependencies are organized and identified with spe-
cific variation points.

An example of CCM and ASM composition is de-
picted in Figure 3. Only the resolution of model at-
tributes is creating relations between ASM and CCM
elements. This resolution is realized by the applica-
tion engineering development team.

We defined the proposed loosely coupled separa-
tion of concerns of the application engineering PSM
and how each sub-model is obtained. The following
describes how the approach has been validated.

4 VALIDATION OF THE
PROPOSAL

In order to measure the efficiency of the proposal, we
conducted experiments on two concrete applications
to answer the following questions:

Q1 Does the proposal permit to reuse variable
platform-specific assets?

• Q1.1: Can the proposal model variable
platform-specific reusable assets?
• Q1.2: Can the proposal integrate platform-

specific reusable assets in new applications?

Q2 Does the proposal improve productivity?

• Q2.1: Does the proposal improve the manage-
ment of platform-specific variability?
• Q2.2: Does the proposal reduce development

efforts for new applications?

4.1 Experiment Protocol

How to Answer Q1. A domain engineering phase
has been performed to identify reusable platform-
specific assets in the server part of several client-
server applications from diverse product lines using
a similar set of technologies. In this way, we ensure
that identified assets are platform-specific and inde-
pendent from business domains.

Then, the development team of two small client-
server applications (described in table 1) modeled
their application engineering PSM with our help.

Those applications are located in different product
lines provided by our industrial partner that use a sim-
ilar set of technologies.

The first application is a client-server absence de-
mand management application already used in pro-
duction. This software is partially described in the
previous sections to provide simplified examples.

The second application is a client-server mobility
advisor application. This application provides tools
to manage users’ travels with routing optimization ad-
vices. The experiment was realized alongside its man-
ual development.

How to Answer Q2. We developed a tool which
helps the development team to design an applica-
tion engineering PSM that reuses domain engineer-
ing ASMs and creates CCMs. In this way, we imple-
mented the composition of reused ASMs with CCMs
and we also observed how the tool was used to cre-
ate the PSM of both applications by the development
team. Moreover, we developed PSM to text trans-
formation operations corresponding to the identified
platform-specific assets. Those operations were real-
ized as templates for a template engine used by our
industrial partner.

The PSM of both applications have been trans-
formed into source code using the developed PSM to
text transformation operations. The obtained source
code has been compared to their hand-crafted version.
With this comparison, we could analyze the ratio of
generated source code that we could obtain and eval-
uate the ability of the proposal to handle platform-
specific variation points. In fact, when a variant is
ignored or inefficiently managed, the produced im-
plementation is different from the expected one. To
compare our solution results with related works, we
looked for generic approaches that could use simi-
lar PSM to text transformation operations. As far as
our knowledge, only (Lahiani and Bennouar, 2014)
could fit to our experimentation context. We esti-
mated the amount of required manual modifications
in the source code.

We estimated the amount of gained time on the
applications realization obtained by using the pro-
posal compared to the time needed to implement them
manually. We also estimated the amount of gained
time obtained by using (Lahiani and Bennouar, 2014).
These estimations were compared to the real cost of
the application overall project including all develop-
ment phases (Project cost in Table 1). Knowing that
our estimations concerned the gained time obtained in
the realization phase (thanks to code generation), we
also compared our results to the real server realization
phase costs (Server realization cost in Table 1).

Reusing Platform-specific Models in Model-Driven Architecture for Software Product Lines

111



Table 1: Statistics of 2 case studies applications.

Application Lines Nb. PSM variation points Nb. Project Server

of code Variants Model attributes functionalities cost1 realization cost1

Absence Manager 9741 5 14 81 130 M/D 40 M/D
Mobility Advisor 2820 3 14 31 98 M/D 32.5 M/D

4.2 Obtained Results

Obtained results are described in Table 2. We use the
following metrics to evaluate our results:

• Correctly generated code: ratio of the application
source code successfully generated for the server
part.

• Generated code requiring corrections: ratio of the
application generated source code that required
additional manual modifications for the server
part.

• Gained time (realization phase): estimation of
time that could be gained with the code genera-
tion.

Using these results, it is now possible to answer to
the previously mentioned questions.

Answering Q1. During the domain engineering
phase, we identified ASMs from applications related
to different product lines with similar technologies.
They could be organized following their commonal-
ities and variabilities. We identified variation points
related to each aspect of the software mentioned in
Section 3.3. The obtained product line realized the
platform-specific variability using the two mecha-
nisms described in Section 3.3. In Table 1, Nb.
PSM variation points represents the count of varia-
tion points solved to produce each application (Q1.1).

Results show that with a single domain engineer-
ing phase, we were able to generate a significant
amount of source code correctly by reusing numer-
ous variable ASMs identified in the domain engineer-
ing phase. Experimented cases are related to differ-
ent business domains. Therefore, those assets are
reusable in different product lines (Q1.2).

Thus, the proposal permits to reuse variable cross-
domain platform-specific assets.

Answering Q2. The application engineering PSM
of each experiment case has been successfully real-
ized by the development team.

All the produced source code was effectively used
thanks to the ability, provided by ASMs, to select

1Estimated costs measured in Man/Day (M/D).

which fine-grained PSM to text transformation oper-
ations must be used.

Moreover, less additional manual corrections were
needed in the source code produced by our proposal
comparatively to source code produced using (Lahi-
ani and Bennouar, 2014). In fact, the latter could not
generate platform-specific implementation variants
which had large impacts on the source code. There-
fore, the proposal manages more efficiently platform-
specific variability than (Lahiani and Bennouar, 2014)
does (Q2.1).

The estimated gained time difference between ex-
isting approaches and the proposed one is explained
by the required manual correction ratio difference be-
tween the experimented solutions. In fact, consider-
ing the transformation operations used, the generated
source code proportion is the same. But additional
manual efforts are required in existing solutions for
code sections that have a large impact on the applica-
tion implementation. Thus, using (Lahiani and Ben-
nouar, 2014), it is sometimes preferable to not gener-
ate source code sections that can vary depending on a
platform-specific variation point instead of generating
them.

The estimated gained time over real realization
cost ratio was lower than the ratio of successfully gen-
erated source code. In fact, for a given source code
section, it is slower to manually modify generated
source code sections than to produce the same entire
code section manually. Some modifications involved
different parts of the software and were difficult to
perform. However, most of the required modifica-
tions on the source code produced using our approach
could be handled with automatic tools provided by
any IDE.

In the second experiment, the estimated gained
time was lower than in the first experiment. This was
mainly caused by the use of new technologies that
were not used in Absence Manager. Consequently,
developers spent more time to realize a task due to
their lack of experience in the new involved technolo-
gies. And the source code could not be generated be-
cause no domain engineering ASM was available to
describe the use of those technologies.

Although the estimated gained time involves only
the realization phase, we believe that the proposed so-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

112



Table 2: Results of using the studied solutions on the case studies.

Application Approach Generated code Gained time
Correctly Requiring corrections (realization)1

Absence Manager (Lahiani and Bennouar, 2014) 71% 14% 16 M/D (40%)
Proposition 80% 5% 25 M/D (62.5%)

Mobility Advisor (Lahiani and Bennouar, 2014) 70% 11% 4 M/D (12.3%)
Proposition 78% 3% 10 M/D (30.7%)

lution can reduce the amount of time required in other
development phases. For example, costs in project
management are reduced because we lower human re-
source costs in the realization phase. Moreover, after
the realization phase, the produced application must
be tested before being released to the customer. The
cost of this qualification phase is variable. It depends
on several factors such as the requirements about the
product quality, the application complexity or even
the testing process reliability. By reusing assets tested
in previous projects, we reduce the application com-
plexity by providing standardization. We can also im-
prove the testing process reliability because a large
amount of the source code is obtained by reusing as-
sets that are linked to features. Therefore, it is possi-
ble to provide test scenarios, designed in previous ap-
plications containing the same features, to help testers
in the qualification phase.

Therefore, the proposal reduces the development
effort in application engineering (Q2.2).

Experiments showed that the proposal improves
the reuse of platform-specific assets and therefore
productivity in MD-SPLE. However, we have also
identified some threats to our solution validity which
are discussed in the next section.

4.3 Threats to Validity

External Threats. Firstly, the comparison between
our proposition and the existing approaches is limited.
In fact, we could compare our results to only one solu-
tion. Furthermore, estimations involving the existing
approach are theoretical and not obtained by measur-
ing results using a concrete tool. These estimations
rely on the estimations of the development team re-
garding specific implementation and correction tasks.

Moreover, the tested applications have a simi-
lar architecture (client-server) to experiment variable
ASMs reuse. The size of tested applications is small
because their architecture improved reuse of com-
ponents ”on the shelf”. Therefore, the application

1Estimated costs measured in Man/Day (M/D).

source code focuses only on domain-specific behav-
iors and connections between components implemen-
tations. Consequently, the proposal applicability in a
more generic context is not guaranteed.

Finally, adoption in an industrial context is a main
concern for both model-driven engineering and soft-
ware product line approaches. In our case, we believe
that this threat is reduced by the maturity of available
MDE tools and by the fact that the approach ensures
that code can be generated by template engines.

Internal Threat. A potential limitation of the pro-
posal is that the PIM and PSM meta-models must
evolve alongside the evolution of the product line.
But those meta-models’ evolutions can be difficult be-
cause they impact other reusable assets like model
transformation operations meaning those assets might
have to evolve too. This threat is reduced by the
large amount of existing MDE solutions addressing
the problem of the meta-model evolution (Paige et al.,
2016).

5 RELATED WORKS

Previous works addressed the problem of handling
platform-specific variability. We evaluate their capa-
bilities to handle, partially handle or not handle each
case of platform-specific variation points identified in
the ”4+1” view model listed in Section 2.1. Our re-
sults are summarized in Table 3.

Reusing MDA models in a software product line
is an idea introduced by (Deelstra et al., 2003). How-
ever, only platform variability is addressed in this pa-
per. But the variability of platforms is not platform-
specific variability. In fact, platform variability con-
sists of the set of available platforms which can ad-
dress a specific problem. For example, to implement
a software, the different programming languages are
platform variants, all addressing the problem of im-
plementing the system.

Alternatively, (Czarnecki et al., 2004) proposed
a staged configuration process in which variability

Reusing Platform-specific Models in Model-Driven Architecture for Software Product Lines

113



Table 3: Capabilities of existing approaches to handle platform-specific variability aligned on the ”4+1” view model.

Approaches Platform variability Platform-specific variability

Process view Physical view Development view

(Deelstra et al., 2003)
(Czarnecki et al., 2004)

(Hamed and Colomb, 2014)
(Dageförde et al., 2016)

(Usman et al., 2017)

Legend: Handled Inefficiently handled Not handled

is represented in several feature models. Each fea-
ture model represents the system features or a sub-
system features to correspond to the abstraction level
of a development team. Then, an application is de-
signed by selecting features from the highest abstrac-
tion level model. Selected features are refined into
specific feature models in lower abstraction levels.
Once the staged configuration is complete, core as-
sets are automatically selected and integrated in the
system to produce. The staged configuration process
can be adapted to our problem using the MDA ab-
straction levels. Thus, platform-specific variability
can be managed. However, it is necessary to design
core assets for each platform or technology possible
because they are realizing the lowest abstraction level
features which are specific to platforms. Then, the
staged configurations approach using MDA abstrac-
tion levels does not scale up with the addition of new
platforms.

(Hamed and Colomb, 2014) identifies the problem
of platform-specific variability lack of management
in existing approaches. This approach addresses the
problem of handling Non-Functional Requirements
(NFR). NFRs are client’s requirements that are not re-
lated to the application functionalities or business do-
main such as the quality requirements (performance,
maintainability). Depending on the chosen NFRs,
platform-specific design variants are selected by in-
tegrating variation points in PIM to PSM transforma-
tion operations. Consequently, those operations com-
plexity increases quickly with the addition of new de-
sign variants because each alternative has to be de-
scribed in its dedicated transformation rule. More-
over, NFRs are global features often related to qual-
ity criteria. Therefore, some selected implementation
variants are applied without considering the applica-
tion specific use cases.

(Dageförde et al., 2016) proposed to use a MDA
and SPLE combination to realize a cross-platform
mobile product line. It extends the model-driven
cross-platform framework MD2 to adapt it to a SPLE
context. MD2 describes an application using a textual

Domain Specific Modeling Language. The applica-
tion is designed by deriving a variable workflow of
tasks similar to the Business Process Model and No-
tation (Group, 2011). The approach permits to pro-
duce applications that can collaborate with each oth-
ers thanks to the expressiveness of MD2. Managing
the variability with modification of the workflow im-
plies that only high abstraction variability is handled.
In fact, workflow models are coarse grained mod-
els using tasks as basic elements. Consequently, the
workflow describes the application behavior but not
its architecture. Therefore it is not possible to select
an alternative platform-specific implementation pat-
tern such as a different architecture (physical and de-
velopment views). Modifying the application design
to satisfy a non-functional requirement would require
to be able to choose between different model transfor-
mation operations automatically.

Then, (Usman et al., 2017) proposed a MD-SPLE
approach which combines MDA and SPLE for mo-
bile development context. This approach addresses
the problem of using product lines in the mobile de-
velopment context with its extensive use of different
platforms and hardware devices. It uses UML2 mod-
els. The approach integrates platform variability by
using UML profiles. Those profiles specialize PIM
elements to add platform specificities. They can be
seen as a Platform Description Models (PDM) which
describe platform specificities. However, variation
points are related to features or hardware choices
(physical view) and not to implementation choices
(development view). Similarly to (Dageförde et al.,
2016), modifying the application design is hard be-
cause the approach relies on a common architec-
ture implicitly described in model to text transforma-
tion operations. Consequently, variability related to
the process view is not managed. Moreover, PDMs
modify uniformly every elements of a targeted kind.
Therefore, it is not possible to select different variants
for different elements in the same model.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

114



6 CONCLUSIONS

We propose a generic solution which goes further
in the combination of MDA and SPLE that consider
MDA models as configurable core assets of a product
line. The proposal improves productivity regarding
existing MDA and SPLE combinations by enhancing
reuse of platform-specific assets and fully managing
platform-specific variability.

Firstly, we provide a definition of platform-
specific variability by identifying platform-specific
variation points in different aspects of the software
design. These aspects are defined accordingly to the
”4+1” view model which is a well-known catego-
rization of a system concerns. We also show that
platform-specific variability has a not negligible im-
pact on the reuse capabilities of the product line.

Then we propose a new PSM structure based on a
composition of two sub-models. On the one hand, the
Cross-Cutting Model (CCM) is obtained by transfor-
mation of the PIM which defines the application con-
ception. On the other hand, the Application Structure
Model (ASM) is obtained by reuse of variable models
of the same nature defined in domain engineering.

Platform-specific variability is represented on
ASMs with two mechanisms: asset variants which
permit to replace an ASM with one of its variants and
model attributes which permit to configure the assets
to reuse. In this way, domain engineering ASMs are
generic configurable assets organized by their com-
monalities and variabilities.

We experimented our proposal to produce two
concrete applications. The obtained results confirmed
that fully handling platform-specific variability sig-
nificantly increases the productivity of a product line.
In fact, the generated code could vary according to
cross-domain, platform-specific variation points.

Finally, the capabilities of existing approaches ad-
dressing the problem of managing platform-specific
variability are analyzed. Results showed that
platform-specific variability is either ignored, only
partially managed or fully managed but implying
shortcomings in terms of maintainability of the prod-
uct line.

The presented work involved only the PSM ab-
straction level. We expect that the proposed PSM
definition could impact the CIM and PIM contents.
Our future works will address impacts on higher ab-
straction levels to integrate the proposal in a full ap-
proach involving all MDA abstraction levels. We plan
to work on two main axis.

Firstly, further works will be required to under-
stand how the selection of CIM and PIM abstraction
level assets can impact the selection of PSM abstrac-

tion level ones. We expect that the selection of ASMs
will be motivated by two criteria: the non-functional
requirements expressed by the client represented in
the CIM and the software architecture design of the
PIM.

Then, the proposal core assets organization is
managed by a feature model. This model purpose is
to represent coarse-grained features. However, PSM
reusable assets can be fine-grained models. Integrat-
ing Common Variability Language (Haugen et al.,
2013) is a promising solution that might help us or-
ganize more fine-grained assets.

ACKNOWLEDGEMENTS

We would like to thank the National Association of
Research and Technology (ANRT in French) for its
contribution to this research.

REFERENCES

Brambilla, M., Cabot, J., and Wimmer, M. (2017). Model-
driven software engineering in practice, second edi-
tion. Synthesis Lectures on Software Engineering.

Clements, P. and Northrop, L. (2001). Software Product
Lines: Practices and Patterns. Addison-Wesley Pro-
fessional.

Czarnecki, K. and Helsen, S. (2003). Classification of
model transformation approaches. In Proceedings of
the 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture, pages
1–17.

Czarnecki, K., Helsen, S., and Eisenecker, U. (2004).
Staged Configuration Using Feature Models, pages
266–283. Springer Berlin Heidelberg.

Dageförde, J. C., Reischmann, T., Majchrzak, T. A., and
Ernsting, J. (2016). Generating app product lines in
a model-driven cross-platform development approach.
In 49th Hawaii International Conference on System
Sciences (HICSS).

Deelstra, S., Sinnema, M., van Gurp, J., and Bosch, J.
(2003). Model driven architecture as approach to man-
age variability in software product families. Research-
Gate.

Group, O. M. (2011). Business Process Model and Nota-
tion. Version 2.0.

Hamed, A. and Colomb, R. M. (2014). End to end devel-
opment engineering. Journal of Software Engineering
and Applications, pages 195–216.

Haugen, O., Wasowski, A., and Czarnecki, K. (2013). Cvl:
Common variability language. In Proceedings of the
17th International Software Product Line Conference,
SPLC ’13, pages 277–277. ACM.

Reusing Platform-specific Models in Model-Driven Architecture for Software Product Lines

115



Jacobson, I., Griss, M., and Jonsson, P. (1997). Soft-
ware Reuse: Architecture Process and Organization
for Business Success. ACM Press Books. ACM Press.

Kim, S. D., Min, H. G., Her, J. S., and Chang, S. H. (2005).
Dream : A practical product line engineering using
model driven architecture. Proceedings of the Third
International Conference on Information Technology
and Applications (ICITA’05).

Kruchten, P. B. (1995). The 4+1 view model of architecture.
IEEE Software, pages 42–50.

Lahiani, N. and Bennouar, D. (2014). An mda based deriva-
tion process for software product lines. In The Inter-
national Arab Conference on Information Technology
(ACIT2014).

O’Neil, E. J. (2008). Object/relational mapping 2008: Hi-
bernate and the entity data model (edm). In Proceed-
ings of the 2008 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’08, pages
1351–1356. ACM.

Paige, R. F., Matragkas, N., and Rose, L. M. (2016). Evolv-
ing models in model-driven engineering: State-of-the-
art and future challenges. Journal of Systems and Soft-
ware, 111:272–280.

Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. Springer-Verlag New York, Inc.

Schmidt, D. C. (2006). Model-driven engineering.
COMPUTER-IEEE COMPUTER SOCIETY-.

Usman, M., Iqbal, M. Z., and Khan, M. U. (2017). A
product-line model-driven engineering approach for
generating feature-based mobile applications. Journal
of Systems and Software, 123:1 – 32.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

116


