
HAL Id: lirmm-01932852
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01932852

Submitted on 23 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reverse engineering reusable software components from
object-oriented APIs

Anas Shatnawi, Abdelhak-Djamel Seriai, Houari Sahraoui, Zakarea Al-Shara

To cite this version:
Anas Shatnawi, Abdelhak-Djamel Seriai, Houari Sahraoui, Zakarea Al-Shara. Reverse engineering
reusable software components from object-oriented APIs. Journal of Systems and Software, 2017,
131, pp.442-460. �10.1016/j.jss.2016.06.101�. �lirmm-01932852�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01932852
https://hal.archives-ouvertes.fr

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

The Journal of Systems and Software 0 0 0 (2016) 1–19

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Reverse engineering reusable software components from

object-oriented APIs

Anas Shatnawi a , b , ∗, Abdelhak-Djamel Seriai a , Houari Sahraoui c , Zakarea Alshara

a

a UMR CNRS 5506, LIRMM, University of Montpellier, Montpellier, France
b LATECE, University of Quebec at Montreal, Montreal, Canada
c DIRO, University of Montreal, Montreal, Canada

a r t i c l e i n f o

Article history:

Received 17 June 2015

Revised 29 February 2016

Accepted 29 June 2016

Available online xxx

Keywords:

Software reuse

Software component

Object-oriented

API

Reverse engineering

Frequent usage pattern

a b s t r a c t

Object-oriented Application Programing Interfaces (APIs) support software reuse by providing pre-

implemented functionalities. Due to the huge number of included classes, reusing and understanding

large APIs is a complex task. Otherwise, software components are accepted to be more reusable and un-

derstandable entities than object-oriented ones. Thus, in this paper, we propose an approach for reengi-

neering object-oriented APIs into component-based ones. We mine components as a group of classes

based on the frequency they are used together and their ability to form a quality-centric component. To

validate our approach, we experimented on 100 Java applications that used four APIs.

© 2016 Published by Elsevier Inc.

1

p

o

e

n

r

t

M

i

a

b

o

s

7

2

c

p

2

n

a

t

p

q

(

i

e

A

t

o

f

(

r

(

g

e

q

d

d

p

a

h

0

. Introduction

Nowadays, the development of large and complex software ap-

lications is based on reusing pre-existing functionalities instead

f developing them from scratch (Frakes and Kang, 2005; Zibran

t al., 2011). Application Programming Interfaces (APIs) are recog-

ized as the most commonly used repositories supporting software

euse (Frakes and Kang, 2005). APIs provide a pre-implemented,

ested and high quality set of functionalities (Zibran et al., 2011;

onperrus et al., 2012). Consequently, they increase software qual-

ty and reduce the effort spent on coding, testing and maintenance

ctivities (Zibran et al., 2011).

In the case of object-oriented APIs, e.g. Standard Template Li-

raries in C++ or Java SDK , the functionalities are implemented as

bject-oriented classes. It is well known that reusing and under-

tanding large APIs, such as Java SDK which contains more than

.0 0 0 classes, is not an easy task (Ma et al., 2006; Uddin et al.,

012). On the other hand, classes of an API are used following spe-

ific usage patterns, in order to provide services to software ap-

lications (Acharya et al., 2007; Wang et al., 2013; Robillard et al.,

013). For example, in the Android API, Activity, GroupView, Con-
∗ Corresponding author.

E-mail addresses: shatnawi@lirmm.fr , anasshatnawi@gmail.com (A. Shat-

awi), seriai@lirmm.fr (A.-D. Seriai), sahraoui@iro.umontreal.ca (H. Sahraoui),

lshara@lirmm.fr (Z. Alshara).

e

a

d

m

p

ttp://dx.doi.org/10.1016/j.jss.2016.06.101

164-1212/© 2016 Published by Elsevier Inc.

Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
ext, LayoutInflater and View are the classes needed to create a sim-

le activity which contains an empty view (Google, 2015). Conse-

uently, many approaches have been proposed, such as Wang et al.

2013) ; Montandon et al. (2013) ; Monperrus et al. (2010) , to facil-

tate the understandability and the reusability of APIs by discov-

ring Frequent Usage Patterns (FUPs) of APIs. This is based on the

PI usage history of software applications (i.e. API clients). Despite

he value of FUPs, these are not sufficient to provide a high degree

f API reusability and understandability. These are used as guides

or reusing API classes and are not themselves reusable entities

 Maalej and Robillard, 2013).

Otherwise, software components are admitted to be more

eusable and understandable entities than object-oriented ones

 Szyperski, 2002). It is because components are considered coarse-

rained software entities, while object-oriented classes are consid-

red fine-grained ones. In addition, components define their re-

uired and provided interfaces. This means that the component

ependencies are more understandable compared to the depen-

encies among objects. Consequently, many approaches have been

roposed to identify components from object-oriented software

pplications such as Mishra et al. (2009) ; Kebir et al. (2012) ; Allier

t al. (2011) . These approaches aim at mining components by an-

lyzing the source code of software applications. In this context,

ependencies between classes are only realized via calls between

ethods, sharing types, etc. Nevertheless, no approach has been

roposed to identify components from object-oriented APIs. In this
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:shatnawi@lirmm.fr
mailto:anasshatnawi@gmail.com
mailto:seriai@lirmm.fr
mailto:sahraoui@iro.umontreal.ca
mailto:alshara@lirmm.fr
http://dx.doi.org/10.1016/j.jss.2016.06.101
http://dx.doi.org/10.1016/j.jss.2016.06.101

2 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

p

T

o

c

o

m

t

q

t

a

t

s

2

i

f

v

p

o

b

a

t

a

F

i

o

o

t

S

W

p

3

A

fi

s

n

n

3

c

l

o

v

o

i

v

i

s

t

o

A

f

T
context, we distinguish two kinds of dependencies. The first one

is that classes are structurally dependent. The second one is that

some classes need to be reused together to implement a function-

ality. This kind of dependencies cannot be identified by only an-

alyzing the source code, but also needs the analysis of how soft-

ware applications use the API classes. For example, in the Android

API, Activity and Context classes are structurally and behaviorally

independent, but they have to be used together to build android

applications. This means that classes frequently used together are

more favorable to belong to the same component.

In this paper, we propose an approach that aims at recover-

ing software components from object-oriented APIs. This does not

only improve the reusability of APIs themselves, but also supports

component-based reuse techniques by providing component based

APIs. The approach exploits specificity of API entities by statically

analyzing the source code of both APIs and their software clients

to identify groups of API classes that are able to form components.

Our assumption is based on the probability of classes to be reused

together by API clients on the one hand, and on the structural de-

pendencies between classes on the other hand. In order to validate

the proposed approach, we experimented on a set of 100 Java ap-

plications that use three Android APIs in addition to the java.util

API. The evaluation shows that structuring object-oriented APIs as

component-based ones improves the reusability and the under-

standability of these APIs.

This journal paper is an extended version of our conference pa-

per published in Shatnawi et al. (2015) . The extension includes: (1)

A new case study. (2) Deep analysis of the problem (e.g. Section 3).

(3) More details and deep analysis of the proposed solution (e.g.

how to structure component interfaces). (4) Extended related work

analysis. (4) Discussion and threats to validity.

The rest of this paper is organized as follows. Section 2 presents

the background needed to understand our approach.

Section 3 shows the foundation of our approach. Then, in

Section 4 we present the identification of classes composing

component interfaces. Section 5 presents how APIs are organized

as component-based libraries. Experimentation and results of our

approach are discussed through four APIs case studies in Section 6 .

Next, related works are discussed in Section 7 . Finally, concluding

remarks and future directions are presented in Section 8 .

2. Background

2.1. Component quality model: The ROMANTIC approach

In this paper, we rely on the component quality model pro-

posed in our previous works related to the ROMANTIC

1 approach

(Kebir et al., 2012; Chardigny et al., 2008a). In ROMANTIC , we have

proposed a set of metrics to measure the ability of a group of

classes in a software application to form a component. These met-

rics are defined based on the component quality characteristics

that are driven from the component definitions: Composability, Au-

tonomy and Specificity. Composability of a component refers to its

ability to be composed through its interfaces without any modi-

fication. Autonomy means that a component can be reused in an

autonomous way because it encapsulates the strongly dependent

functionalities. Specificity refers to the fact that a component im-

plements a limited number of closed functionalities, which makes

it a coarse-grained entity.

Similar to the software quality model ISO 9126 (ISO, 2001), we

proposed to refine the characteristics of the component into sub-

characteristics. Next, the sub-characteristics are refined into the
1 ROMANTIC: Re-engineering of Object-oriented systeMs by Architecture extrac-

tioN and migraTIon to Component based ones.

t

g

t

c

Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
roperties of the component (e.g. number of required interfaces).

hen, these properties are mapped to the properties of the group

f classes from which the component is identified (e.g. group of

lasses coupling). Lastly, these properties are refined into object-

riented metrics (e.g. coupling metric). This quality refinement

odel is shown in Fig. 1 . According to this model, a quality func-

ion has been proposed to measure the component quality. This

uality function is used as a similarity metric for a hierarchal clus-

ering algorithm (Kebir et al., 2012; Chardigny et al., 2008a) as well

s in search-based algorithms (Chardigny et al., 2008b) to partition

he object-oriented classes into groups; where each group repre-

ents a component.

.2. Frequent usage patterns

In the domain of data mining, a Frequent Usage Pattern (FUP)

s defined as a set of items, subsequences or substructures that are

requently used together by customers (Han et al., 2006). It pro-

ides information that helps decision makers (e.g. customer shop-

ing behavior) by mining associations and correlations among a set

f items in a huge data set. An example of FUP mining is a market

asket analysis. In this example, the customer buying habits are

nalyzed to identify items that are frequently bought together in

he customer shopping baskets, for instance, milk and bread form

 FUP when they bought frequently together. The identification of

UP is based on Support quality metric that is used to measure the

nterestingness of a set of items. Support refers to the probability

f finding a set of items in the transactions. For example, the value

f 0.30 Support , means that 30% of all the transactions contain the

arget item set. The following equation refers to Support :

(E 1 , E 2) = P (E1 ∪ E2) (1)

here E1, E2 are sets of items; S refers to Support; P refers to the

robability.

. The proposed approach foundations

The goal of our approach is at reengineering object-oriented

PIs to component-based ones. This is done in two directions. The

rst one is the identification of groups of classes that can be con-

idered as the object-oriented implementation of the API compo-

ents. The second one is the identification of how these compo-

ents can be organized as component-based APIs.

.1. Component identification

We view a component as a group of API classes that provides

oarse grained services to clients of an API. Classes that have direct

inks (e.g. method call, attribute access) with classes implementing

ther components compose the interfaces of the component. Pro-

ided interfaces of a component are defined as a group of meth-

ds implemented by classes composing these interfaces. Required

nterfaces of a component are defined as a group of methods in-

oked by the component and provided by other components.

The identification of groups of classes composing components

s based on two kinds of dependencies; usage-pattern-based and

ource-code-based ones. Usage-pattern-based is related to the way

hat software applications use these groups of classes. It refers to

bservations made based on the analysis of previous usages of

PIs. We consider that classes frequently used together are more

avorable belonging to a single or a few number of components.

his is realized through Frequent Usage Patterns (FUPs) that iden-

ify recurring patterns, composed of classes frequently used to-

ether. Classes composing FUPs represent the gateways to access

he API services. Thus, they are used to guide the identification of

lasses composing the provided interfaces of components. Classes
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 3

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Fig. 1. From component characteristics to object-oriented metrics.

c

b

o

f

u

c

c

t

t

c

a

s

a

p

e

3

s

n

s

f

T

b

o

t

c

b

r

i

t

o

Fig. 2. Multi-layers component-based API.

c

t

i

v

3

t

l

omposing a FUP may be related to different services that have

een used together. Therefore, they can be mapped to be a part

f different component interfaces. Classes of a component inter-

ace can be very dependent on other classes that are not directly

sed by clients of the API. These are identified based on source-

ode-based dependencies. It implies that the component identifi-

ation process is driven by the identification of its provided in-

erfaces. To this end, the analysis of structural dependencies be-

ween classes is used to identify classes forming the core of the

omponent. It is used to form a quality-centric component. This is

chieved based on the three quality characteristics that should be

atisfied by the group of classes forming the component; Compos-

bility, Autonomy and Specificity . To this end, we rely on the com-

onent quality model presented by the ROMANTIC approach (Kebir

t al., 2012; Chardigny et al., 2008a).

.2. API as a library of components

We organize the API in layers of components. These layers de-

cribe how API components are vertically and horizontally orga-

ized. We consider that each layer contains components providing

ervices to components of the layer above and requiring services

rom components of the layer below.

Classes constituting an API can be categorized into two types.

he first one is made up of classes that are directly reused

y software applications. These represent the implementation

f accessible-services of the API (provided to software applica-

ions). Thus, components that are identified corresponding to these

lasses constitute the first layer of the API (i.e. the layer accessed

y software applications). The second one is composed of classes

epresenting the rest of API classes. These can also be divided

nto two categories. The first includes classes providing services

o the first layer components. These represent the implementation

f components constituting the second layer. In the same manner,
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
omponents composing the other layers are identified. Based on

hat, we organize component-based APIs as a set of layers describ-

ng how their components are organized. Fig. 2 shows our point of

iew regarding the API organization.

.3. Principles and mapping model

Based on the observations made in the previous sub-sections,

he proposed approach can be summarized according to the fol-

owing principles:
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

4 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Fig. 3. Mapping class to component through FUP.

4

d

t

t

t

f

t

t

c

4

a

o

b

l

a

T
• In object-oriented APIs, a component is identified as a group of

classes.
• To reengineer the entire object-oriented API into a component-

based one, each class of the API is mapped to be part of at least

one component. Each class is mapped either as a class of the

component interfaces or as a part of the internal classes of the

component.
• Classes frequently used together by software applications pro-

vide accessible-user services of the API. Thus, they are used to

guide the identification of classes composing the provided in-

terfaces of components. These are identified based on FUPs.
• As a FUP can be composed of classes providing multiple ser-

vices, its classes can be mapped to be a part of different com-

ponent interfaces.
• A class of an API can be a part of several FUPs and can partic-

ipate in implementing multiple services. Consequently, a class

can be mapped into multiple component interfaces.
• The identification of classes forming the core of the compo-

nents is driven by the identification of its provided interfaces.
• The analysis of structural dependencies between classes is used

to identify classes forming the core of the component.
• Classes that are not used by software applications are used to

structure components of the API layers.
• In a component-based API, the components are vertically and

horizontally organized in terms of layers based on the required

and provided services between the components.

Based on these principles, we propose a mapping model, shown

in Fig. 3 , that maps class-to-component through FUPs.

3.4. Identification process

We propose the following process to identify components from

object-oriented APIs (see Fig. 4):

• Identification of frequent usage patterns. FUPs are identified

by analyzing the interactions between the API and its applica-

tion clients.
• Identification of the interfaces of components. We partition

the set of classes of each FUP into subgroups, where each one

is considered as related to the provided interfaces of one com-

ponent (c.f. Fig. 5). The partitioning is based on criteria related
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
to structural dependencies, lexical similarity and the frequency

of simultaneous reuse.
• Identification of internal classes of components driven by

their provided interfaces. Classes composing the provided in-

terfaces of a component form the starting point for identifying

the rest of the component classes. To identify these classes we

rely on the analysis of structural dependencies between classes

in the API with those forming the interfaces. We check if these

classes are able to form a quality-centric component.
• Organizing API as layers of components. As each class of

the API must be a part of at least one component, we asso-

ciate classes that do not compose any of the already identi-

fied components to new ones. According to that, we organize

component-based APIs as a set of layers. This organization is

use-driven. The first layer is composed of components that are

used by the software clients, while the second layer is com-

posed of components that provide services used by components

of the first layer, and so on. As a result, the API is structured in

N layers of components.

. Identification of component interfaces

The identification of classes forming an API component is

riven by the identification of classes composing the provided in-

erfaces of this component. Classes composing these interfaces are

hose directly accessed by the clients of the API. Classes belonging

o the same interface are those frequently used together. There-

ore, they are identified from frequent usage patterns. Classes of

he API composing frequent usage patterns are identified based on

he analysis of how API classes were used by the API clients. API

lasses used together constitute transactions of usage.

.1. Extracting transactions of usage

A transaction of usage is a set of interactions between an API

nd a client of this API. These interactions consist of calling meth-

ds, accessing attributes, inheritance or creating an instance object

ased on a class of the API. They are identified by statically ana-

yzing the source code of both the API and its clients. Transactions

re different depending on the choice of which are the API clients.

his choice directly affects the type of the resulting patterns. Mul-
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 5

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Fig. 4. The process of mining components from an object-oriented API.

Fig. 5. Identification of provided interfaces of API components from FUPs.

t

c

F

c

{

t

t

{

c

r

t

a

r

c

c

o

p

p

a

a

e

t

T

b

4

t
iple options are possible, a client can be either a class, a group of

lasses or the whole application. Fig. 6 illustrates these situations.

irstly, if we consider that a transaction corresponding to a class

omposing a client application, then {C2, C5}, {C3}, {C5}, {C7} and

C7} are the set of transactions that will be identified based on

he first client application. Secondly, if a transaction corresponds

o a group of classes from the client application, then {C2, C5, C3},

C5, C7} and {C7} are the set of transactions that will be identified

onsidering the first client application. Thirdly, if a transaction cor-

esponds to the whole client application, then {C2, C5, C3, C7} is

he transaction that will be identified considering the first client

pplication.

In our approach, we consider as an API client a group of classes

elated to the same application functionality. The idea is that

lasses corresponding to the same application functionality use API
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
lasses related to correlated API functionalities. We identify groups

f classes related to the same application functionalities as com-

onents of this application. This is done thanks to ROMANTIC ap-

roach defined in our previous work Kebir et al. (2012) . As a result,

 transaction is a set of API classes such that each one is used by

t least one class of the client component classes. Fig. 7 shows an

xample. Algorithm 1 shows the process of transaction identifica-

Algorithm 1: Identifying Transactions

Input : Source Code of a Set of Software Clients(Clients), API

Source Code(AP I)

Output : A Set of Transactions(trans)

for each cl ient ∈ Cl ients do

component s .add(ROMANTIC(client . sourceCode));

end

for each com ∈ components do

t ransact ion = ∅ ;

for each class ∈ com do

t ransact ion .add(class.getUsedClasses(AP I. sourceCode));

end

t rans .add(t ransact ion);

end

return trans ;

ion. It starts by partitioning each software client into components.

hen, for each component, it identifies API classes that are reused

y the component classes.

.2. Mining frequent usage patterns of classes

In the previous step, the interactions of application clients with

he API are identified as transactions. Based on these transactions,
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

6 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Fig. 6. Transactions based on clients.

Fig. 7. Client components and corresponding transactions.

w

a

c

fi

S

c

4

d

a

c

S

a

s

A

e

g

s

e

g

g

o

s

l

o

r

d

Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
e identify FUPs. A FUP is defined as a set of API classes that

re frequently used together by client components. A group of

lasses is considered as a frequent pattern if it reaches a prede-

ned threshold of interestingness metric. This metric is known as

upport . The Support refers to the probability of finding a set of API

lasses in the transactions.

.2.1. FUPs mining algorithms: an analysis

The identification of groups of classes forming FUPs can be

one based on several algorithms. One of them is the Brute-Force

lgorithm (Han et al., 2006) that identifies all possible groups of

lasses. Then, it prunes groups that do not reach the predefined

upport threshold value. However, this algorithm is computation-

lly prohibitive since that the identification of all groups, corre-

ponding to N classes, needs 2 N time complexity (Han et al., 2006).

nother algorithm is the apriori algorithm that utilizes the prop-

rty of anti-monotone (Han et al., 2006), which means that if a

roup of classes is considered as infrequent, then all of its super-

ets must be infrequent as well. Thus, they do not need to be gen-

rated. However, this algorithm still has to generate the candidate

roups of classes. For instance, suppose that we have 10 4 frequent

roups of classes of size 1 , it requires to generate about 10 7 groups

f size 2 . Furthermore, it needs to generate about 10 30 groups of

ize 10 . Thus, this algorithm does not work in the situation where

ow Support threshold values are selected (Han et al., 20 0 0). An-

ther algorithm is the Frequent-Pattern Growth (FP Growth) algo-

ithm (Han et al., 20 0 0). In this algorithm, there is no need to pro-

uce the candidate groups. Instead, it uses a divide-and-conquer
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 7

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Table 1

An example of transactions com-

posed of API classes.

Transaction ID List of classes

T1 C1, C2, C5

T2 C2, C4

T3 C2, C3

T4 C1, C2, C4

T5 C1, C3

T6 C2, C3

T7 C1, C3

T8 C1, C2, C3, C5

T9 C1, C2, C3

Table 2

Classes ordering inside the transac-

tions.

Transaction ID Ordered classes

T1 C2, C1, C5

T2 C2, C4

T3 C2, C3

T4 C2, C1, C4

T5 C1, C3

T6 C2, C3

T7 C1, C3

T8 C2, C1, C3, C5

T9 C2, C1, C3

t

c

i

t

o

4

s

c

G

a

p

c

t

p

6

c

t

f

o

w

b

q

C

p

q

t

t

d

l

t

t

C

n

i

i

{

4

u

t

t

A

b

o

W

t

m

4

f

c

w

4

m

i

g

c

I

used by the API expert to weight each characteristic as needed.
echnique to mine FUPs. It firstly builds a special data structure

alled Frequent-Pattern tree (FP-tree). This tree is used to compress

nformation of class associations. Then, FP Growth divides the FP-

ree into a collection of databases, such that each one is related to

ne frequent group of classes.

.2.2. Frequent-pattern growth algorithm

Among the presented algorithms, FP Growth is the best one

ince that it outperforms the others in terms of time and space

omplexity (Han et al., 2006). Thus, we mine FUPs based on the FP

rowth. To better understand how FP Growth works, we provide

n illustrative example. In this example, we have 9 transactions

resented in Table 1 . The algorithm starts by building the FP-tree

orresponding to these transactions. To this end, it first scans the

ransactions to find the frequency of each API class. In our exam-

le, the frequencies of C1, C2, C3, C4 and C5 are respectively 6, 7,

, 2 and 2 . Then, the classes are sorted in a descending order ac-

ording to their frequency values. That is C2, C1, C3, C4, C5 . Next,

he classes inside the transactions are ordered according to their

requency values (see Table 2). Then, the tree is built based on the

rdered transactions as follows: starting from the root of the tree,

hich is labeled by a NULL value, each transaction is added as a

ranch in the tree, such that the class which has the highest fre-

uency is added first and so on. In the example, the order is C2, C1,

5 for the first transaction. Whenever a branch shares a common

refix with an already added branch, we only increment the fre-

uency of the shared nodes. Fig. 8 explains the process of building

he FP-tree.

Based on the FP-tree, the algorithm extracts conditional pat-

ern bases and a conditional FP-tree for each frequent class. Con-

itional pattern bases consist of the collection of paths that co-

ocated with the suffix pattern, while the conditional FP-trees are

he subtrees that generate the pattern. For example, the condi-

ional pattern bases corresponding to C5 is {{ C2:1, C1:1 }, { C2:1, C1:1,

3: 1 }}, thus the conditional FP-tree is 〈 C 2: 2, C 1: 2 〉 . Paths that do

ot reach the predefined threshold value are rejected. For example,

f the threshold is 2 , the path 〈 C 2: 2, C 1: 2, C 31 〉 is excluded since
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
ts frequency is 1 . The set of FUPs identified from our example is

 {C2, C1, C5}, {C2, C4}, {C2, C1, C3}, {C2, C1} }.

.2.3. Less commonly used classes

The use of the Support threshold separates the classes of API

sed by application clients into two groups according to whether

hey belong to at least one FUP or not. Classes that do not belong

o any of the identified FUPs are the less commonly used classes.

s each API class that belongs to a transaction is a class that has

een accessed by the clients of the API, therefore it must be a part

f the classes composing the interfaces of at least one component.

e propose assigning each class of the less commonly used classes

o the pattern holding the maximum Support value when they are

erged together.

.3. Identifying classes composing component interfaces from

requent usage patterns

We identify classes composing component interfaces from those

omposing FUPs. Each FUP is partitioned into a set of groups,

here each group represents a component interface.

.3.1. FUP partitioning fitness function

Classes are grouped together according to three heuristics that

easure the probability of a set of classes to be a part of the same

nterface.

1. Frequency of simultaneous use: classes composing a FUP are

regarded differently depending on the frequency of their simul-

taneous reuse by software applications. As much as classes are

reused together, the probability that these classes providing re-

lated services is higher. Therefore, we rely on Support metric to

measure the association frequency of a set of classes.

2. Cohesion: a group of classes that accesses and shares the same

data (e.g. attributes) is probably related to the same service.

Thus, we consider that the cohesion of a group of classes is an

indication of their functional proximity. To this end, we use LCC

metric (Bieman and Kang, 1995) to measure the cohesion of a

set of classes. We select LCC since it measures both direct and

indirect dependencies between the classes.

3. Lexical similarity: in most cases, classes of an API are well-

documented (i.e. the identifier names are meaningful). Thus,

their identifier names indicate to the offered services. There-

fore, a group of classes having similar identifier names is likely

to belong to the same service. To this end, we utilize Concep-

tual Coupling metric (Poshyvanyk and Marcus, 2006) to mea-

sure classes’ lexical similarity based on the semantic informa-

tion obtained from the source code, encoded in identifiers and

comments.

Based on the above heuristics, we propose a fitness function,

iven below, measuring the ability of a group of classes to form a

omponent interface.

Q(E) =

1

∑

i λi

· (λ1 · LC C (E) + λ2 · C C (E) + λ3 · S(E)) (2)

Where:

• E is a set of object-oriented classes
• LCC(E) is the Cohesion of E
• CC(E) is Conceptual Coupling of E
• S(E) is the Support of E
• λ1 , λ2 , and λ3 are weight values, situated in [0–1]. These are
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

8 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Fig. 8. Process of building the FP-tree.

t

o

T

d

s

i

t

u

r

c

v
4.3.2. FUP partitioning algorithm

The fitness function defined in the previous section is used to

partition each FUP into groups of classes using a hierarchical clus-

tering algorithm. This algorithm consists of two steps. The first one

aims to build a binary tree, called dendrogram. This dendrogram

provides a set of candidate clusters by presenting a hierarchical

representation of classes’ similarity. Fig. 9 shows an example of a

dendrogram tree, where C i refers to Class i . The second step aims

at traveling through the built dendrogram, in order to extract the

best clusters, representing a partition.

To build a dendrogram, the algorithm starts by considering each

individual class as an initial leaf node in a binary tree. Next, the
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
wo most similar nodes are grouped into a new one, i.e. as a parent

f them. For example, in Fig. 9 , the C 2 and C 3 classes are grouped.

his is continued until all nodes are grouped in the root of the

endrogram. Algorithm 2 presents the procedure used to gather

imilar classes onto a dendrogram. It takes a set of classes as an

nput. The result of this algorithm is a hierarchical tree representa-

ion of candidate clusters.

To identify the best clusters, a depth first search algorithm is

sed to travel through the dendrogram tree. It starts from the tree

oot to find the cut-off points. It compares the similarity of the

urrent node with its children. If the current node has a similarity

alue exceeding the average similarity value of its children, then
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 9

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Fig. 9. An example of a dendrogram tree.

Algorithm 2: Building dendrogram

Input : A Set of Classes Composing FUP(F UP)

Output : Dendrogram Tree (d end rogram)

BinaryTree d end rogram = F UP ;

while (| d end rogram | > 1) do

c1 , c2 = mostLexicallySimilarNodes(d end rogram);

c = newNode(c1 , c2);

remove(c1 , d end rogram);

remove(c2 , d end rogram);

add(c, d end rogram);

end

return d end rogram ;

t

m

u

t

a

s

4

p

p

m

c

p

s

i

i

m

t

c

t

o

I

a

a

f

5

5

i

t

t

t

d

c

g

m

p

w

m

q

N

t

o

w

t

b

i

s
he cut-off point is in the current node where the children mini-

ize the quality function value. Otherwise, the algorithm contin-

es through its children. Algorithm 3 presents the procedure used

Algorithm 3: Dendrogram traversal

Input : Dendrogram Tree(d end rogram)

Output : A Set of Clusters of Component Interfaces(clusters)

Stack tra v ersal;

tra v ersal. push(d end rogram. getRoot());

while (! tra v ersal. isEmpty()) do

Node father = tra v ersal. pop();

Node le f t = d end rogram. getLeftSon(father);

Node right = d end rogram. getRightSon(father);

if similarity(father) > (similarity(le f t) + similarity(right) /

2) then

cluster s. add(father)

else
tra v ersal . push(l e f t);

tra v er sal. push(r ight);

end

end

return clusters ;

o extract clusters of classes from a dendrogram. The result of this

lgorithm is a set of clusters, where each contains classes corre-

ponding to a component interface.

.4. Structuring component interfaces

An interface provided by an API component is composed of

ublic methods selected from classes which are identified in the

revious step as composing the component interfaces. However,

ethods of required interfaces of an API component are those
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
alled inside one of its classes and defined in classes of other com-

onents. These two sets of methods constitute the initial search-

pace to identify component interfaces. The identification process

s based on the following heuristics to partition this search-space

nto sub-groups; where each represents an interface:

• Methods that belong to the same interface have a high prob-

ability of being used together. Consequently, we consider that

methods frequently called together have a higher probability of

belonging to the same component interface.
• A group of methods belonging to the same object-oriented in-

terface has a higher probability of belonging to the same com-

ponent interface.
• A group of methods having a high cohesion and a high lexical

similarity has a high probability of belonging to the same com-

ponent interface.

Based on these heuristics, we define a similarity function that

easures the quality of a set of methods to form a component in-

erface. We use Support, LCC (Bieman and Kang, 1995) and Con-

eptual Coupling (Poshyvanyk and Marcus, 2006) metrics to respec-

ively measure the frequency of use, cohesion and lexical similarity

f a set of methods. This function is defined as follows:

nter face (M) =

1

∑

i λi

· (λ1 · LC C (M) + λ2 · CS(M)

+ λ3 · S(M) + λ4 · SOI(M)) (3)

Where:

• M is a set of methods.
• LCC (M), CS (M), S (M), and SOI (M) respectively refers to the co-

hesion, Cosine similarity, support and the association with the

same object-oriented interface(1 if yes, else 0) of M .
• λ1 , λ2 , λ3 and λ4 are weight values, situated in [0–1]. These are

used by the API expert to weigh each characteristic as needed.

Based on this similarity function, we partition methods of the

bove search-space into clusters based on a hierarchical clustering

lgorithm. Each cluster contains a set of methods forming an inter-

ace.

. API as library of components

.1. Identifying classes composing components

As we mentioned before, the component identification process

s driven by the identification of its provided interfaces. This means

hat API classes forming a component are identified in relation to

heir structural dependencies with the classes forming provided in-

erfaces of the component. Thus, classes having either direct or in-

irect links with the interface ones compose the search-space of

lasses that may be added to the component. The selection of a

roup of classes, from the search-space, is based on the measure-

ent of the quality of the component, when they are included.

To identify the best group of classes that can serve as the im-

lementation of a component providing the identified interfaces,

e investigate all subsets of candidate classes. Then, the set that

aximizes the component quality is selected. However, this re-

uires an exponential time complexity to identify all subsets (i.e.

P-hard problem). Thus, we present a heuristic-based technique

hat identifies near-optimal groups of classes of the corresponding

ptimal ones.

The identification of these classes is done gradually. In other

ords, we start to form the group of classes composing the in-

erface ones, and then we add other classes to form a component

ased on the component quality measurement model. Classes hav-

ng either direct or indirect links with the interface ones repre-

ent the candidate classes to be added to the component. At each
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

10 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Fig. 10. Identifying classes composing components.

t

f

t

u

q

s

i

e

t

a

l

e

i

p

c

o

s

c

t

l

v

o

c

g

t

f

A

A

6

6

6

o

d

2 sourceforge.net , code.google.com , github.com , gitorious.org , and aopensource.

com
step, we add a new API class. This is selected based on the quality

value of the component, formed by adding this class to the ones

already selected. The class that maximizes the quality value is se-

lected in this step. This is done until all search-space classes are

investigated.

Each time we add a class, we evaluate the component qual-

ity. Then, we select the peak quality value to decide which classes

form the component. This means that we exclude classes added af-

ter the peak value. As an example, Class 7 and Class 8 in Fig. 10 are

excluded from the resulting component because they were added

after the quality value reached the peak. Algorithm 4 illustrates

Algorithm 4: Identifying classes composing components

Input : Sets of Provided Interface Classes(inter faces), API

Source Code(AP I)

Output : A Set of Components(components)

for each inter in inter faces do

comp = inter.getClasses();

bestComp = comp;

searchSpace = AP I.getConnectedClasses(inter);

while (| searchClasses | > 1) do

c = Q.getMaximizeClass(searchSpace , comp);

searchSpace .remove(c);

comp = comp ∪ c;

if Q(comp)) > Q(bestComp) then

bestComp = comp;

end

end

component s .add(best Comp);

end

return components ;

the process of identifying classes composing a component. In this

algorithm, Q refers to the quality fitness function.

5.2. Organizing API as layers of components

As we previously mentioned, the API is structured in N lay-

ers of components. To identify components of layer L , we rely on

components of layer L − 1 . We proceed similarly to the identifica-
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
ion of the components of the first layer. We use required inter-

aces of the components already identified in layer L − 1 to iden-

ify the interfaces provided by components in layer L . This contin-

es until reaching a layer where its components either do not re-

uire any interface or they require ones already identified. Fig. 11

hows an example that illustrates how the components compos-

ng each layer are identified, where Fig. 11 a presents an object ori-

nted API, Fig. 11 b shows how the first layer components are iden-

ified, Fig. 11 c explains the second layer component identification

nd Fig. 11 d shows the resulting component-based API.

Each interface that is defined as required for a component of

ayer L − 1 is considered as provided by a component of layer L

xcept ones provided by the already identified components. The

dentification of these interfaces is similar to the identification of

rovided interfaces of the first layer. Thus, we consider that each

omponent (already identified) in layer L − 1 is a client of the rest

f API classes. This means that we collect a set of transactions,

uch that each transaction consists of classes that are used by a

omponent in layer L − 1 . These transactions are used to iden-

ify FUPs based on the FP Growth algorithm. Similar to the first

ayer, each FUP is divided into groups of classes composing pro-

ided interfaces of components in layer L . The partitioning is based

n (i) the cohesion of classes, (ii) the lexical similarity of these

lasses and (iii) the frequency of their simultaneous use. Analo-

ously to the identification of the components of the first layer,

he other classes composing each component are identified starting

rom classes composed of its already identified provided interfaces.

lgorithm 5 shows the procedure that identifies component-based

PI as a set of layers composed of components.

. Experimentation and results

.1. Experimental design

.1.1. Data collection

We collected a set of 100 Android − Ja v a applications from

pen-source repositories. 2 These applications are from different

omains, such as communication, education, puzzle and so. This
ble software components from object-oriented APIs, The Journal

01

http://sourceforge.net
http://code.google.com
http://github.com
http://gitorious.org
http://aopensource.com
http://dx.doi.org/10.1016/j.jss.2016.06.101

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 11

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Fig. 11. Identifying component-based API as layers of components.

a

e

b

p

b

d

fi

p

u

d

r

o

t

a

llows to test the approach on clients that are very different from

ach other. The average size of these applications in terms of num-

er of classes is 90. Table 3 presents the categorization of the ap-

lications. We distinguish 19 categories based on Google Play la-

eling. The applications are developed based on classes of the An-

roid SDK . 3 In our experimentation, we focus on four APIs. The

rst one is the android.view API composed of 491 classes. This API

rovides services related to the definition and management of the
3 We select android API level 14 as a reference.

6

t

e

Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
ser interfaces in android applications. The second API is the an-

roid.app API composed of 361 classes. This API provides services

elated to creating and managing android applications. The third

ne is the java.util API composed of 846 classes. The fourth API is

he android API that is composed of 5790 classes. which includes

ll of the android services.

.1.2. Research questions and evaluation method

The approach is evaluated on the collected software applica-

ions and APIs. We identify client components independently for

ach software application. Each component in software is consid-
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

12 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Algorithm 5: Organizing API as layers of components

Input : Source Code of a Set of Application

Clients(AppClients), API Source Code(AP I)

Output : Component-Based API as Layers of

Components(CBAP I)

clients = AppClients ;

layerIndex = 1;

while (| AP I| > 1) do

transactons = extractTransactions(clients , AP I);

F UP s = FPGrowth(transactons , SupportT hreshold);

for each pattern ∈ F UP s do

� IQ refers to Equation 2

P rov ideInter faces =

P rov ideInt er faces ∪ clustering(patt ern , IQ);

end

� Identifying classes composing components

components = Algorithm 4(prov id ed I nter faces, AP I);

CBAP I .addLayer(layerI ndex , components);

layerIndex = layerIndex + 1;

AP I = AP I - components. getClasses();

clients = components ;

end

return CBAP I;

6

6

s

c

t

i

h

e

b

c

u

c

t

i

s

s

n

t

t

d

a
ered as a client of the APIs to form a transaction of classes. Then,

we mine Frequent Usage Patterns (FUPs) from the identified trans-

actions. Next, from classes composing each FUP, we identify classes

composing a set of component interfaces. Then, we identify all

component classes starting from ones composing their interfaces.

Lastly, the results related to component-based APIs obtained based

on our approach are presented.

We evaluate the obtained components by answering the three

following research questions.

• RQ1: Do the Resulting Component-Based APIs Reduce the

Understandability Efforts? This research question aims at

measuring the saved effort s in the API understandability that
Table 3

The categorization of the selected android applications.

Category Application client names

Personalisation ADW Launcher

Tool Alerts, Alogcat, AppsOrganizer, CH-EtherDroid, CVox, Ca

CountdownTimer, DiskUsage, FileManager, Gcstar, He

PubkeyGenerator, PwdHash, SuperGenPass

Communication AndroidomaticKeyer, AutoAnswer, ConnectBot, Corpora

LibVoyager, PhotSpot, Swiftp

Education ARviewer, Mandelbrot

Productivity AVP, CamTimer, DroidStack, OpenIntents, QueueMan

Arcade AndorsTrail, Dolphin, GlTron, MAME4droid, AlienbloodB

Puzzle AndroMaze, ASquare, Blokish, CrossWord, Dazzle, Holo

WordSearch

Local, Travel and

Transport

AripucaTracker, Avare, BigPlanetTracks, BostonBusMap,

OnMyWay, OpenMap, RateBeerMobile

Augmented Reality AugmentRealityFW, DroidAR

Media BansheeRemote, BiSMoClient, LiveMusic, ChanImageBro

Health and Fitness BinauralBeats, CompareMyDinner, DIYgenomics, Pedom

News DroidLife, FeedGoal, Phoenix

Action Doom

Weather AussieWeatherRadar

Photography AsciiCam

Shopping ARMarker

Social Historify, LookSocial, Tumblife

Card HotDeath

Finance Ministocks

Others DistLibrary, GeekList, HeartSong, LocaleBridge, Macnos,

Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
are brought by migrating object-oriented APIs into component-

based ones.
• RQ2: Are the Mined Components Reusable? As our approach

aims at mining reusable components, we evaluate the reusabil-

ity of the resulting component. This is based on measuring how

much related classes are grouped into the same components.
• RQ3: Is the Identification of Provided Interfaces Based on

FUPs Useful? The proposed approach identifies the provided

interfaces of the components based on how clients have used

the API classes (i.e. FUPs). Thus, this research question evalu-

ates how much benefit the use of FUPs brings by comparing

components identified by our approach with the ones identi-

fied without taking FUPs into account.

.2. Results

.2.1. Intermediate results and identified components

The average number of client components identified from each

oftware is 4.5 and the average number of classes composing each

omponent is 18.73. Table 4 shows the average number of transac-

ions per software application (ANTIC), the average transaction size

n terms of classes (ATS), and the percentage of components that

ave used the API (PCU). The last column of this table shows an

xample of transactions.

The results show that android, view, app and java.util APIs have

een used respectively by only 54%, 29%, 32% and 49% of client

omponents. In addition, we note that each client component has

sed the API classes intensively compared to the number of classes

omposing it. For example, the transaction size is 17.91 classes for

he view API, where the average number of classes per component

s 18.73. This is due to the fact that classes that serve the same

ervice in software applications, and consequently depend on the

ame API classes, are grouped together in the same client compo-

ent.

The identification of FUPs relies on the value of the Support

hreshold. The number and the size of the mined FUPs depend on

his value. For all application domains where FUPs are used (e.g.

ata mining), this value is determined by domain experts. In our

pproach, to help API experts to determine this value, we assign
Sum

1

lendarPicker, CidrCalculator, ColorPicker, Countdown,

rmit, Introspy, LegoMindstroms, Look, MotionDetection, Prey,

22

teAddressBook, Dialer2, ExchangeOWA, GetARobotVPNFrontend, 10

2

5

ath, VectorPinball 6

ken, Lexic, Mathdoku, NewspaperPuzzles, OpenSudoku, 11

CustomMaps, DriSMo, GoHome, GoogleMapsSupport, 11

2

wser, FloatingImage, MediaPlayer 6

eter 4

3

1

1

1

1

1

3

1

 NGNStack, SwallowCatcher, GraphView 8

ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 13

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Table 4

The identification of transactions.

API ANTIC ATS PCU Example

android 2 .61 64 .82 0 .54 Bitmap, Path, Log, Activity, Location, Canvas, Paint, ViewGroup, MotionEvent, View, TextView, GestureDetector

view 1 .51 17 .91 0 .29 MenuItem, Menu, View, ContextMenu, WindowManager, MenuInflater, Display, LayoutInflater

app 1 .58 10 .90 0 .32 ProgressDialog, Dialog, AlertDialog, Activity, ActionBar, Builder, ListActivity

java.util 2 .34 30 .21 0 .49 Queue < Character > , Matcher, Calendar, Collection < Character > , Pattern, Locale, Arrays, List, TimeZone

Fig. 12. Changing the support threshold value to mine FUPs in android API.

Fig. 13. Changing the support threshold value to mine FUPs in view API.

t

e

s

f

A

p

m

h

r

c

F

p

f

u

S

v

Fig. 14. Changing the support threshold value to mine FUPs in app API.

Fig. 15. Changing the support threshold value to mine FUPs in java.util API.

o

i

t

a

o

t

F

F

t

H

p

c

t

sistent.

4 The authors of this paper are experts on the android APIs
he Support threshold values situated in [0%–100%]. We give for

ach Support value the number of the mined FUPs and the average

ize of the mined FUPs for each API. Figs. 12–15 respectively re-

er to the results of the android , the view , the app and the java.util

PIs. The results show that the number of mined FUPs is directly

roportional to the Support value, while the average size of the

ined FUPs is inversely proportional. We note that the java.util API

as a different behavior compared to the other APIs in terms of the

elationship between the Support values and the number of FUPs

orresponding to the expected functionalities . As it is shown in

ig. 15 , the accepted number of FUPs can be reached at low Sup-

ort values situated in [0.05–0.30%]. These low Support values re-

er to the fact that the java.util has diverse functionalities that are

sed by client applications in a deserve way, thus it requires low

upport values to separate them into different FUPs.

Based on their knowledge of the API, API experts can select the

alue of the Support . For example, if the known average number
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
f API classes used together to implement an application service

s N , then the experts can choose the Support value corresponding

o FUPs having N as the average size. Based on the obtained results

nd our knowledge of android APIs, 4 we select the Support thresh-

ld values as 60%, 45%, 45% and 15% respectively for the android ,

he view , the app and the java.util APIs.

Table 5 shows examples of the mined FUPs. For instance, the

UP related to view API contains 10 classes. The analysis of this

UP shows that it corresponds to three services: animation (Anima-

ion and AnimationUtils classes), view (Surface, SurfaceView, Surface-

older, MeasureSpec, ViewManager and MenuInflater classes), and

ersistence of the view states (AbsSavedState and AccessibilityRecord

lasses). These services are dependent. Animation service needs

he view service and the data of animation view needs to be per-
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

14 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Table 5

Examples of the mined FUPs.

API Example

android Intent, Context, Log, SharedPreferences, View, TextView, Toast, Activity, Resources

view Surface, Animation, AnimationUtils, AccessibilityRecord, ViewManager, MenuInflater, AbsSavedState, SurfaceView, SurfaceHolder, MeasureSpec

app Dialog, Activity, ProgressDialog

java.util Calendar, HashMap, Date, List, Timer, Pattern, Locale, ArrayList

Table 6

Identification of component interfaces from FUPs.

API ANCIP ACIS TNCI Examples

android 1 .57 5 .62 232 Activity, View, TextView, Toast

view 2 .17 2 .94 19 Surface, SurfaceView, SurfaceHolder

app 2 .50 4 10 Dialog, ProgressDialog

java.util 3 .84 2 .78 46 Calendar, HashMap, Date, List, Locale, Timer

Table 7

Identifying classes composing components.

API NMC ACS Example

android 232 19 .99 Activity, View, TextView, Toast, Drawable, GroupView, Window, Context, ColorStateList, LayoutInflater

view 19 7 .49 Surface,SurfaceView, SurfaceHolder, MockView, Display, CallBack

app 10 5 .86 Dialog, ProgressDialog, AlertDialog

java.util 85 9 .73 Calendar, HashMap, Date, List, Locale, Timer, TimerHeap, TimerTask, AbstractMap, Map,TimeZone, SimpleTimeZone

Fig. 16. An instance of partitioning a FUP into component interfaces from view API.

Table 8

The final results.

API name API entity API size No. of used entities

android OO 5790 491

CB 497 54

view OO 491 42

CB 43 17

app OO 361 45

CB 55 5

java.util OO 846 468

CB 147 43

b

a

r

v

e

b

o

b

s

i

t

f

(

4

6

d

d

i

e

b

c

p

c

+
In Table 6 , we present the results of interface identification

in terms of the average number of component interfaces identi-

fied from a FUP (ANCIP), the average number of classes composing

component interfaces (ACIS) and the total number of component

interfaces in the API (TNCI). The last column of this table presents

examples of component interfaces identified from the FUPs given

in Table 5 .

The results show that FUPs contain classes corresponding to

a different set of services. On average, each FUP is divided into

1.57, 2.17 and 2.5 services, such that each service is provided by

5.62, 2.94 and 4 classes respectively for android, view and app APIs.

Fig. 16 shows an instance of partitioning a FUP into component in-

terfaces from view API. The analysis of classes composing the iden-

tified component interfaces shows that they are related to three

services; animation, view and persistent of the view states.

Table 7 presents the results related to the mined components

composing the first API layer. For each API, we give the number of

the mined components (NMC) and the average number of classes

composing the mined components (ACS). The last column of this

table shows examples of classes composing components initially

identified from classes composing provided component interfaces

presented in Table 6 . The results show that the services offered
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
y classes of android, view and app APIs are identified as 232, 19

nd 10 components respectively. This means that developers only

equire to interact with these components to get the required ser-

ices from these APIs.

Table 8 shows the final results obtained from our approach. For

ach API, we firstly give the size of the API in terms of the num-

er of object-oriented classes composing the API and the number

f the identified components. Secondly, we present the total num-

er of used entities (classes and respectively components) by the

oftware clients. The results show that classes involved in provid-

ng related services are grouped into one component. Furthermore,

he total number of cohesive and decoupled services is identified

or each API. For instance, android API consists of 497 components

coarse-grained services), while view, app and java.util APIs contain

3, 55 and 85 components respectively.

.2.2. Answering research questions

RQ1: Do the Resulting Component-Based APIs Reduce the Un-

erstandability Efforts? The efforts spent to understand an API is

irectly proportional to the complexity of the API. This complex-

ty is related to the number of API elements and the individual

lement’s complexity. On the one hand, the reduction in the num-

er of elements composing the API is obtained by grouping classes

ollaborating to provide one coarse-grained service into one com-

onent. The results show that the average number of identified

omponents for the studied APIs is 11% (((4 97/5790) + (43/4 91)

 (55/361)) /3) of the number of classes composing the APIs. This
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 15

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

Fig. 17. Reusability validation results.

m

t

u

i

q

l

l

a

t

(

T

n

b

o

c

t

t

o

n

o

c

n

g

r

m

p

p

e

a

w

K

s

m

a

e

c

o

i

i

A

t

o

b

c

Fig. 18. Density validation results.

U

t

a

d

o

T

f

p

a

R

r

T

c

a

M

b

d

p

c

r

g

p

q

6

t

6

v

eans that the API size is significantly reduced by mapping class-

o-component. On the other hand, the reduction in the individ-

al element complexity is done by migrating object-oriented APIs

nto component-based ones. Meaning, components define their re-

uired and provided interfaces, while object-oriented classes at

east do not define required interfaces (e.g. a class may call a

arge number of methods belonging to a set of classes without

n explicit specification of these dependencies). The results show

hat the average number of used components for the APIs is 4%

((54/491) + (17/42) + (5/45)) /3) of the number of used classes.

his means that the effort spent to understand API entities is sig-

ificantly reduced in the case of software applications developed

ased on API components compared to the development based

n API classes. Note that, developers only need to understand the

omponent interfaces, but not the whole component implementa-

ion.

RQ2: Are the Mined Components Reusable? We consider that

he reusability of a software component is related to the number

f used classes among all ones composing the software compo-

ent. Thus, we calculate the reusability of the component based

n the ratio between the numbers of used classes composing the

omponent to the total number of classes composing the compo-

ent. To prove that our resulting component-based APIs could be

eneralized to another independent set of client applications, we

ely on K − f old cross validation method (Han et al., 2006). The

ain idea is to evaluate the model using independent client ap-

lications. Thus, K-fold divides the set of client applications into K

arts. Then, the identification process is applied K times by consid-

ring, each time, K − 1 different parts for the identification process

nd by using the remaining part to measure the reusability. Next,

e take the average of all K trial results. In our experiment, we set

 to 2, 4, and 8.

Fig. 17 presents the results of this measurement. These results

how that the reusability results are distributed in a disparate

anner. The reason behind this dispersion is the size of the train

nd test data as well as the size of the API. For instance, the av-

rage reusability for the app API is 37% when the number of train

lients is 50 application clients, while it is 51% when the number

f train clients is 88 application clients. The reusability of java.util

s slightly enhanced when the number of its client applications is

ncreased. We interpret this by the fact that java.util is an extensive

PI that contains utility functionalities used in similar patterns by

he all client applications. Thus including more client applications

nly adds little enhancement of the reusability. Still, a larger num-

er of application clients increase the reusability of the resulting

omponents.
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
RQ3: Is the Identification of Provided Interfaces Based on FUPs

seful? To prove the utility of using FUPs during the identifica-

ion process, we compare the components mined based on our

pproach with ones mined using the ROMANTIC approach, which

oes not take FUPs into consideration. This is based on the density

f use of the component provided interfaces by application clients.

he density refers to the ratio between the number of used inter-

ace classes to the total number of interface classes for each com-

onent. Fig. 18 shows the average density for the two identification

pproaches. These results show that our approach outperforms the

OMANTIC approach. For instance, the application clients need to

euse a larger number of components mined based on the ROMAN-

IC with less density of provided interface classes compared to

omponents mined based on our approach. For instance, the aver-

ge usage density of classes composing provided interfaces of RO-

ANTIC components is 18%, while it is 62% for components mined

y our approach for all APIs. Also, the results show a significant

ifference between the density values obtained by respectively ap-

lying ROMANTIC and our approach. This is due to the fact that

lasses of java.util API are not very coupled and cohesive. These

elationships (coupling and cohesion) are used by ROMANTIC to

roup classes together to identify components. In contrast, our ap-

roach allows to group these classes together because they are fre-

uently used together.

.3. Threats to validity

Our proposed approach is subjected to two types of threats: in-

ernal validity and external validity.

.3.1. Threats to internal validity

There are five aspects to be considered regarding the internal

alidity. These are as follows:

1. The validations of understandability and reusability of the

resulted component-based APIs are not directly measured.

On the one hand, the understandability is measured through

the complexity of the resulted API, while in some cases a

complex API can be understandable if it is well documented.

However, for the same API, the understandability of a com-

plex version is worse than the understandability of a less

complex one, even if both versions are already documented.

On the other hand, the reusability is measured based on the

number of used classes among the ones composing the com-

ponents. Although the reusability of components needs to be

measured based on their interfaces, this provides an indica-

tion of how the component interfaces will be reused by the

future software clients.
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

16 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

7

t

p

T

o

f

m

7

t

o

b

s

s

d

p

t

m

(

p

c

t

p

t

2

e

t

r

r

r

s

o

p

a

i

n

o

t

g

a

r

r

i

c

c

t

w

f

r

m

p

L

t

s

w

w

t

w

t

o
2. We use FPGrowth algorithm to mine FUPs. Nevertheless, this

algorithm has a limitation of ignoring those classes whose

patterns’ support values do not reach the support thresh-

old (i.e. less commonly used classes). Thus, some of the API

classes may not be presented by a FUP. However, we attach

each class of them to a FUP holding the maximum support

value when it is added. This guarantees that each API class

used by software applications is attached to at least one FUP.

3. As our approach is use-driven, the results depend on the

quality and the number of usages of the API. This means

that identified FUPs rely on the considered software clients.

Therefore, the identification of provided interfaces and their

corresponding components depends on API clients. Conse-

quently, it is essential to select clients having the largest

number of usages of the API.

4. In the case of facing a NP-hard problem, we rely on heuris-

tic algorithms instead of optimal algorithms. This affects the

accuracy of the results. However, these heuristics guarantee

near-optimal solutions, such as clustering algorithms.

5. There are two polymorphism categories; method overload-

ing and method overriding (Benlarbi and Melo, 1999). In

our analysis, we used a static technique that ables to detect

the method overloading polymorphism, but not the method

overriding polymorphism. The letter can be only detected at

the runtime (dynamic analysis). The major problem of dy-

namic analysis is the difficulty to identify a sufficient num-

ber of real use scenarios to cover the maximum of possible

execution paths.

6.3.2. Threats to external validity

There are two aspects to be considered regarding the external

validity. These are as follows:

1. We experiment on APIs, as well as client applications, that

are implemented using Java programming language. The ob-

tained results can be generalized for other object-oriented

languages due to the fact that FUPs mining is not influ-

enced by existing variability in the object-oriented program-

ing languages (e.g. multi inheritance). Only, the measure-

ment of the coupling and the cohesion can be influenced by

these variants. This requires an adapted algorithm for mea-

suring the coupling and the cohesion based on the addi-

tional object-oriented dependencies (e.g. friend class in C++).

2. The way that API classes are reused together may strongly

depend on the choice of the client applications, i.e. differ-

ent client applications may use API classes following differ-

ent patterns, ending up in different components. This may

impact the reusability of the identified components for new

independent applications. However, our assumption is that

software developers follow very similar reuse patterns even

for different applications belonging to different domains. Ro-

billard et al. provide (Robillard et al., 2013) a survey of ap-

proaches that successfully utilized this assumption to iden-

tify API documentation (Uddin et al., 2012), recommenda-

tion systems (Zhang et al., 2012), improving bug detection

(Monperrus et al., 2010), etc. To evaluate this assumption in

our context, we selected 100 client applications that are re-

lated to different domains. Based on Google Play, they are

about 19 domains (see Table 3). This coupled with the us-

age of K-fold validation method indicate that the result-

ing component-based APIs is reusable for new independent

clients even they belong to different domains. In addition,

the results show that the reusability is increased as well as

the number of input clients increases. Therefore, we recom-

mend to select as much as possible of API client applications
to minimize the influence of domain specific API usages. v

Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
. Related work

To the best of our knowledge, no approach has been proposed

o identify components from object-oriented APIs. However, we

resent three research areas that are related to our approach.

he first one aims at identifying components by analyzing object-

riented software applications. The second area aims to identify

eatures from software applications. The third one is related to

ining frequent patterns of API usage.

.1. Identifying software components from software applications

APIs and software applications are different com pared to rela-

ionships between classes composing them. In the case of object-

riented applications, classes composing them are structural and

ehavioral dependent to provide the expected services. For in-

tance, these dependencies are realized via calls between methods,

haring types, etc. For APIs, we distinguish two kinds of depen-

encies. On the one hand, classes are structural and behavioral de-

endent, to provide reusable services for software applications. On

he other hand, some classes needs to be reused together, i.e. si-

ultaneously, by software applications to implement API services

e.g. JFrame and Layout classes in java.swing API). This kind of de-

endencies can not be identified by only analyzing the API source

ode, but also needs the analysis of how software applications use

he API classes.

Dependencies between classes composing object-oriented ap-

lications are exploited by numerous approaches that aim to iden-

ify components from object-oriented applications (Garcia et al.,

013; Ducasse and Pollet, 2009). In von Detten et al. (2013) , Detten

t al. presented the Archimetrix approach, which aims at mining

he architecture of legacy software. It relies on a clustering algo-

ithm to partition the system classes into components. This algo-

ithm depends on name resemblance, coupling and cohesion met-

ics as a fitness function. In Kebir et al. (2012) , Kebir et al. pre-

ented an approach to extract components from a single object-

riented software system. Classes composing the extracted com-

onents form a partition. Mined components are considered as

 part of the component-based architecture of the correspond-

ng software. In Allier et al. (2011) Allier et al. depended on dy-

amic dependencies between classes to recover components. Based

n the use case diagram, the execution trace scenarios are iden-

ified. Classes that frequently occur in the execution traces are

rouped into a single component. Cohesion and coupling metrics

re also taken into account during the identification process. Wein-

eich et al. proposed, in Weinreich et al. (2012) , an approach to

ecover multi-view architecture models of software applications

mplemented based on service oriented architecture. The authors

lassified software artifacts based on the information from source

ode, configuration files and binary codes. In Erdemir et al. (2011) ,

he author extracted the architecture of an object-oriented soft-

are using the fast community detection algorithm. Also, a per-

ormance evaluation of fast community and five clustering algo-

ithms is applied. The authors converted the object oriented ele-

ents into a graph representation. Then, the algorithms are ap-

lied to identify the most connected component within the graph.

astly, software architects analyze and evaluate the resulted archi-

ecture. In Shatnawi and Seriai (2013) , an approach has been pre-

ented to mine reusable components from a set of similar soft-

are applications. A component is considered as more reusable,

hen it is reused many times by the software applications. The au-

hors firstly identified components independently from each soft-

are application. Then, based on the lexical similarity between

he classes composing these components, they identified reusable

nes. In Duszynski et al. (2011) , an approach was presented to

isually analyze the distribution of variability and commonality
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 17

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

a

m

T

t

7

fi

p

c

v

t

r

t

a

s

w

s

c

u

e

i

c

(

t

7

u

c

g

w

t

a

s

h

s

w

o

c

n

o

t

m

l

o

e

o

p

T

a

W

a

c

a

p

(

o

T

e

o

2

t

s

W

p

8

8

s

s

w

h

u

c

i

A

c

l

T

v

p

s

r

w

o

t

w

p

8

s

mong the source code of product variants. The analysis includes

ulti-level of abstractions (e.g. line of code, method, class, etc.).

his aims to facilitate the interpretation of variability distribution,

o support identifying reusable entities.

.2. Feature mining from software applications

The difference between feature mining and component identi-

cation arises from the difference between a feature and a com-

onent. The difference is also in the goals and nature of the pro-

ess. A feature is a non-structural element that provides “user-

isible aspect, quality, or characteristic of a software system or sys-

ems” (Kang et al., 1990). It does not have any interfaces that rep-

esent the interaction between features, rather than component in-

erfaces, required and provided ones. In addition to that, features

nd components belong to different levels of abstraction, where

oftware requirements are abstracted at a high level as features,

hile a component represents an architectural element at the de-

ign level.

There are many approaches presented to address feature lo-

ation and feature identification. These aims to identify program

nits such as methods, or classes that represent features. In Dit

t al. (2013) , a survey of them is presented. These approaches

dentify features based on the analysis of single software appli-

ation, such as Antoniol and Guéhéneuc (2005) ; Chen and Rajlich

20 0 0) ; Damaševi ̌cius et al. (2012) , and multiple software applica-

ions, such as Xue (2011) ; Ziadi et al. (2012) .

.3. Mining frequent patterns of API usage

FUPs are observations made based on the analysis of previous

ses of APIs. They aim to help users of APIs by identifying re-

urring patterns, composed of API elements frequently used to-

ether. FUPs and components serve reuse needs in two different

ays. Components are entities that can be directly reused and in-

egrated into software applications, while FUPs are guides for reuse

nd not entities for reuse. In addition, components and FUPs are

tructurally different. Classes composing a component serve a co-

erent body of services, while a FUP may be related to different

ervices. Dependencies of component’s classes are mostly internal,

hich forms an autonomous entity. FUP’s can be very dependent

n other API classes that are not directly used by clients of APIs. A

omponent is structured and reused via interfaces, while FUPs are

ot directly reusable entities.

Several approaches have been proposed to mine FUPs based

n the analysis of API clients. Robillard et al. provide a survey of

hese approaches (Robillard et al., 2013). These approaches can be

ainly classified based on four main criteria. The first one is re-

ated to the goal, which can be either giving examples and rec-

mmendations of how to use API entities such as (Montandon

t al., 2013; Uddin et al., 2012), supporting the documentation

f APIs like (Montandon et al., 2013; Wang et al., 2013), or im-

roving the bug detection task such as (Monperrus et al., 2010).

he second criterion is related to pattern ordering, where some

pproaches mine ordered patterns like (Montandon et al., 2013;

ang et al., 2013), while other ones mine unordered patterns such

s (Monperrus et al., 2010; Bruch et al., 2006). The third one con-

erns the granularity of the elements composing patterns. For ex-

mples, in (Montandon et al., 2013; Wang et al., 2013), the ap-

roaches mine patterns composed of methods, and the approach in

 Bruch et al., 2006) mines patterns composed of classes. The fourth

ne related to the technique that is used to identify the patterns.

he used technique can be association rules mining like (Bruch

t al., 2006), clustering algorithms such as (Wang et al., 2013)

r a heuristic defined by the authors such as (Montandon et al.,

013; Monperrus et al., 2010). Some approaches combine many
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
echniques, e.g., Unddin et al. used Principle Component Analy-

is with clustering algorithm (Uddin et al., 2012), and Buse and

eimer combined the clustering algorithm with their own pro-

osed heuristic (Buse and Weimer, 2012).

. Conclusion and future work

.1. Conclusion

In this paper, we presented an approach that aims to mine

oftware components from object-oriented APIs. This is based on

tatic analysis of the source code of both the APIs and their soft-

are clients, in order to analyze the way that the software clients

ave used the API classes. The component identification process is

se-driven. It implies that components are identified starting from

lasses composing their interfaces. Classes composing the provided

nterface of the first layer components compose FUPs. Then, the

PI is organized by a set of layers, where each layer composes of

omponents providing services to the others composing the above

ayer, and so on.

The presented approach is experimented via four different APIs.

hese can be classified in terms of their size into medium (i.e., app,

iew and java.util), and large (i.e., android) and in terms of the im-

lemented functionalities into extensive (i.e., java.util android) and

pecific (i.e., view and app). The validation is done through three

esearch questions. The first one is related to the understandability,

hile the second indicates to the reusability. The results show that

ur approach improves the reusability and the understandability of

he API. The third research question aims at compare our approach

ith a traditional component identification approach. The results

rove that our approach outperforms the traditional one.

.2. Future work

There are many future directions that are indicated by this re-

earch. These include:

1. Migrating the identified object-oriented components into

existing component models. Components are identified as

clusters of object-oriented classes representing their im-

plementation. This constitutes the first step of the reengi-

neering process of object-oriented software into component-

based software. Thus, we plan to extend our approach

by transforming the object-oriented implementation of the

identified components into an equivalent component-based

one, such as OSGi (Tavares and Valente, 2008) and Frac-

tal (Bruneton et al., 2006). We start by solving instantiation

and inheritance transformation problems in (Alshara et al.,

2015). We plan to investigate how to cope with other object-

oriented dependencies between components, exception han-

dling and component instantiation.

2. Identifying components based on dynamic analysis.

To address static analysis limitations (dynamic bind-

ing/polymorphism), we plan to extend our approach through

integrating a dynamic analysis technique.

3. Developing a visual environment. The presented approach

can be extended by providing a visual environment, such

that domain experts can supervise the approach steps and

modify the obtained results when needed.

4. Experimenting with large number of case studies. The

selection of API client applications affects the resulted

component-based API. Thus, we plan to extend the evalu-

ation of the proposed approach by conducting more case

studies in order to further test the approach and to gener-

alize the results as well.

5. Validating our approach by human experts. The results

of the presented approach are validated based on heuristic
ble software components from object-oriented APIs, The Journal

01

http://dx.doi.org/10.1016/j.jss.2016.06.101

18 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

H

I

K

K

M

M

M

M

M

S

S

S

T

U

W

W

Z

Z

Z

measurements that we proposed. To better validate our ap-

proach, we plan to validate the results using the help of hu-

man experts.

References

Acharya, M. , Xie, T. , Pei, J. , Xu, J. , 2007. Mining api patterns as partial orders from
source code: from usage scenarios to specifications. In: Proceedings of the

6th joint meeting of the European software engineering conference and the

ACM SIGSOFT symposium on The foundations of software engineering. ACM,
pp. 25–34 .

Allier, S. , Sadou, S. , Sahraoui, H. , Fleurquin, R. , 2011. From object-oriented applica-
tions to component-oriented applications via component-oriented architecture.

In: 2011 9th Working IEEE/IFIP Conf. on Software Architecture (WICSA). IEEE,
pp. 214–223 .

Alshara, Z. , Seriai, A.-D. , Tibermacine, C. , Bouziane, H.L. , Dony, C. , Shatnawi, A. , 2015.

Migrating large object-oriented applications into component-based ones: in-
stantiation and inheritance transformation. In: Proceedings of the 2015 ACM

SIGPLAN International Conference on Generative Programming: Concepts and
Experiences. ACM, pp. 55–64 .

Antoniol, G. , Guéhéneuc, Y.-G. , 2005. Feature identification: a novel approach and
a case study. In: Software Maintenance, 2005. ICSM’05. Proceedings of the 21st

IEEE International Conference on. IEEE, pp. 357–366 .

Benlarbi, S. , Melo, W.L. , 1999. Polymorphism measures for early risk prediction. In:
Software Engineering, 1999. Proceedings of the 1999 International Conference

on. IEEE, pp. 334–344 .
Bieman, J.M., Kang, B.-K., 1995. Cohesion and reuse in an object-oriented system.

In: Proc. of the 1995 Symposium on Software Reusability. ACM, New York, NY,
USA, pp. 259–262. doi: 10.1145/211782.211856 .

Bruch, M., Schäfer, T., Mezini, M., 2006. Fruit: Ide support for framework under-

standing. In: Proc. of the 2006 OOPSLA Workshop on Eclipse Technology eX-
change. ACM, New York, NY, USA, pp. 55–59. doi: 10.1145/1188835.1188847 .

Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B., 2006. The fractal
component model and its support in java. Software 36 (11–12), 1257–1284.

doi: 10.1002/spe.767 .
Buse, R.P.L. , Weimer, W. , 2012. Synthesizing api usage examples. In: Proc. of the

2012 Inter. Conf. on Software Engineering. IEEE Press, Piscataway, NJ, USA,

pp. 782–792 .
Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D., 2008. Extraction of component-

based architecture from object-oriented systems. In: Seventh Working IEEE/IFIP
Conf. on Software Architecture (WICSA), pp. 285–288. doi: 10.1109/WICSA.2008.

44 .
Chardigny, S., Seriai, A.-D., Oussalah, M., Tamzalit, D., 2008. Search-based extrac-

tion of component-based architecture from object-oriented systems. In: 2nd
European Conf. in Software Architecture (ECSA). In: Lecture Notes in Com-

puter Science, 5292. Springer Berlin Heidelberg, pp. 322–325. doi: 10.1007/

978- 3- 540- 88030- 1 _ 28 .
Chen, K. , Rajlich, V. , 20 0 0. Case study of feature location using dependence graph.

In: In Proceedings of the 8th International Workshop on Program Comprehen-
sion .

Damaševi ̌cius, R. , Paškevi ̌cius, P. , Kar ̌ciauskas, E. , Marcinkevi ̌cius, R. , 2012. Automatic
extraction of features and generation of feature models from java programs. Inf.

Technol. Control 41 (4), 376–384 .

von Detten, M. , Platenius, M.C. , Becker, S. , 2013. Reengineering component-based
software systems with archimetrix. Softw. Syst. Model. 13 (4), 1–30 .

Dit, B. , Revelle, M. , Gethers, M. , Poshyvanyk, D. , 2013. Feature location in source
code: a taxonomy and survey. J. Softw. 25 (1), 53–95 .

Ducasse, S. , Pollet, D. , 2009. Software architecture reconstruction: a process-ori-
ented taxonomy. Softw. Eng., IEEE T. 35 (4), 573–591 .

Duszynski, S. , Knodel, J. , Becker, M. , 2011. Analyzing the source code of multiple

software variants for reuse potential. In: Proc. of WCRE. IEEE, pp. 303–307 .
Erdemir, U. , Tekin, U. , Buzluca, F. , 2011. Object oriented software clustering based

on community structure. In: 2011 18th Asia Pacific Software Engineering Con-
ference (APSEC). IEEE, pp. 315–321 .

Frakes, W., Kang, K., 2005. Software reuse research: status and future. IEEE T. Softw.
Eng. 31 (7), 529–536. doi: 10.1109/TSE.2005.85 .

Garcia, J., Ivkovic, I., Medvidovic, N., 2013. A comparative analysis of software ar-

chitecture recovery techniques. In: IEEE/ACM 28th Inter. Conf. on Automated
Software Engineering (ASE), pp. 4 86–4 96. doi: 10.1109/ASE.2013.6693106 .

Google, 2015. API guides, (http://developer.android.com/reference/packages.html).
Han, J. , Kamber, M. , Pei, J. , 2006. Data mining: concepts and techniques. Morgan

Kaufmann .
Please cite this article as: A. Shatnawi et al., Reverse engineering reusa

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.1
an, J. , Pei, J. , Yin, Y. , 20 0 0. Mining frequent patterns without candidate generation.
In: ACM SIGMOD Record, 29. ACM, pp. 1–12 .

SO , 2001. Software Engineering – Product Quality – Part 1: Quality Model. Technical
Report, ISO/IEC 9126-1. International Organization for Standardization .

ang, K.C. , Cohen, S.G. , Hess, J.A. , Novak, W.E. , Peterson, A.S. , 1990. Feature-oriented
domain analysis (FODA) feasibility study. Technical Report. DTIC Document .

ebir, S., Seriai, A.-D., Chardigny, S., Chaoui, A., 2012. Quality-centric approach for
software component identification from object-oriented code. In: Joint Working

IEEE/IFIP Conf. and European Conf. on Software Architecture (WICSA)/(ECSA),

2012, pp. 181–190. doi: 10.1109/WICSA-ECSA.212.26 .
a, H., Amor, R., Tempero, E., 2006. Usage patterns of the java standard api. In: 13th

Asia Pacific Software Engineering Conf. APSEC 2006, pp. 342–352. doi: 10.1109/
APSEC.2006.60 .

Maalej, W., Robillard, M., 2013. Patterns of knowledge in api reference documenta-
tion. IEEE T. Softw. Eng. 39 (9), 1264–1282. doi: 10.1109/TSE.2013.12 .

ishra, S. , Kushwaha, D.S. , Misra, A.K. , 2009. Creating reusable software component

from object-oriented legacy system through reverse engineering. J. Object Tech-
nol. 8 (5), 133–152 .

onperrus, M., Bruch, M., Mezini, M., 2010. Detecting missing method calls in
object-oriented software. In: European Conf. on Object-Oriented Programming

ECOOP. In: Lecture Notes in Computer Science, 6183. Springer Berlin Heidelberg,
pp. 2–25. doi: 10.1007/978- 3- 642- 14107- 2 _ 2 .

onperrus, M., Eichberg, M., Tekes, E., Mezini, M., 2012. What should developers

be aware of an empirical study on the directives of api documentation. Emp.
Softw. Eng. 17 (6), 703–737. doi: 10.1007/s10664- 011- 9186- 4 .

ontandon, J., Borges, H., Felix, D., Valente, M., 2013. Documenting apis with ex-
amples: Lessons learned with the apiminer platform. In: 20th Working Conf. on

Reverse Engineering (WCRE), pp. 401–408. doi: 10.1109/WCRE.2013.6671315 .
Poshyvanyk, D., Marcus, A., 2006. The conceptual coupling metrics for object-

oriented systems. In: 22nd IEEE Inter. Conf. on Software Maintenance (ICSM),

2006, pp. 469–478. doi: 10.1109/ICSM.2006.67 .
Robillard, M., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T., 2013. Automated

api property inference techniques. IEEE T. Softw. Eng. 39 (5), 613–637. doi: 10.
1109/TSE.2012.63 .

hatnawi, A., Seriai, A., Sahraoui, H.A., Al-Shara, Z., 2015. Mining software compo-
nents from object-oriented apis. In: Software Reuse for Dynamic Systems in

the Cloud and Beyond - 14th International Conference on Software Reuse, ICSR

2015, Miami, FL, USA, January 4–6, 2015. Proceedings, pp. 330–347. doi: 10.1007/
978- 3- 319- 14130- 5 _ 23 .

hatnawi, A., Seriai, A.-D., 2013. Mining reusable software components from object-
oriented source code of a set of similar software. In: IEEE 14th Inter. Conf.

on Information Reuse and Integration (IRI), pp. 193–200. doi: 10.1109/IRI.2013.
6642472 .

zyperski, C. , 2002. Component Software: Beyond Object-Oriented Programming.

Pearson Education .
avares, A.L.C., Valente, M.T., 2008. A gentle introduction to osgi. SIGSOFT Softw.

Eng. Notes 33 (5), 8:1–8:5. doi: 10.1145/1402521.1402526 .
ddin, G. , Dagenais, B. , Robillard, M.P. , 2012. Temporal analysis of api usage con-

cepts. In: Proc. of the 2012 Inter. Conf. on Software Engineering. IEEE Press, Pis-
cataway, NJ, USA, pp. 804–814 .

ang, J. , Dang, Y. , Zhang, H. , Chen, K. , Xie, T. , Zhang, D. , 2013. Mining succinct
and high-coverage api usage patterns from source code. In: Proc. of the 10th

Working Conf. on Mining Software Repositories. IEEE Press, Piscataway, NJ, USA,

pp. 319–328 .
einreich, R., Miesbauer, C., Buchgeher, G., Kriechbaum, T., 2012. Extracting and fa-

cilitating architecture in service-oriented software systems. In: Joint Working
IEEE/IFIP Conf. on Software Architecture (WICSA) and European Conf. on Soft-

ware Architecture (ECSA), pp. 81–90. doi: 10.1109/WICSA-ECSA.212.16 .
Xue, Y. , 2011. Reengineering legacy software products into software product line

based on automatic variability analysis. In: Proceedings of the 33rd Interna-

tional Conference on Software Engineering. ACM, pp. 1114–1117 .
hang, C. , Yang, J. , Zhang, Y. , Fan, J. , Zhang, X. , Zhao, J. , Ou, P. , 2012. Automatic pa-

rameter recommendation for practical api usage. In: Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, pp. 826–836 .

iadi, T. , Frias, L. , da Silva, M.A .A . , Ziane, M. , 2012. Feature identification from the
source code of product variants. In: Software Maintenance and Reengineering

(CSMR), 2012 16th European Conference on. IEEE, pp. 417–422 .

ibran, M., Eishita, F., Roy, C., 2011. Useful, but usable factors affecting the usability
of apis. In: 18th Working Conf. on Reverse Engineering (WCRE), pp. 151–155.

doi: 10.1109/WCRE.2011.26 .
ble software components from object-oriented APIs, The Journal

01

http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0005
http://dx.doi.org/10.1145/211782.211856
http://dx.doi.org/10.1145/1188835.1188847
http://dx.doi.org/10.1002/spe.767
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0009
http://dx.doi.org/10.1109/WICSA.2008.44
http://dx.doi.org/10.1007/978-3-540-88030-1_28
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0018
http://dx.doi.org/10.1109/TSE.2005.85
http://dx.doi.org/10.1109/ASE.2013.6693106
http://developer.android.com/reference/packages.html
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0024
http://dx.doi.org/10.1109/WICSA-ECSA.212.26
http://dx.doi.org/10.1109/APSEC.2006.60
http://dx.doi.org/10.1109/TSE.2013.12
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0028
http://dx.doi.org/10.1007/978-3-642-14107-2_2
http://dx.doi.org/10.1007/s10664-011-9186-4
http://dx.doi.org/10.1109/WCRE.2013.6671315
http://dx.doi.org/10.1109/ICSM.2006.67
http://dx.doi.org/10.1109/TSE.2012.63
http://dx.doi.org/10.1007/978-3-319-14130-5_23
http://dx.doi.org/10.1109/IRI.2013.6642472
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0036
http://dx.doi.org/10.1145/1402521.1402526
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0039
http://dx.doi.org/10.1109/WICSA-ECSA.212.16
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30098-X/sbref0043
http://dx.doi.org/10.1109/WCRE.2011.26
http://dx.doi.org/10.1016/j.jss.2016.06.101

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 19

ARTICLE IN PRESS

JID: JSS [m5G; July 11, 2016;15:40]

ratory for research on technology for ecommerce (LATECE) at University of Quebec at

 Montpellier, France. He obtained a M.Sc. in Computer Science from the Jordon University
y interest is in software engineering with a particular focus on reengineering, reverse

onents, services and software product lines.

ty of Montpellier. He obtained his engineer degree in 1994. He obtained his PhD degree

interests include software reuse, software architecture, software reengineering, reverse
t line, software evolution, source code analysis, search-based algorithms, etc. He is author

 journals and conferences. He is the scientific editor of the first French book on “software
ientific excellence reward from 2009 to 2013 and from 2014 to 2018 (award given by the

 of a researcher).

puter science and operations research (GEODES, software engineering group) of University

neering automation, model-driven engineering, software visualization, and search-based
ittee member in several IEEE and ACM conferences, as a member of the editorial boards

conferences and workshops.

rmatics, Robotics and Microelectronics of Montpellier (LIRMM) at University of Montpel-
 the Jordon University of Science and Technology in 2013, Jordan. His research interests

ocus on software analysis, reengineering, code transformation, software architecture, and
Anas Shatnawi is a post-doctoral researcher at the labo

Montreal, Canada. He has a PhD degree from University of
of Science and Technology in 2012, Jordan. His primaril

engineering, APIs reusability, software architectures, comp

Abdelhak-Djamel Seriai is associate professor at Universi

from University of Nantes, France in 2001. His research
engineering, software component/service, software produc

or co-author of more than 50 publications in international
evolution and maintenance”. He is owner of the French sc

French government in recognition of the scientific quality

Houari A. Sahraoui is professor at the department of com

of Montreal. His research interests include software engi
software engineering. He has served as a program comm

of four journals, and as an organization member of many

Zakarea Alshara is a PhD student at the laboratory of Info
lier, France. He obtained a M.Sc. in Computer Science from

are in software engineering and cloud computing with a f

component-based software engineering.
Please cite this article as: A. Shatnawi et al., Reverse engineering reusable software components from object-oriented APIs, The Journal

of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.101

http://dx.doi.org/10.1016/j.jss.2016.06.101

	Reverse engineering reusable software components from object-oriented APIs
	1 Introduction
	2 Background
	2.1 Component quality model: The ROMANTIC approach
	2.2 Frequent usage patterns

	3 The proposed approach foundations
	3.1 Component identification
	3.2 API as a library of components
	3.3 Principles and mapping model
	3.4 Identification process

	4 Identification of component interfaces
	4.1 Extracting transactions of usage
	4.2 Mining frequent usage patterns of classes
	4.2.1 FUPs mining algorithms: an analysis
	4.2.2 Frequent-pattern growth algorithm
	4.2.3 Less commonly used classes

	4.3 Identifying classes composing component interfaces from frequent usage patterns
	4.3.1 FUP partitioning fitness function
	4.3.2 FUP partitioning algorithm

	4.4 Structuring component interfaces

	5 API as library of components
	5.1 Identifying classes composing components
	5.2 Organizing API as layers of components

	6 Experimentation and results
	6.1 Experimental design
	6.1.1 Data collection
	6.1.2 Research questions and evaluation method

	6.2 Results
	6.2.1 Intermediate results and identified components
	6.2.2 Answering research questions

	6.3 Threats to validity
	6.3.1 Threats to internal validity
	6.3.2 Threats to external validity

	7 Related work
	7.1 Identifying software components from software applications
	7.2 Feature mining from software applications
	7.3 Mining frequent patterns of API usage

	8 Conclusion and future work
	8.1 Conclusion
	8.2 Future work

	 References

