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ABSTRACT: Tools to systematically reprogram cellular
behavior are crucial to address pressing challenges in
manufacturing, environment, or healthcare. Recombinases
can very efficiently encode Boolean and history-dependent
logic in many species, yet current designs are performed on a
case-by-case basis, limiting their scalability and requiring time-
consuming optimization. Here we present an automated
workflow for designing recombinase logic devices executing
Boolean functions. Our theoretical framework uses a reduced
library of computational devices distributed into different cellular subpopulations, which are then composed in various manners
to implement all desired logic functions at the multicellular level. Our design platform called CALIN (Composable
Asynchronous Logic using Integrase Networks) is broadly accessible via a web server, taking truth tables as inputs and providing
corresponding DNA designs and sequences as outputs (available at http://synbio.cbs.cnrs.fr/calin). We anticipate that this
automated design workflow will streamline the implementation of Boolean functions in many organisms and for various
applications.

KEYWORDS: synthetic biology, biological computing, recombinases, logic gates, automated genetic design,
distributed multicellular computing

Reprogramming the response of living cells to chemical or
physical signals is a key goal of synthetic biology and

would support the development of complex manufacturing
processes, sophisticated diagnostics, or cellular therapies.1 In
order to control cellular behavior, researchers have engineered
many types of Boolean logic gates operating in single cells by
using transcriptional regulators,2−8 RNA molecules,9−11 or site-
specific recombinases.12−14 However, scaling-up single-cell
logic systems requires solving multiple engineering challenges.
First, when program complexity increases (number of inputs
≥3), the high number of parts needed can cause metabolic
burden and affect cellular viability. Second, current design
methods are mostly ad-hoc, and each Boolean function is
implemented using a different genetic architecture that needs to
be fully characterized and optimized. Despite recent progress
toward predictable gate design,7 some gates simply do not work
or are too complex to be implemented within a single cell.
Finally, in order to avoid cross-talk, single-cell logic systems
need to use different components for every novel signal to be
detected. While library of orthogonal regulatory components
have greatly expanded,3,6,15,16 their deployment can be
challenging and requires time-consuming optimization.
In nature, division of labor between cellular subpopulations is

a ubiquitous mechanism allowing cellular communities to
accomplish complex functions.17,18 Early efforts to engineer
synthetic multicellular systems led to the construction of

pattern-forming communities,19 predator−prey ecosystems,20

synchronized oscillators,21,22 or distributed metabolic path-
ways.23 Researchers also realized that problems faced by logic
circuits operating in single cells could be addressed by
distributing the logic program between different cells.24

Because of the spatial separation allowed by cellular compart-
ments, optimized regulatory components can be reused in
different subpopulations. As the circuit is divided into smaller
subcircuits, metabolic burden is reduced. Finally, simple cellular
computing modules can be composed in different manners and
wired via cell−cell communication channels to obtain different
logic functions. For example, Tamsir et al. used multilayered
circuit designs inspired from electronics to construct all 2-input
logic gates by combining spatially separated E. coli colonies
encoding NOR gates wired via quorum-sensing molecules.25

Specific features of biology can also be used to our advantage to
engineer logic systems in a more efficient manner than by
strictly transposing electronic designs.12,24,26 One particularly
promising approach is distributed multicellular computation
(DMC).24,27−29 DMC is based on the decomposition of a
Boolean function into various subfunctions, each performed by
a particular subpopulation of cells. Different subpopulations can
then be combined in different manners to realize any given
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Boolean function of interest. Importantly, multiple cells are
capable of producing the output which is therefore distributed
among the cellular subpopulations. Recently, Macia and
colleagues implemented DMC within a multicellular con-
sortium by using cellular computing units performing
elementary IDENTITY or NOT operations.30 While highly
scalable, the need for spatial separation between each
subpopulation prevents these systems from operating autono-
mously.
Here we present a composable framework enabling the

systematic design of logic gates performing Boolean logic
within an autonomous multicellular consortium.
We designed our system to operate using site-specific

recombinases, more specifically serine integrases, which allow
robust and flexible engineering of complex logic gates.12,13

Serine integrases are members of the large serine recombinase
family31 and catalyze site-specific recombination between
attachment sites attB and attP. Recombination operates via
double-strand breaks located at the central dinucleotides
followed by the generation of hybrid sites attL and attR.
Depending on the relative orientation of attB and attP, the
recombination reaction leads to excision (parallel orientation)
or inversion (antiparallel orientation) of the DNA sequence
flanked by the attachment sites.32 Recombinase devices can
implement complex logic functions without the need of
cascading multiple logic gates like in electronics.12,13,26

Integrase recombination is irreversible in the absence of
cofactors, so that recombinase logic gates exhibit memory, are
single use (one-shot), and therefore belong to the family of
asynchronous logic devices (i.e., the system can respond to
multiple signals even if they are not present simultaneously).
Our design for Boolean logic is based on a reduced library of

cellular computing units responding to one or multiple inputs
that can be composed at will to implement all desired Boolean
functions (Figure 1). Our logic system is single layer, does not

require cell−cell communication nor spatial separation, greatly
facilitating its implementation. In order to make our design
framework broadly accessible, we provide a fully automated
web platform called CALIN (Composable Asynchronous Logic
using Integrase Networks) taking truth tables as inputs and
providing corresponding DNA designs and sequences as
outputs.

■ RESULTS
A Hierarchical Composition Framework for Multi-

cellular Boolean Logic Using Integrase Switches. In order
to implement a Boolean function within a multicellular
consortium, we decomposed the function into several
independent subfunctions, or clauses,30 executed by a different

cellular subpopulation, chosen from a library containing a
reduced number of cellular computing units (Figure 1). To
facilitate multicellular system composition, we designed our
system so that each cellular subpopulation computes
independently of the others, without cell−cell communication
needed. As a consequence, if one cellular subpopulation is ON
(expression of the output gene), the global output of the
system is considered to be ON. Because of their reduced
number and of the absence of cell−cell communication, cellular
computing units can be extensively characterized and optimized
to predictably implement all Boolean functions at the
multicellular level.
Boolean functions encode the output state of the logic gate.

The variables of the function are the inputs of the gate which
are equal to 1 if the signal has been present and otherwise to 0.
We express Boolean functions using the disjunctive normal
form.33

The Boolean function f is a disjunction: f = β1OR...OR βM,
where M is the number of clauses present in f, and each βi is a
conjunctive clause: βi = θi,1 AND...AND θi,ni, where each θi,j is a

literal of the variable xj (either the identity of the variable or its
negation), with j being an integer between 1 and ni. ni
corresponds to the number of variables in this conjunction
(an integer between 1 and N). N is the number of variables in
the function f.
Each cellular computing unit executes a particular “sub-

function” corresponding to a conjunctive clause. Then, the full
function is performed by combining multiple cellular
computing units (Figure 2A).
We designed a hierarchical composition framework in which

two elements encoding the NOT and IDENTITY functions
(called ID-element and NOT-element) are composed into
computational modules which are then combined to generate
computational devices executing a particular clause within a
cellular subpopulation.
For the sake of simplicity and robustness, we designed

switches controlled by integrase-mediated excision (Figure 2B).
Excision-based design reduces the distance between gate
promoter and the gene of interest. Moreover, as no asymmetric
terminator is needed, this design might be easier to deploy into
many organisms.14

The ID-element consists of a transcriptional terminator
flanked by recombination sites and placed between the
promoter and the output gene. In presence of the signal, the
terminator is excised and the output gene is expressed (Figure
2C, left panel). The NOT-element consists of a promoter
driving the output gene and flanked by recombination sites. In
presence of the signal, the promoter is excised and the gene is
not expressed anymore (Figure 2C, right panel). Computa-
tional modules performing conjunctions of NOT or con-
junctions of IDENTITY functions are respectively realized by
nesting NOT-elements or by placing ID-elements in series
(Figure 2D,E). Finally, NOT- and ID-modules are composed in
series to obtain the final computational devices: in this case the
NOT-module containing the promoter is positioned in 5′ of
the ID-module, with the output gene positioned downstream
(Figure 2F). Following this hierarchical composition frame-
work, all conjunctive clauses are implementable within a cellular
computing unit. The full Boolean function is then executed by a
multicellular consortium containing different cellular comput-
ing units.

Figure 1. Distribution of a Boolean function within a multicellular
consortium. The Boolean function of interest is decomposed as a
disjunction (i.e., sum) of subfunctions (or clauses). Here, as an
example, a given function, f, is decomposed into functions f1, f 2, and f 3.
The strains performing f1, f 2 and f 3 are selected from the strain library
to assemble a multicellular consortium computing the desired Boolean
function.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.8b00016
ACS Synth. Biol. 2018, 7, 1406−1412

1407

http://dx.doi.org/10.1021/acssynbio.8b00016


To reduce the number of computational devices, we
implemented only one computational device per set of
symmetric Boolean functions and interchanged connection
between integrases and control signals. For example, the
two Boolean functions: NOT(A) AND B; B AND NOT(A) are
executed using the same computational device (Figure S1).
Consequently, only 14 computational devices are needed to
realize all 4-input Boolean functions (65 536 functions) (Figure
3A). For every additional input (from N − 1 to N), only N + 1
novel computational devices are needed while the number of
Boolean functions increases drastically. For example, 7
additional devices are needed to transition from 5 to 6 inputs
(27 devices in total), enabling a 1010 fold increase in the
number of Boolean functions (for a total of ∼1019) (Figure
3B). Of note, the different cellular computing units do not
always include N integrases and computational devices

responding to N inputs. As an example, the 4-input Boolean
equation shown in Figure 3D can be executed using 3 strains
containing respectively 4, 3, and 2 integrases and with different
signal-integrase connectivities.
To implement a N-input Boolean function, a maximum of

2N−1 different cellular computing units have to be composed,
corresponding to a culture of 2N−1 different strains: 4 for 3
inputs and 8 for 4 inputs (Figure 3B). However, most logic
functions can be performed using less cellular computing units
(an average of 2.3 strains for 3-input and 3.6 strains for 4-input
Boolean functions, Figure 3C).
In summary, we provide a hierarchical composition frame-

work using a reduced library of computational devices to
systematically implement all N-input Boolean logic functions
within a multicellular consortium.

Figure 2. A hierarchical composition framework for asynchronous Boolean recombinase logic. (A) Distribution of a Boolean function within a
multicellular consortium by decomposition into conjunctions of literals (variables or their negations). Here an example is depicted in which a
Boolean function is decomposed into three subfunctions and implemented in three separate cellular computing units. (B) attB and attP disposed in
parallel orientation. (C) Elements implementing IDENTITY and NOT functions. To obtain an IDENTITY function, a transcriptional terminator is
flanked by parallel attachment sites, blocking transcription of the gene of interest. When the signal is present, the terminator is excised and the output
gene is expressed. To obtain a NOT function, a promoter is flanked by parallel attachment sites. When the signal is present, the promoter is excised,
and the gene is no longer expressed. (D) Functional composition of ID-elements into ID-modules, by placing elements in series to obtain the
conjunction of IDENTITY functions. For a 2-input ID-module, the output gene is expressed only when both inputs have been present, both
terminators excised (corresponding to an AND gate (A AND B)). (E) Functional composition of NOT-elements into NOT-modules, by nesting
elements to obtain conjunction of NOT functions. For a 2-input NOT-module, the output gene is expressed only when none of the inputs has been
present (corresponding to a NOR gate: NOT(A) AND NOT(B)). (F) Hierarchical composition framework for Boolean recombinase logic. ID- and
NOT-modules are composed in series, following a priority rule in which the NOT-module is placed upstream the ID-module. The device shown
here can be scaled to perform all functions based on conjunction of NOT and IDENTITY functions.
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An Automated Design Platform for Recombinase
Logic. We then aimed at generating a software for automating
the design of cellular consortia performing asynchronous
Boolean logic. Softwares enabling such automated genetic
circuit design are necessary and extremely useful when the
design space becomes too large for humans to explore it
efficiently.7,34−36

We thus designed an algorithm called CALIN (Composable
Asynchronous Logic using Integrase Networks) based on two
main steps (Figure 4A). First, the Boolean function of interest
is decomposed into a disjunction of conjunctive clauses using

the Quine−McCluskey algorithm (see Methods). Then, each
clause is converted into a given computational device for which
particular connections between integrases and inputs are
generated.
The CALIN script written in Python is available on Github

and can be directly used for high-throughput generation of
biological designs. Furthermore, the CALIN python script can
design logic devices customized for specific organisms (E. coli,
B. subtilis and S. cerevisiae) and can be tailored by the user to
generate devices using fully customized DNA sequences.

Figure 3. Implementing all Boolean logic functions using a reduced number of computational devices. (A) Schematics of all devices needed to
implement up to 4-input functions. (B) Maximum number of strains and number of computational devices needed to compute all Boolean functions
for a given number of inputs. See Methods for details. (C) Proportion of Boolean functions implementable with a specific number of strains for 3
and 4 inputs (obtained by generating all the biological designs for 3 and 4-input Boolean functions, see Table S1 for numbers). (D) Example of a
biological implementation for a 4-input Boolean function. The function shown here is divided into a disjunction of conjunctive clauses (see Figure
2A). Each conjunctive clause is executed using a particular computational device (defined in panel A) each placed into a separate cellular computing
unit. By combining the different units, the full logic function is obtained. If at least one of the cellular units is ON, the output is considered to be ON.
Of note, inputs are not always connected to the same integrase (as for input D in Cell 1 and Cell 2), and all integrases and inputs are not present in
all cells.
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In order to enable broader access to our design framework,
we also provide a Web site of CALIN accessible at http://
synbio.cbs.cnrs.fr/calin.
In the CALIN web-interface, the user fills the number of

inputs to process (up to 5) and the desired Boolean truth table
or corresponding binary number. The Web site provides as
outputs the DNA architectures of the computational devices,
the connection map between signals and integrases, and the
corresponding DNA sequences (Figure 4B).

■ DISCUSSION

In this work we present a scalable composition framework for
implementing asynchronous Boolean logic within a multi-
cellular consortium. We provide an online design tool for the
systematic design of recombinase logic circuits called CALIN
(Composable Asynchronous Logic using Integrase Networks).
While these designs are currently theoretical, the robustness of
integrase-mediated recombination against various site permu-
tations and orientations12,13,34,37 should support straightforward
experimental implementation.
By taking advantage of the single-layer architecture of

recombinase logic, we encapsulated complex Boolean functions
into various subcellular populations. Because of its compact
architecture, our design exhibit two significant improvements
over previous DMC systems: (i) no cell−cell communication
channels are needed, and (ii) cells do not need to be spatially
separated, thereby supporting the implementation of fully
autonomous multicellular consortia operating without an
external physical device.
Another difference between our system and other DMC is

the use of recombinase switches that provide memory.34,38,39

Recombinase mediated data-storage could be useful for
applications requiring endpoint measurements, or delayed
readout, like diagnostics. Also, because the state of the logic
system is written within DNA, it can be addressed via PCR or
DNA sequencing,13,38,40 even if the cells die, providing other
robust readout modalities.
As with others DMC systems, for a given number of inputs,

the number of elementary computational devices needed to
compose all logic functions compares very favorably with the
number of possible functions. For example, implementing all

65 536 4-input, or all ∼4.3 × 109 5-input Boolean functions
only requires respectively 14 and 20 computational modules.
As serine recombinases do not require host-specific cofactors

and can operate in several species, the designs presented here
could be implemented in many organisms. Logicfunctions
could also be distributed between different species operating in
concert. In such schemes, researchers could take advantage of
the particular capacities of different organisms to detect
different signals and/or perform specific tasks. Examples of
applications include environmental remediation41,42 or micro-
biome engineering for therapeutic applications.43

A possible challenge for our system is the high number of
strains that have to operate together when the number of inputs
increases (Figure 3B). Cultivating many strains together could
lead to counter selection of some subpopulations, but this
problem could be addressed by encapsulating the different
strains into hydrogel beads.40 Also, as the number of strains
increases, the output of one subpopulation representing a small
fraction of the whole consortia could become difficult to
measure. The output level in the ON state will also be different
if one or multiple cellular subpopulations are turned ON.
However, adding a single cell−cell communication channel
could address this problem by propagating the output to the
whole-population (Figure S2).
Finally, for some applications, “real-time” response could be

achieved via a similar composition framework using synchro-
nous recombinase logic gates based on reversible recombina-
tion reactions performed by integrases coupled with recombi-
nation directionality factors (RDFs) (Figure S3).12,26

■ METHODS
Equations for Determining of Numbers of Functions/

Strains/Devices. The number of Boolean functions corre-
sponds to 2 to the power of the number of possible states. As
each state can be equal to 1 or to 0, the number of possible
states is equal to 2 to the power of N where N is the number of
inputs. Consequently, the number of Boolean functions is equal
to eq 1.

=Number 2Boolean functions
2N

(1)

The maximum number of strains needed to implement any
Boolean logic function with N inputs is equal to eq 2, as all N-

Figure 4. Automated design of multicellular recombinase logic. (A) The CALIN algorithm enables the systematic design of Asynchronous Boolean
logic. (B) CALIN web-interface takes as an entry a Boolean truth table and generates as outputs: the connection map between inputs and integrases,
the DNA architectures of the computational devices and the corresponding DNA sequences.
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input Boolean equations can be written in the disjunctive
normal form, then as a disjunction of a maximum of 2N−1

conjunctive clauses.33

≤ −Number 2N
strains

1
(2)

The number of different conjunctive clauses (corresponding
to a conjunction of literals) is equal to eq 3.

∑=
=

⎛
⎝⎜

⎞
⎠⎟

N
k

Number 2
k

N
k

conjunctive clauses
1 (3)

If we implement all these functions within cells, the number
of standard devices needed is equal to the number of
conjunctive clauses (eq 4).

∑

=

=
=

⎛
⎝⎜

⎞
⎠⎟

N
k

Number

Number

2
k

N
k

devices without simplification

conjunctive clauses

1 (4)

This method leads to a high number of devices. Therefore,
we decided to construct only one device per set of symmetric
Boolean functions (e.g., A AND NOT(B) is the symmetric
function of NOT(A) AND B). This approach reduces the
number of standard devices. In consequence, for an N-input
Boolean function, devices computing from 1 to N inputs are
needed and k + 1 nonsymmetric Boolean functions computing
the conjunction of k literals exist:

∑= +
=

kNumber ( 1)
k

N

devices
1 (5)

Of note, the number of devices follows the arithmetic series:

+ −a N d(2 ( 1) )N
2 1 where a1 = 2, d = 1, and N is the number

of inputs.
In a first approximation, N sensor-modules in which a control

signal (i.e., a sensor device responding to an input of interest) is
connected to an integrase are needed for the construction of an
N-input system. However, as we reduced the number of devices
to a set composed of nonsymmetric Boolean functions, we
need to connect all control signals to all integrases to compute
all Boolean functions. Therefore, N2 sensor-modules are
needed.
Automated Generation of Genetic Designs. We

encoded an algorithm generating genetic designs executing
N-input Boolean functions using Python (Figure S4). The
algorithm takes as input a Boolean truth table or the binary
number corresponding to the function. The output corresponds
to the biological implementation of the Boolean function, such
as for each strain: a graphical representation of the genetic
circuit and its associated DNA sequences.
The truth table is transformed into a Boolean function in the

disjunctive normal form using the Quine−McCluskey algo-
rithm33 (Figure 4A). The Boolean function is decomposed into
conjunctive clauses (conjunction of literals). In this scheme,
each clause can be regarded as a “subfunction”. From each
conjunctive clause, we extract two types of information. First,
based on the number of IDENTITY and NOT functions, we
identify which logic device is needed. Second, based on the
association of inputs to either IDENTITY and NOT functions,
we identify which sensor-modules are needed among the

different connection possibilities between control signals and
integrases. Finally, we combine the designs executing the
different conjunctive clauses to obtain the global design for
implementing the desired truth table.
To simplify the construction process, the DNA sequence of

the computational devices is generated by our Python code. In
CALIN, sequences are adapted for E. coli, but sequence
generation can be adapted to other organisms (database
available for B. subtilis and Saccharomyces cerevisiae) or
customized using the source Python code available on github.
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