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resent various problems issued from Artificial Intelligence and arising when available 12

information is incomplete. The combination of the two formalisms requires to extend exis- 13

tential rules with nonmonotonic negation and to extend ASP with existential variables. In 14

this article, we present the syntax and semantics of Existential Non Monotonic Rules (ENM- 15

rules) using skolemization which join together the two frameworks. We formalize its links 16

with standard ASP. Moreover, since entailment with existential rules is undecidable, we 17
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1 Introduction22

When dealing with information issued from the web, it is interesting to have a system able23

to represent ontologies and to reason under them. For many years, several works have been24

proposed to deal with either of these two aspects but it is now important to join these features25

in one formalism. The work presented here deals with existential nonmonotonic rules.1 It26

presents the two sides of a work. On one hand, it enriches the ASP framework by taking into27

account existential variables. On the other hand, it consists in introducing nonmonotony in28

existential rules. The proposed work aims at describing knowledge in a single framework29

which can lead to useful implementation. The interest of focusing on ASP is that it is a30

powerful framework for knowledge representation and reasoning, and provides efficient31

solvers. Moreover, existential rules are suitable to deal with ontological knowledge.32

Existential rules (also called Datalog+/-) have been proposed for representing ontolog-33

ical knowledge, specifically in the context of Ontology-Based Data Access, that aims to34

exploit ontological knowledge when accessing data [10, 14]. These rules allow to assert the35

existence of unknown individuals, a feature recognized as crucial for representing knowl-36

edge in an open domain perspective. Existential rules generalize lightweight description37

logics, such as DL-Lite and EL [3, 17] and overcome some of their limitations by allowing38

any predicate arity as well as cyclic structures. Alternatively, those existential variables can39

be seen as functional terms obtained by skolemization. Existential rules are thus a subset of40

rules with function symbols for which specific decidability results have been obtained (for41

instance [8] for saturation-based mechanisms).42

Answer Set Programming (ASP) is a very convenient paradigm to represent knowledge43

in Artificial Intelligence (AI), especially when information is incomplete [11]. It has its44

roots in nonmonotonic reasoning and logic programming and has led to a lot of works since45

the seminal paper [26]. Beyond its ability to formalize various problems from AI, ASP46

provides also an interesting way to practically solve such problems since some efficient47

solvers are available.48

This work presents a way for the treatment of ontologies in Answer Set Programming49

(ASP). We are interested in using ASP technologies for querying large scale multisource50

heterogeneous web information. ASP is considered to handle, by using default negation,51

inconsistencies emerging by the fusion of the sources expressed by scalable description52

logics. Moreover, ASP can enrich the language of ontologies by allowing the expression of53

default information (for instance, when expressing the inclusion with exceptions of concepts54

in the TBox). The problem for ASP is the presence of existential variables in ontologies.55

Then the present work has two sides. On the one side, it proposes a definition of ASP56

with existential variables. The treatment of these variables is done in terms of skolemization.57

On the other side, it can be seen as the extension of existential rules with nonmonotonic58

negation under stable model semantics. Note that the restriction of function symbols to those59

that encode existential variables allow to benefit from all termination properties obtained60

for the saturation using existential rules.61

1The work of this paper is a revised and extended version of the papers [9] and [25].
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If we consider the intended semantics of ∃X p(X) in ASP, there are two main 62

approaches: (1) one can enumerate all possible values for X, that is ∃X p(X) is interpreted 63

as p(a1) ∨ p(a2) ∨ . . . for all ai belonging to the considered universe, or (2) one can only 64

say that there is some anonymous individual x0 such that p(x0) holds: this corresponds to 65

skolemization. In the first approach, the considered universe is the Herbrand universe, even- 66

tually extended with other individuals in the case of open domains. In practice this approach 67
generates a lot of answer sets. If we are only interested by the fact that there exists some 68

individual that verifies property p, but not with which one, skolemization is a good solu- 69

tion: it represents exactly the information of existence of some individual. Coupled with the 70

Unique Name Assumption, the skolemization encounters a problem: Skolem terms can not 71

be identified with some other named individual if necessary. For instance, if skolemized, 72

the following program {∃X p(X)., p(a).,← p(X), p(Y ),X �= Y.} has no answer set while 73

one can expect {p(a)}. Nevertheless skolemization enables to verify that there exists exactly 74

one individual satisfying some property p: {← not p(X).,← p(X), p(Y ),X �= Y.}. 75
Entailment with existential rules is known to be undecidable [12, 18]. Many sufficient 76

conditions for decidability, obtained by syntactic restrictions, have been exhibited in knowl- 77

edge representation and database theory (see e.g., the overview in [43]). We focus in this 78

paper on conditions that ensure the termination of a breadth-first forward chaining algo- 79

rithm, known as the chase in the database literature. Given a knowledge base composed of 80

data and existential rules, the chase saturates the data by application of the rules. When it is 81

ensured to terminate, the information deduced by the rules can be added to the data, which 82

can then be queried like a classical database, thus allowing to benefit from any database 83

optimizations technique. Several variants of the chase have been proposed, which differ 84

in the way they deal with redundant information [20, 22, 41]. It follows that they do not 85

behave in the same way with respect to termination. In the following, when we write the 86

chase, we mean one of these variants. Various acyclicity notions have been proposed to 87

ensure the halting of some chase variants. We propose some extensions of these acyclicity 88

notions, while keeping good complexity properties. We discuss the relevance of the chase 89

variants for nonmonotonic existential rules and further extend acyclicity results obtained for 90

existential rules without negation. 91
The study of the combination of ontologies and rules is not new [19, 21, 24, 34, 40, 42, 92

45]. In most of these models, the knowledge base is viewed as an hybrid knowledge base 93

composed of two parts (T ,P): T is a knowledge base describing the ontological informa- 94

tion expressed with a fragment of first-order logic, for instance in description logic, and P 95

describes the rules in terms of a logic program. 96
The integration of the two formalisms can be separated into three classes [21, 34]. 97

In the first class (like in [21]), the two formalisms are handled separately. T is seen as 98

an external source of information which can be used by the logic program through spe- 99

cial predicates querying the DL base. The two bases are then independent with their own 100

semantics and the link between the two bases is made using these special predicates. 101
The second case (like in [42, 45]) corresponds to an hybrid formalism which integrates 102

DLs and rules in a coherent semantic framework. Predicates of T can be used in the rules 103

of the program. In [45], the representation of information is separated in two parts, a DL 104

knowledge base and a Datalog¬∨ program, but there are no rules combining both existen- 105

tial variables and negations: existential variables occur in the DL knowledge base and the 106

negations occur in the program. But default negations are not allowed in the DL part and 107

existential variables are not allowed in the program. Moreover, there are some additional 108

restrictions: for instance, predicates of T can not be used in the negative body of a rule. A 109

variant of this model, based on guarded rules, is proposed in [31]. 110
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The last case integrates DLs and rules in a unique formalism. For instance, de Bruijn et al.111

[19] uses quantified equilibrium logic (QEL). In this work, several hybrid knowledge bases112

are defined (with safe restriction, safe restriction without unique name assumption or with113

guarded restriction) and it is proved that each category and their models can be expressed114

in terms of QEL.115
A large part of these works concerns the questions of complexity and decidability. In116

these frameworks, existential variables are allowed in the part of the description logic117

information but are not allowed in the head of the rules.118

Next to these models, Ferraris et al. [24] proposes a model allowing to cover both stable119

models semantics and first-order logic by means of a second-order formula issued from the120

initial information. Its links with the previously cited works have been established in [34].121
In ASP, the closed domain assumption presumes that all relevant domain elements are122

present in the program. Open ASP (OASP for short) [31] extends the Herbrand universe with123

a (finite or infinite) set of new constants. But OASP does not deal explicitly with existential124

variables: ∃X p(X) can be represented by {existsp ← p(X)., ← not existsp. p(X) ∨125

not p(X).}; this program instantiated with individuals of an open domain, can ”generate”126

all answer sets of the form {p(a)} where a belongs to the open universe. Then [31] is127

concerned by restricting the syntax to regain decidability. They define extended forest logic128

programs (EFOLPs) where one part of the program can use open domain but is stratified,129

and the other part is only instantiated with the constants of the program.130
Nonmonotonic extensions to existential rules were recently considered in [15] with strat-131

ified negation, [28] with well-founded semantics and [40] with stable model semantics.132

In this latter work, the knowledge base is a single one allowing existential variables and133

default negation in a same rule. It deals with skolemized existential rules and focuses on134

cases where a finite unique model exists. This work studies some conditions of acyclic-135

ity and stratification that must be verified by the base ensuring the existence of a unique136

finite stable model. The base then belongs to a particular category of stratified programs.137

The work is both theoretical and practical but it is concerned with a limited extension of138

ASP.139

Some very recent works deals with kinds of non-monotonic rules with existential vari-140

ables by translating the initial base into tractable bases (for instance, Alviano et al. [2] uses141

a second-order translation and [1] uses Datalog with non-monotonic atoms) but they do142

not really focus on a computational solution that can be used in practice. As far as we know,143

the only works leading to an implementation are those of [32], based on [21], and of [40]144

which has been applied to information about biochemistry. The systems Shy [37] and Nyaya145

[28] support skolemized existential variables but not default negation. In [47], some query146

answering is done on skolemized existential R-acyclic rules using ASP solver Clasp.147
Section 2 gives the background about First Order Logic (FOL), existential rules and148

ASP useful for the paper. Then, in Section 3, we define existential nonmonotonic rules,149

an ASP variant allowing existential variables or, equivalently, a nonmonotonic extension150

of existential rules and answer sets on this kind of programs are defined. Section 4 gives151

the links between existential nonmonotonic rules and standard ASP with a method to trans-152

late a program expressed with existential nonmonotonic rules into a program expressed in153

(standard) ASP. Proofs about the transformation are also provided. In Section 5, some prop-154

erties of different chases are discussed. In Section 6, we propose a tool that allows to extend155

existing acyclicity conditions ensuring chase termination, while keeping good complexity156

properties. In Section 7, we discuss the relevance of the chase variants for existential non-157

monotonic rules and further extend acyclicity results obtained in the case of rules without158

default negation.159
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2 Background 160

2.1 First order logic background 161

2.1.1 Syntax 162

A vocabulary L is a triplet (CS,FS,PS) where CS , FS and PS are pairwise disjoint 163

sets, respectively of constant symbols, function symbols and predicate names (or predicate 164

symbols). We also consider an infinite countable set V of variables, disjoint with the pre- 165

vious ones. A function ar from PS to N and from FS to N
∗ associates to each predicate 166

name and function symbol its arity. 167

Let X be a set. A functional term built from X is defined inductively as either an element 168

of X , or an object of the form f (x1, . . . , xk) where f ∈ FS is a function symbol of arity k 169

and the xi are functional terms built from X . 170

The set of terms T(L) denotes the set of all functional terms built from the set CS ∪ V 171

of constants and variables. The set of ground terms GT(L) denotes the set of all functional 172

terms built from the set CS of constants. 173

The set A(L) denotes the set of atoms of a vocabulary, which are of form p(t1, . . . , tk) 174

where p ∈ PS is a predicate name of arity k and ti ∈ T(L). An atom is said to be ground 175

when all its terms are ground, and it is said to be function-free when none of its terms 176

contains a function symbol. 177

An atomset on L is a (possibly infinite) set of atoms on L. It is said to be ground when 178

all its atoms are ground, and function-free when all its atoms are function-free. 179

2.1.2 Semantics 180

An interpretation of a vocabulary L is a pair I = (�I , .
I ) where �I is the interpretation 181

domain, �I �= ∅, and the interpretation function .I maps: 182

– each constant symbol c ∈ CS to an element of the domain cI ∈ �I ; 183

– each function symbol f ∈ FS of arity k to a function f I : �k
I → �I ; 184

– each predicate name p ∈ PS of arity k to a subset pI of �k
I . 185

Let A be an atomset and σ be a mapping from vars(A) (the variables appearing in A) 186

to �I . For every term t appearing in A, we define inductively t Iσ by: 187

– if t ∈ V is a variable, then t Iσ = σ(t); 188

– if t ∈ CS is a constant, then t Iσ = t I ; 189

– otherwise, t = f (t1, . . . , tk) where t ∈ FS is a function symbol of arity k, and t Iσ = 190

f I ((t1)
I
σ , . . . , (tk)

I
σ ). 191

We say that an interpretation (�I , .
I ) is a model of an atomset A and note (�I , .

I ) � A 192

when there exists a mapping σ from vars(A) to �I such that, for every atom p(t1, ...., tk) ∈ 193

A, ((t1)
I
σ , . . . , (tk)

I
σ ) ∈ pI . Such a mapping is called a proof that (�I , .

I ) is a model of A. 194

Note that an atomset A has exactly the same models as the First Order Logic (FOL) formula 195

obtained from the existential closure of the formula φ(A), where φ(A) is the conjunction 196

of atoms in A. 197

An atomset is satisfiable when it admits a model (unsatisfiable otherwise), valid when 198

all its interpretations are models (invalid otherwise), and we say that A1 entails A2 (or that 199

A2 is a semantic consequence of A1) and note A1 |= A2 when all models of A1 are also 200

models of A2. 201
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Finally, let us point out that any atomset is satisfiable (it admits an isomorphic model),202

and that the only valid atomset is the empty one ∅.203

2.1.3 Substitutions204

Let X ⊆ V be a set of variables, and T be a set of terms. A substitution function s is205

a mapping from X to T . If t is a term, we define inductively as follows the substitution,206

denoted σ(t), as the extension of the substitution function to the terms:207

– if t ∈ X , then σ(t) = s(t);208
– if t ∈ V \ X is a variable that is not in X , then σ(t) = t ;209
– if t ∈ CS is a constant, then σ(t) = t ;210
– otherwise, t = f (t1, . . . , tk) where t ∈ FS is a function symbol of arity k, and σ(t) =211

f (σ (t1), . . . , σ (tk)).212

By extension, if a = p(t1, . . . , tk) is an atom, we note σ(a) = p(σ(t1), . . . , σ (tk)), and213

if A = {a1, . . . , ap} is an atomset, we note σ(A) = {σ(a1), . . . , σ (ap)}.214
We say that a substitution σ is ground when it maps X to ground terms of GT(L). Let215

t be a term (resp. a an atom) and σ a ground substitution, σ(t) (resp. σ(a)) is a ground216

instance of t (resp. a).217
A partial ground substitution for a set of variables V over a vocabulary L is a mapping218

from V to the set of ground terms GT(L). Let t be a term (resp. a an atom) and σ a partial219

ground substitution for a set of variables V , σ(t) (resp. σ(a)) is a partial ground instance220

of t (resp. a) w.r.t. the set of variables V .221

2.1.4 Homomorphisms222

Definition 1 (Homomorphism) Let F and Q be two atomsets. An homomorphism from223

F to Q is a substitution σ from the variables of Q to the terms of F such that σ(Q) ⊆ F .224

Theorem 1 Let F be an atomset, and Q be a finite atomset. Then F |= Q iff there exists225

an homomorphism from Q to F .226

HOMOMORPHISM227

Data: Two finite atomsets F and Q.228

Result: TRUE if there is an homomorphism from Q to F , FALSE otherwise.229

The problem is NP-complete in combined complexity. It becomes polynomial when Q has230

no variable, or when it has a tree-like structure. The problem is in AC0 in data complexity.231

2.2 Existential rules232

2.2.1 Syntax233

An existential rule is a pair of finite sets of atoms noted H ← B where H is called the234

head of the rule and B is called its body. We call body variables of the rules the vari-235

ables that appear in B, frontier variables of the rule the variables that appear both in B236

and H , and existential variables of the rule those appearing only in H . These rules have237

been studied in the litterature under different names: conceptual graphs rules [46] or238

Datalog+/- [14]. They have the same form as tuple generating dependencies studied in239

database theory.240
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2.2.2 Semantics 241

We say that an interpretation (�I , .I ) is a model of an existential rule H ← B when every 242

proof that (�I , .I ) is a model of B can be extended to a proof that (�I , .I ) is a model of 243

B ∪ H . Note that the existential rule H ← B has exactly the same models as the FOL 244

formula ∀x(φ(B) → (∃yφ(H))) where x are the body variables of the rule, y its existential 245

variables, and φ maps a set of atoms to their conjunction. 246

2.2.3 Derivations 247

Let F be an atomset and H ← B be an existential rule. We say that H ← B is applicable to 248

F if there exists an homomorphism σ from B to F . In that case, the application of H ← B 249

on F according to σ produces an atomset α(F,H ← B, σ) = F ∪ σ(fresh(H)) where 250

fresh is a bijective substitution from the existential variables of H to a set of fresh variables 251

(i.e., new freshly generated variables that appear nowhere else). 252

Let R be a set of existential rules and F be an atomset. An R-derivation from F is 253

a (possibly infinite) sequence F = F0, F1, . . . , Fk, . . . of atomsets such that, for i ≥ 1, 254

there exists some rule H ← B ∈ R and an homomorphism σ from B to Fi−1 such that 255

Fi = α(Fi−1, H ← B, σ). We say that this derivation is from F to F ′ when F ′ = ∪∞
i=0Fi . 256

Theorem 2 Let F and Q be two finite atomsets, and R be a finite set of existential rules. 257

Then F,R |= Q iff there exists a finite R-derivation from F to F ′ such that F ′ |= Q. 258

DEDUCTION 259

Data: Two finite atomsets F and Q, a finite set of existential rules R. 260

Result: TRUE if F,R |= Q, FALSE otherwise. 261

The problem is semi-decidable in the general case. For decidable subclasses of function-free 262

existential rules, see for instance [4]. We discuss a particular family of decidable classes in 263

Section 6. 264

2.3 Answer set programming 265

In this section, we give the main background of the ASP framework. 266

2.3.1 Program 267

In ASP, a problem is described in term of a logic program with default negation. 268

A normal logic program (or simply program) is a set of rules like 269

(c ← a1, . . . , an, not b1, . . . , not bm.) n ≥ 0, m ≥ 0 (1)

where c, a1, . . . , an, b1, . . . , bm are atoms. 270

For a rule r (or by extension for a set of rules), we define: 271

– head(r) = c its head, 272

– body+(r) = {a1, . . . , an} its positive body 273

– body−(r) = {b1, . . . , bm} its negative body and 274

– V(r) the set of its variables. 275

The intuitive meaning of such a rule is: ”if all the ai’s are true and it may be assumed that 276

all the bj ’s are false then one can conclude that c is true”. Symbol not denotes the default 277
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negation. A rule with no default negation is a definite rule otherwise it is a nonmonotonic278

rule. A program with only definite rules is a definite logic program. A program is a propo-279

sitional program if all the predicate symbols are of arity 0. The rules of the program must280

be safe; that is all variables that appear in a rule also appear in the positive part of its281

body. All the variables are considered to be universally quantified. In the sequel, universally282

quantified variables will be called universal variables.283

For each program P , we consider that the set CS (resp. FS and PS) consists of all284

constant (resp. function and predicate) symbols appearing in P .285

Let r be a rule and θ a ground substitution over the vocabulary of the program, a rule286

θ(r) is a ground instance of r . The program P (with variables) can be seen as an intensional287

version of the program ground(P ) defined as follows: given a rule r , ground(r) is the set of288

all ground instances of r and then, ground(P ) = ⋃
r∈P ground(r). Program ground(P )289

may be considered as a propositional program.290

Example 1 The program291

P1a =
⎧
⎨

⎩

n(1)., n(2).,

a(X) ← n(X), not b(X).,

b(X) ← n(X), not a(X).

⎫
⎬

⎭

can be seen as a shorthand for the program292

ground(P1a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n(1)., n(2).,

a(1) ← n(1), not b(1).,

b(1) ← n(1), not a(1).,

a(2) ← n(2), not b(2).,

b(2) ← n(2), not a(2).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The program293

P1b =
⎧
⎨

⎩

p(a).,

l(a).,

phdS(X, f (X)) ← p(X), not (l(X), gC(X, Y )).

⎫
⎬

⎭

can be seen as a shorthand for the (infinite) program294

ground(P1b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(a).,

l(a).,

phdS(a, f (a)) ← p(a), not (l(a), gC(a, a)).

phdS(f (a), f (f (a))) ← p(f (a)), not (l(f (a)), gC(f (a), a)).

· · ·

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The following program says that every man X has a father f (X) who is himself a man.295

P1c =
⎧
⎨

⎩

man(a).,

f ather(X, f (X)) ← man(X).,

man(f (X)) ← man(X).

⎫
⎬

⎭
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It can be seen as a shorthand for the (infinite) program 296

ground(P1c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

man(a).,

f ather(a, f (a)) ← man(a).,

man(f (a)) ← man(a).

f ather(f (a), f (f (a))) ← man(f (a)).,

man(f (f (a))) ← man(f (a)).

· · ·

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The immediate consequence operator for a definite logic program P is TP : 2A → 2A 297

such that TP (X) = {σ(head(r)) | r ∈ P, ∃σ a ground substitution s.t. σ(body+(r)) ⊆ 298

X}. The least Herbrand model of P is the smallest set of atoms closed under P (denoted 299

Cn(P )), i.e., the smallest set X such that TP (X) ⊆ X. It can be computed as the least fixed 300

point of the consequence operator TP . 301

2.3.2 Answer set 302

The solutions of the problem encoded by a program are the answers of the program and are 303

called answer sets. 304

The reduct P X of a normal logic program P w.r.t. an atomset X ⊆ A is the definite logic 305

program defined by: 306

P X = {σ(head(r)) ← σ(body+(r)). | r ∈ P, ∃σ a ground substitution over V(r) s.t.
σ(body−(r)) ∩ X = ∅}

and it is the core of the definition of an answer set. 307

Definition 2 (Answer Set) [26] Let P be a normal logic program and X an atomset. X is 308

an answer set of P if X = Cn(P X). 309

For instance, the propositional program {a ← not b., b ← not a.} has two answer sets 310

{a} and {b}. 311

Example 2 Taking again the program P1a , ground(P1a) has four answer sets: 312

{a(1), a(2), n(1), n(2)}, {a(1), b(2), n(1), n(2)},
{a(2), b(1), n(1), n(2)}, {b(1), b(2), n(1), n(2)}

that are thus the answer sets of P1a . 313

There is another definition of an answer set for a normal logic program based on the 314

notion of generating rules which are the rules participating to the construction of the answer 315

set. These rules are important in our approach because they are exactly the rules fired in the 316

ASPeRiX computation presented in the next section. 317

Definition 3 (Generating Rules) Let P be a normal logic program and X be an atom- 318

set. GRP (X), the set of generating rules of P , is defined as GRP (X) = {σ(r) | r ∈ 319

P, σ is a ground substitution over V(r) s.t. σ(body+(r)) ⊆ X and σ(body−(r))∩X=∅}. 320

Definition 4 (Founded) A set of ground rules R is founded if there exists an enumeration 321

〈r1, . . . , ri , . . . 〉 of the rules of R such that ∀i ≥ 1, body+(ri) ⊆ head{rj | j < i}. 322
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Theorem 3 [36] Let P be a normal logic program and X be an atomset. Then, X is an323

answer set of P if and only if X = head(GRP (X)) and GRP (X) is founded.324

2.3.3 Special rules325

In addition to standard rules, ASP can handle special rules to represent constraints and326

classical negation. Special headless rules, called constraints, are admitted and considered327

equivalent to rules like (bug ← . . . , not bug.) where bug is a new symbol appearing328

nowhere else. For instance, the program {a ← not b., b ← not a., ← a.} has one, and329

only one, answer set {b} because constraint (← a.) prevents a to be in an answer set.330

When dealing with default negation, we call a literal an atom, a, or the negation of331

an atom, not a. A literal a is said to be positive, and not a is said to be negative. The332

corresponding atom a of a literal l is denoted by at (l). For a literal l where at (l) = a, let us333

denote pred(l) the function such that pred(not a) = pred(a) = p with p the predicate334

symbol of the atom a.335

For purposes of knowledge representation, one may have to use conjointly strong nega-336

tion (like ¬a) and default negation (like not a) inside a same program. This is possible in337

ASP by means of an extended logic program [27] in which rules are built with classical lit-338

erals (i.e. an atom a or its strong negation ¬a) instead of atoms only. Semantics of extended339

logic programs distinguishes inconsistent answer sets from absence of answer set. But, if we340

are not interested in inconsistent answer sets, the semantics associated to an extended logic341

program is reducible to answer set semantics for a normal logic program using constraints342

by taking into account the following conventions:343

– every classical literal ¬x is encoded by the atom nx,344

– for every atom x, the constraint (← x, nx.) is added.345

By this way, only consistent answer sets are kept. In this article, we do not focus on strong346

negation and literal will never stand for classical literal.347

Let us note that one can also use some particular atoms for (in)equalities and simple348

arithmetic calculus on (positive and negative) integers. Arithmetic operations are treated as349

a functional arithmetic and comparison relations are treated as built-in predicates.350

2.3.4 Computation351

In this section, a constructive characterization of answer sets for first-order normal logic352

programs, based on a concept of ASPeRiX computation [35, 36], is presented. This concept353

is itself based on an abstract notion of computation for ground programs proposed in [39].354

This computation fundamentally uses a forward chaining of rules. It builds incrementally355

the answer set of the program and does not require the whole set of ground atoms from356

the beginning of the process. So, it is well suited to deal directly with first order rules by357

instantiating them during the computation.358

The only syntactic restriction required by this methodology is that every rule of a pro-359

gram must be safe. That is, all variables occurring in the head or in the negative body of a360

rule must occur also in its positive body. Note that this condition is already required by all361

standard evaluation procedures. Moreover, every constraint (i.e. headless rule) is considered362

given with the particular head ⊥ and is also safe.363

An ASPeRiX computation is defined as a process on a computation state based on a364

partial interpretation which is defined as follows.365
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Definition 5 (Partial Interpretation) A partial interpretation for a program P is a pair 366

〈IN,OUT 〉 of disjoint atomsets included in the Herbrand base of P . 367

Intuitively, all atoms in IN belong to a search answer set and all atoms in OUT do not. 368

The notion of partial interpretation defines different status for rules. 369

Definition 6 (Rule Status) Let r be a rule, σ be a ground substitution over V(r) and I = 370

〈IN,OUT 〉 be a partial interpretation. 371

– σ(r) is supported w.r.t. I when body+(σ (r)) ⊆ IN , 372

– σ(r) is blocked w.r.t. I when body−(σ (r)) ∩ IN �= ∅, 373

– σ(r) is unblocked w.r.t. I when body−(σ (r)) ⊆ OUT , 374

– r is applicable with σ w.r.t. I when σ(r) is supported and not blocked.2 375

An ASPeRiX computation is a forward chaining process that instantiates and fires one 376

unique rule at each iteration according to two kinds of inference: a monotonic step of prop- 377

agation and a nonmonotonic step of choice. Firing a rule means adding the head of the rule 378

to the set IN . 379

Definition 7 (�pro and �cho) Let P be a set of first order rules, I be a partial interpretation 380

and R be a set of ground rules. 381

– �pro(P, I, R) = {(r, σ ) | r ∈ P, σ is a ground substitution over V(r) s.t. σ(r) is 382

supported and unblocked, and σ(r) �∈ R}. 383

– �cho(P, I, R) = {(r, σ ) | r ∈ P, σ is a ground substitution over V(r) s.t. σ(r) is 384

applicable and σ(r) �∈ R}. 385

It is important to notice that the two sets defined above, like the set ground(P ), do 386

not need to be explicitly computed. It is in accordance with the fact that we want to avoid 387

their extensive construction. When necessary, a first-order rule r of P can be selected and 388

grounded with propositional atoms occurring in IN and OUT in order to define a new 389

(not already occurring in R) fully ground rule σ(r) member of �pro or �cho. Because 390

of the safety constraint on rules this full grounding is always possible. The sets �pro and 391

�cho are used in the following definition of an ASPeRiX computation. The specific case 392

of constraints (rules with ⊥ as head) is treated by adding ⊥ into OUT set. By this way, if a 393

constraint is fired (violated), ⊥ should be added into IN and thus, 〈IN,OUT 〉 would not 394

be a partial interpretation. 395

Definition 8 (ASPeRiX Computation) Let P be a first order normal logic program. An 396

ASPeRiX computation for P is a sequence 〈Ri, Ii〉∞i=0 of ground rule sets Ri and partial 397

interpretations Ii = 〈INi,OUTi〉 that satisfies the following conditions: 398

– R0 = ∅ and I0 = 〈∅, {⊥}〉, 399

– (Revision) 400

(Propagation) Ri = Ri−1 ∪ {ri} with ri = σ(r) for (r, σ ) ∈ 401

�pro(P, Ii−1, Ri−1) and Ii = 〈INi−1 ∪ {head(ri)},OUTi−1〉 402

2The negation of blocked, not blocked, is different from unblocked.
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or (Rule choice) �pro(P, Ii−1, Ri−1) = ∅, Ri = Ri−1 ∪ {ri} with ri = σ(r) for403

(r, σ ) ∈ �cho(P, Ii−1, Ri−1) and Ii = 〈INi−1 ∪ {head(σi(ri))},OUTi−1 ∪404

body−(σi(ri))〉405

or (Stability) Ri = Ri−1 and Ii = Ii−1,406

– (Convergence) IN∞ = ⋃∞
i=0 INi = T ′

P (IN∞)3407

where T ′
P (X) = {a | ∃r ∈ ground(P ), head(r) = a, body+(r) ⊆ X, body−(r)∩X = ∅}.408

The computation is said to converge to the set IN∞.409

Example 3 Let P3 be the following program:410
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1 : n(1).

R2 : n(X + 1) ← n(X), (X + 1) <= 2.

R3 : a(X) ← n(X), not b(X), not b(X + 1).

R4 : b(X) ← n(X), not a(X).

R5 : c(X) ← n(X), not b(X + 1).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The following sequence is an ASPeRiX computation for P3:411

I0 = 〈∅, {⊥}〉

r1 = n(1). with (R1,∅) ∈ �pro(P3, I0,∅)

I1 = 〈{n(1)}, {⊥}〉

r2 = n(2) ← n(1). with (R2, {X ← 1}) ∈ �pro(P3, I1, {r1})
I2 = 〈{n(1), n(2)}, {⊥}〉

�pro(P3, I2, {r1, r2}) = ∅
r3 = a(1) ← n(1), not b(1), not b(2). with ({R3, X ← 1}) ∈ �cho(P3, I2, {r1, r2})
I3 = 〈{n(1), n(2), a(1)}, {⊥, b(1), b(2)}〉

r4 = c(1) ← n(1), not b(2). with ({R5, X ← 1}) ∈ �pro(P3, I3, {r1, r2, r3})
I4 = 〈{n(1), n(2), a(1), c(1)}, {⊥, b(1), b(2)}〉

�pro(P3, I4, {r1, r2, r3, r4}) = ∅
r5 = a(2) ← n(2), not b(2), not b(3). with ({R3, X ← 2}) ∈ �cho(P3, I4, {r1, r2, r3, r4})
I5 = 〈{n(1), n(2), a(1), c(1), a(2)}, {⊥, b(1), b(2), b(3)}〉

r6 = c(2) ← n(2), not b(3). with ({R5, X ← 2}) ∈ �pro(P3, I5, {r1, r2, r3, r4, r5})
I6 = 〈{n(1), n(2), a(1), c(1), a(2), c(2)}, {⊥, b(1), b(2), b(3)}〉

�pro(P3, I6, {r1, r2, r3, r4, r5, r6}) = ∅
�cho(P3, I6, {r1, r2, r3, r4, r5, r6}) = ∅

I7 = I6
IN∞ = {n(1), n(2), a(1), c(1), a(2), c(2)} = T ′

P3
(IN∞)

412

3 In [36], convergence is only guaranteed for finite ground programs and is expressed by: ∃i ≥
0, �cho(P, Ii , Ri) = ∅. The condition IN∞ = T ′

P (IN∞) enables to deal with infinite cases.
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The previous ASPeRiX computation converges to the set {n(1), n(2), a(1), c(1), a(2), 413

c(2)} which is an answer set for P3. 414

The following theorem establishes a connection between the results of any ASPeRiX 415

computation and the answer sets of a normal logic program. 416

Theorem 4 [36] Let P be a normal logic program and X be an atomset. Then, X is 417

an answer set of P if and only if there is an ASPeRiX computation 〈Ri, Ii〉∞i=0, Ii = 418

〈INi,OUTi〉, for P such that IN∞ = X. 419

Let us note that the use of function symbols leads to an infinite Herbrand universe and, 420

besides, leads to an infinite ground program. Without functions symbols, there is an exact 421

correspondence between computations that halts and answer sets. But, when functions sym- 422

bols are introduced, some computations do not necessarily halt. For instance, a computation 423

can clearly not halt if the computed answer set is infinite. It is the case for the Program P1c 424

from Example 1. On the other hand, Program P1b from Example 1 has an infinite grounding 425

but computations halt without problem. 426

2.4 Limits of existential rules and ASP 427

When dealing with ontologies expressed in description logic, the use of ASP can enrich the 428

model by allowing to represent information with exceptions through the default negation. 429

However, ASP does not cover the whole features of description logic. For instance, even 430

in the most restricted version of description logic like DL-Lite, some concepts called exis- 431

tential concepts require the use of existential variables. These variables lead to release the 432

safety constraint of the rules. When dealing with such an information, a rule can contain 433

existential variables which do not appear in the positive body of the rule. 434

On the other hand, existential rules which are suitable to deal with existential concepts 435

cannot handle default reasoning since they can be seen as definite rules. The scope of 436

representation is then smaller than the one offered by ASP. 437

The standard ASP formalism as the existential rules formalism must then be enriched: 438

ASP by allowing non-safe rules to cover existential rules and existential rules by allowing 439

default negation to cover non monotonicity. 440

3 Syntax and semantics of existential non-monotonic rules 441

To improve the capacity of representation, we define a new formalism allowing to represent 442

both existential rules and rules of ASP in the same framework. Such new rules are called 443

existential non-monotonic rules (ENM-rules or ENMR, for short) since they 444

contain both existential variables in the head of the rule and default negation in its body. 445

These ENM-rules are of the form: 446

h1, . . . , hn ← b1, . . . , bm, not (n1
1, . . . , n

1
u1

), . . . , not (ns
1, . . . , n

s
us

).

where h1, . . . , hn, b1, . . . , bm, n1
1, . . . , n

1
u1

, . . . , ns
1, . . . , n

s
us

are atoms. 447

We can note that ENM-rules extend existential rules by allowing the use of default 448

negation in the body. 449

Moreover, ENM-rules extend classical safe rules of ASP. Let us recall that safety imposes 450

that all variables that appear in a rule also appear in the positive part of its body. In a safe 451
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rule, all variables are interpreted as universally quantified. These classical ASP rules are452

extended in two ways. First, the safety condition is relaxed by allowing atoms from the head453

and the negative body of a rule to contain variables that do not appear in the positive part of454

the rule. These variables are interpreted as existential ones. Second, the head of the rule is455

replaced by a conjunction of atoms and each negated atom is also replaced by a conjunction456

of atoms. These conjunctions allow multiple atoms to refer to the same existential variable.457

For example, in the ENM-rule (p(X, Y ) ← q(X), not r(X,Z).), variable X is interpreted458

as universal, and Y and Z are interpreted as existential. The rule can be read as: “for all X,459

if q(X) is true and there does not exist Z such that r(X,Z) is true, then one can conclude460

that there exists Y such that p(X, Y ) is true”.461

Definition 9 (ENM-rule and ENM-program) An ENM-program P of vocabulary L =462

(CS,FS,PS) is a set of ENM-rules r defined as follows (m, s ≥ 0, n, u1, . . . , us ≥ 1):463

h1, . . . , hn ← b1, . . . , bm, not (n1
1, . . . , n

1
u1

), . . . , not (ns
1, . . . , n

s
us

).

with h1, . . . , hn, b1, . . . , bm, n1
1, . . . , n

1
u1

, . . . , ns
1, . . . , n

s
us

∈ A(L).464

We use the following notations:465

– head(r) = {h1, . . . , hn}.466

– body+(r) = {b1, . . . , bm}.467

– body−(r) = {{n1
1, . . . , n

1
u1

}, . . . , {ns
1, . . . , n

s
us

}}.468

– V(r) the variables,469

– VH∃(r) the variables which are in h1, . . . , hn but which are not in b1, . . . , bm (i.e.470

existential variables of the head of r),471

– V∃(r)(ni
1, . . . , n

i
ui

) variables which are in ni
1, . . . , n

i
ui

but not in b1, . . . , bm, 1 ≤ i ≤ s472

(i.e. existential variables of ni
1, . . . , n

i
ui

).473

– VN∃(r) = ⋃
1≤i≤s V∃(r)(ni

1, . . . , n
i
ui

),474

– VN∃(r) = V(r) \ VN∃(r),475

– V∃(r) = VH∃(r)
⋃VN∃(r)476

– VH∀(r) the variables which are at least in h1, . . . , hn and in b1, . . . , bm (i.e. universal477

variables of the head of r , the frontier variables).478

– V∀(r)(ni
1, . . . , n

i
ui

) the variables which are at least in ni
1, . . . , n

i
ui

and in b1, . . . , bm479

(i.e. universal variables of ni
1, . . . , n

i
ui

).480

Moreover, the sets V∃(r)(ni
1, . . . , n

i
ui

) for every 1 ≤ i ≤ s must be disjoint and the sets481

VH∃(r) and VN∃(r) must also be disjoint. (If a variable appears in several of the ni
1, . . . , n

i
ui

482

or if it appears in h1, . . . , hn and in one of the ni
1, . . . , n

i
ui

, 1 ≤ i ≤ s, then it must appear483

in b1, . . . , bm and it is a universal variable.)484

For all rules r of a program P , V∃(r) must be disjoint (i.e. all the names of the existential485

variables of the program are different).486

A rule r is a definite rule if body−(r) = ∅ and a program is a definite program if all the487

rules are definite.488

Let us note that in such a rule r , several atoms are allowed in head(r) and in each set of489

body−(r). In this case, a list of atoms must be seen as the conjunction of each atom of the490

list.491

Concerning the variables involved in the rule, they can be quantified universally or exis-492

tentially. The quantifiers are not explicitly expressed in the rule but they depend on the493
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position in the rule: the variables appearing in body+(r) are universally quantified while the 494

ones not appearing in body+(r) are existentially quantified. Let us note that the existential 495

variables, in the head or in each negative part of the body, are locally quantified. 496

Example 4 Let PU be an ENM-program of vocabulary LU = ({a},∅, {p, phdS, d, l, gC}) 497

with ar(p) = ar(d) = ar(l) = 1 and ar(phdS) = ar(gC) = 2. p stands for person, 498

phdS for phDStudent, d for director, l for lecturer and gC for givesCourses. 499

PU = { r0 : p(a).,

r1 : l(a).,

r2 : phdS(X,D), d(D) ← p(X), not (l(X), gC(X, Y )).}

The rule r2 means that for a person X there exists a director D and X is a phD student of 500

D, unless X is a lecturer and it exists a course given by X. 501

We have VH∀(r) = {X}, VH∃(r) = {D}, V∃(r)(l(X), gC(X, Y )) = {Y }, VN∃(r) = 502

{X,D}. 503

For each program P , we consider that its vocabulary LP = (CS,FS,PS) consists of 504

exactly the constant symbols, function symbols and predicate symbols appearing in P . 505

The semantics of ENM-programs uses skolemization of existential variables appearing in 506

the heads of the rules. We now define this skolemization. 507

Definition 10 (Skolem symbols) Let r be an ENM-rule, n the cardinality of VH∀(r) and 508

Y ∈ VH∃(r) an existential variable of r then skn
Y is a Skolem function symbol of arity n (if 509

n = 0 then skY is a Skolem constant symbol). 510

Example 5 (Example 4 continued) Symbol sk1
D is a Skolem function symbol of arity 1 for 511

the existential variable D of the head of the rule r2. 512

Definition 11 (Skolem Program) Let P be an ENM-program of vocabulary LP . 513

Let s be an ordered sequence of the variables VH∀(r) of an ENM-rule r of P . sk(r) 514

denotes a Skolem rule obtained from r as follows: every existential variable v ∈ VH∃(r) is 515

substituted by the term skn
v (s) with skn

v the Skolem function (constant) symbol associated 516

to v and n = ar(skn
v ) the size of s (zero if VH∀(r) = ∅). The Skolem program sk(P ) of an 517

∃-program P is defined by sk(P ) = {sk(r) | r ∈ P }. 518

Example 6 (Example 4 continued) The Skolem rule of r2 is the rule: 519

sk(r2) = (phdS(X, sk1
D(X)), d(sk1

D(X)) ← p(X), not (l(X), gC(X, Y )).) 520

Hence sk(PU ) = {r0, r1, sk(r2)} and Lsk(PU ) = ({a}, {sk1
D}, {p, phdS, d, l, gC}). 521

Skolem rules are still not safe: existential variables remain in the negative bodies. The 522

grounding of such a rule is a partial grounding restricted to the universal variables of the 523

rule, the existential ones remaining not ground. Indeed, a non-ground rule (p(X) ← q(X), 524

not r(X,Z).) could be fired for some constant a if q(a) is true and, for all z, r(a, z) 525

is not true. Let us suppose that we have only two constants a and b. Then (p(a) ← 526

q(a), not r(a, a).) and (p(a) ← q(a), not r(a, b).) are not equivalent to the non-ground 527

rule for X = a because the first instance could be fired if r(a, b) is true (but not r(a, a)) and 528

the second could be fired if r(a, a) is true (but not r(a, b)). Yet neither r(a, b) nor r(a, a) 529
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should be true for the initial rule to be fired. We thus define a partial grounding, only con-530

cerning universal variables. For instance, a partial ground instance of the above non-ground531

rule would be: (p(a) ← q(a), not r(a, Z).).532

Definition 12 (Partial Ground Program) Set PG(r) for a rule r of an ENM-program P533

of vocabulary LP denotes the set of all partial ground instances of r over the vocabulary534

LP for VN∃(r). The partial ground program PG(P ) of an ENM-program P is defined by535

PG(P ) = ⋃
r∈P PG(r).536

Example 7 (Example 4 continued) The vocabulary of the Skolem program sk(PU ) con-537

tains only one constant, a, and only one function symbol, sk1
D . The set of ground terms is538

infinite and the partial grounding leads then to the following infinite program:539

PG(sk(PU )) = {
p(a).,

l(a).,

phdS(a, sk1
D(a)), d(sk1

D(a)) ← p(a), not (l(a), gC(a, Y )).,

phdS(sk1
D(a), sk1

D(sk1
D(a))), d(sk1

D(sk1
D(a))) ←

p(sk1
D(a)), not (l(sk1

D(a)), gC(sk1
D(a), Y )).,

. . . }

Definition 13 (Reduct) Let P be an ∃-program with vocabulary LP and X ⊆ GA(Lsk(P )).540

The reduct of the partial ground program PG(sk(P )) w.r.t. X is the definite partial ground541

program542

PG(sk(P ))X =
{ head(r) ← body+(r).| r ∈ PG(sk(P )),

for all N ∈ body−(r) and
for all ground substitution σ over Lsk(P ), σ (N) �⊆ X}

Example 8 (Example 4 continued) Let543

X1 = {p(a), l(a), phdS(a, sk1
D(a)), d(sk1

D(a))}.
Then, for the rule544

phdS(a, sk1
D(a)), d(sk1

D(a)) ← p(a), not (l(a), gC(a, Y )).

there is no ground instance of l(a),gC(a, Y ) that is included in X1 (since X1 does not545

contain any atom with gC) and the positive part of the rule is kept. The other rules are kept546

for the same reason. The resulting program is then:547

PG(sk(PU ))X1 = {
p(a).,

l(a).,

phdS(a, sk1
D(a)), d(sk1

D(a)) ← p(a).,

phdS(sk1
D(a), sk1

D(sk1
D(a))), d(sk1

D(sk1
D(a))) ← p(sk1

D(a)).,

. . . }
Now, let X2 = X1 ∪ {gC(a, m)} and the augmented program PU ∪ {gC(a, m).}.548

Here, l(a),gC(a, m) is a ground instance of the negative body of the rule549

phdS(a, sk1
D(a)), d(sk1

D(a)) ← p(a), not (l(a), gC(a, Y )).
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that is included in X2. Thus, the rule is excluded from the reduct. Other rules are kept. The 550

obtained program is then: 551

PG(sk(PU ∪ {gC(a, m).}))X1∪{gC(a,m)} = {
gC(a, m).,

p(a).,

l(a).,

phdS(sk1
D(a), sk1

D(sk1
D(a))), d(sk1

D(sk1
D(a))) ← p(sk1

D(a)).,

. . . }
Note that the reduct of a program that is skolemized and partially grounded is a definite 552

ground program: it no longer contains variables. The consequence operator can then be 553

defined as usual, the only difference is that rules can have a conjunction of atoms as head. 554

Definition 14 (TP consequence operator and Cn its closure) Let P be a definite partial 555

ground program of an ENM-program of vocabulary LP . The operator TP : 2GA(LP ) → 556

2GA(LP ) is defined by 557

TP (X) = {a | r ∈ P, a ∈ head(r), body+(r) ⊆ X}.
Cn(P ) = ⋃n=+∞

n=0 T n
P (∅) is the least fixed point of the consequence operator TP . 558

Example 9 (Example 4 continued) Cn(PG(sk(PU ))X1) = X1 but Cn(PG(sk(PU ∪ 559

{gC(a, m).}))X1∪{gC(a,m)}) = {p(a), l(a), gC(a, m)}. 560

Definition 15 (∃-answer set) Let P be an ENM-program of vocabulary LP and X ⊆ 561

GA(Lsk(P )). X is an ∃-answer set of P if X = Cn(PG(sk(P ))X). 562

Example 10 (Example 4 continued) X1 is an ∃-answer set of PU and {p(a), l(a), 563

gC(a, m)} is an ∃-answer set of PU ∪ {gC(a, m).}. 564

The two following propositions establish that ENM-programs are extensions of ASP 565

programs and existential rules. They are direct consequences of Definitions 9 and 12. 566

Proposition 1 Any (first-order classical) ASP program is an ENM-program. And any set of 567

existential rules is an ENM-program. 568

Proposition 2 The partial ground program of an ENM-program without conjunction of 569

atoms in the head nor on a default negation, and without existential variable is a ground 570

(classical) ASP program; and it is also a set of ground existential rules. 571

Proposition 3 Let P be a (classical) ASP program with vocabulary LP and X ⊆ GA(LP ). 572

X is an answer set of P if and only if X is an ∃-answer set of P considered as an ENM- 573

program. 574

Proof Since P is a classical ASP program, sk(P ) = P and its (classical) ground ASP pro- 575

gram corresponds exactly to PG(P ) = PG(sk(P )). Hence X ⊆ GA(LP ) = GA(Lsk(P )) 576

is an answer set of ground P , by Definition 15, if and only if it is an ∃-answer set of P 577

considered as an ENM-program. 578



AUTHOR'S PROOF JrnlID 10472 ArtID 9563 Proof#1 - 05/08/2017

UNCORRECTED
PROOF

Baget et al.

4 Translation to ASP579

In this section, we give the translation of an ENM-program into a standard ASP program and580

we show that the ∃-answer sets of the initial program correspond to the answer sets of the581

new program. The translation operates in 3 main stages: first, the rules are normalized in582

order to remove multiple atoms and existential variables from their negative bodies; second,583

rules are skolemized in order to remove existential variables from their heads; third, rules584

are expanded in order to remove multiple atoms from their heads.585

The first step of the translation is the normalization whose goal is twofold: to remove the586

conjunctions of atoms from negative parts of the rules and to remove existential variables587

from these negative parts. The obtained program is equivalent in terms of answer sets.588

Definition 16 (Normalization) Let P be an ENM-program of vocabulary LP . Let r be an589

ENM-rule of P (m, s ≥ 0, n, u1, . . . , us ≥ 1):590

h1, . . . , hn ← b1, . . . , bm, not (n1
1, . . . , n

1
u1

), . . . , not (ns
1, . . . , n

s
us

).

with h1, . . . , hn, b1, . . . , bm, n1
1, . . . , n

1
u1

, . . . , ns
1, . . . , ns

us
∈ A(LP ). Let N be a set of new591

predicate symbols (i.e. N ∩ PS = ∅).592

The normalization of such an ENM-rule is the set of ENM-rules593

N(r) = { h1, . . . , hn ← b1, . . . , bm, not n1, . . . , not ns.,

n1 ← n1
1, . . . , n

1
u1

.,

. . .

ns ← ns
1, . . . , n

s
us

.}

with ni the new atom pni (X1, . . . , Xv), pni ∈ N a new predicate symbol for every ni and594

V∀(r)(ni
1, . . . , n

i
ui

) = {X1, . . . , Xv}.595

The normalization of P is defined as N(P ) = ⋃
r∈P N(r).596

The set GAN(Lsk(P )) is the set of Skolem ground atoms for the new predicate symbols597

defined as follows:598

• if a ∈ N with ar(a) = 0 then a ∈ GAN(Lsk(P )),599

• if p ∈ N with ar(p) > 0 and t1, . . . , tn ∈ GT(Lsk(P )) then p(t1, . . . , tn) ∈600

GAN(Lsk(P )).601

Example 11 (Example 4 continued) Let pn be a new predicate symbol. The negative part602

of the rule r2: not (l(X), gC(X, Y )) has only one universal variable, X. It is replaced by603

not pn(X) (rule r
†
2 ). And a new rule r

‡
2 is added where Y that was an existential variable in604

r2 becomes a universal one in r
‡
2 .605

N(r2) = { r
†
2 : phdS(X,D), d(D) ← p(X), not pn(X).

r
‡
2 : pn(X) ← l(X), gC(X, Y ).}

and N(PU ) = {r0, r1, r
†
2 , r

‡
2 }.606

The following proposition shows that the normalization preserves answer sets of an ENM-607

program: it only adds some atoms formed with the new predicate symbols from N .608
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Proposition 4 Let P be an ENM-program of vocabulary LP and X ⊆ GA(Lsk(P )). If X is 609

an ∃-answer set of P then there exists some Y ⊆ GAN(Lsk(P )) such that X ∪ Y is an ∃- 610

answer set of N(P ). If X is an ∃-answer set of N(P ) then X \ GAN(Lsk(P )) is an ∃-answer 611

set of P . 612

The lemma used in the following proof shows that if the normalization is applied on only 613

one rule r and only one part of the negative body of this rule, then the answer sets of the 614

original program are preserved up to the added atom. If r has the following form: 615

h1, . . . , hn ← b1, . . . , bm, not (n1
1, . . . , n

1
u1

), . . . , not (ns
1, . . . , n

s
us

).

then the ”partial normalization” of r for (ns
1, . . . , n

s
us

) leads to the rules 616

r† = h1, . . . , hn ← b1, . . . , bm, not (n1
1, . . . , n

1
u1

), . . . , not (ns−1
1 , . . . , ns−1

us−1
), not ns.

r‡ = ns ← ns
1, . . . , n

s
us

.

A program P with the rule r and the program P where the rule r is replaced by the 617

rules r† and r‡ have the same answer sets except for ns . The proof is done by induction: 618

by applying the lemma to each part of the negative body of r and, then, to each rule of the 619

program. 620

Proof The proof is by induction on the following lemma: 621

(*) Let P be an ENM-program of vocabulary LP , r = (H ← C, not (n1, . . . , nu).) ∈ 622

PG(sk(P )), P ′ = PG(sk(P )) \ {r}, R‡ = PG(n ← n1, . . . , nu.) ⊆ PG(sk(N(P ))), 623

r† = (H ← C, not n.) and X ⊆ GA(Lsk(P )). 624

If there exists a substitution θ such that {θ(n1), . . . , θ(nu)} ⊆ X then Cn((P ′ ∪{r})X) = 625

X if and only if Cn((P ′ ∪ {r†} ∪ R‡)X∪{n}) = X ∪ {n}. If for all substitutions θ , 626

{θ(n1), . . . , θ(nu)} �⊆ X then Cn((P ′ ∪ {r})X) = X if and only if Cn((P ′ ∪ {r†}∪R‡)X) = 627

X. 628

Proof of Lemma (*): Let us remark that n �∈ Cn(P ′X) ∪ X. 629

– If there exists a substitution θ such that {θ(n1), . . . , θ(nu)} ⊆ X then (P ′ ∪ {r})X = 630

P ′X = (P ′ ∪ {r†})X∪{n} then Cn((P ′ ∪ {r})X) = Cn(P ′X) and Cn((P ′ ∪ {r†} ∪ 631

R‡)X∪{n}) = Cn(P ′X) ∪ {n}. Then Cn((P ′ ∪ {r})X) = X iff Cn(P ′X) = X iff 632

Cn(P ′X) ∪ {n} = X ∪ {n} iff Cn((P ′ ∪ {r†} ∪ R‡)X∪{n}) = X ∪ {n}. 633

– If for all substitutions θ , {θ(n1), . . . , θ(nu)} �⊆ X then (P ′ ∪ {r})X = (P ′ ∪ {H ← 634

C.})X and (P ′ ∪ {r†} ∪ R‡)X = (P ′ ∪ {H ← C.})X ∪ R‡. Then Cn((P ′ ∪ {r})X) = 635

Cn((P ′ ∪ {H ← C.})X) = Cn((P ′ ∪ {H ← C.})X ∪ R‡) = Cn((P ′ ∪ {r†} ∪ R‡)X). 636

Then Cn((P ′ ∪ {r})X) = X iff Cn((P ′ ∪ {r†} ∪ R‡)X) = X. 637

The proof is completed by successively applying the lemma (*) to each part of the negative 638

body of each rule of the program: it shows that ∃-answer sets of P and N(P ) are the same 639

except for the new predicates from GAN(Lsk(P )). 640

After normalization, the second step of the translation consists in skolemizing the pro- 641

gram. After normalization and skolemization, the program no longer contains existential 642

variables. It can then be grounded and therefore no longer contains any variable. 643
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Example 12 (Example 4 continued) Program PU , after normalization, is skolemized and644

grounded.645

PG(sk(N(PU ))) = {
p(a).,

l(a),

phdS(a, sk1
D(a)), d(sk1

D(a)) ← p(a), not pN(a).

pN(a) ← l(a), gC(a, a).,

pN(a) ← l(a), gC(a, sk1
D(a)).,

. . .,

phdS(sk1
D(a), sk1

D(sk1
D(a))), d(sk1

D(sk1
D(a))) ← p(sk1

D(a)), not pN(sk1
D(a)).,

pN(sk1
D(a)) ← l(sk1

D(a)), gC(sk1
D(a), a).,

pN(sk1
D(a)) ← l(sk1

D(a)), gC(sk1
D(a), sk1

D(a)).,

. . . }
The following proposition shows that skolemization and grounding preserve answer sets646

of a normalized ENM-program.647

Proposition 5 parLet P be a normalized ENM-program of vocabulary LP and X ⊆648

GA(Lsk(P )). X is an ∃-answer set of P if and only if X is an ∃-answer set of PG(sk(P )).649

Proof Since for all r ∈ PG(sk(P )),VN∃(r) = ∅ (since r is normalized), VN∃(r) =650

V(r) and VH∃(r) = ∅ (since r is skolemized) then PG(sk(P )) = sk(PG(sk(P ))) =651

PG(sk(PG(sk(P )))).652

By Definition 15, X is an ∃-answer set of P iff X = Cn(PG(sk(P ))X) iff X =653

Cn(PG(sk(PG(sk(P ))))X) iff X is an ∃-answer set of PG(sk(P )).654

Once an ENM-program is normalized and skolemized, the only non-standard parts that655

remain are the conjunctions of atoms in rule heads. The last step of the translation is the656

expansion where we remove the sets of atoms in each head while keeping the link between657

the existential variables. It simply consists in the duplication of a rule as many time as the658

rule contains atoms in its head, each new rule having only one of these atoms in its head.659

Preceding skolemization allows to preserve the links between the existential variables of the660

head. The resulting program is equivalent in terms of answer sets.661

Definition 17 (Expansion) Let P be a ground skolemized normalized program and r ∈ P662

(m, s ≥ 0, n > 0):663

h1, . . . , hn ← b1, . . . , bm, not n1, . . . , not ns .

with h1, . . . , hn, b1, . . . , bm, n1, . . . , ns ∈ GA(LP ).664

The expansion of such a rule is the set defined by:665

Exp(r) = { h1 ← b1, . . . , bm, not n1, . . . , not ns .,

. . .

hn ← b1, . . . , bm, not n1, . . . , not ns .}
The expansion of P is defined as Exp(P ) = ⋃

r∈P Exp(r).666
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Example 13 (Example 4 continued) The following rule of the program from Example 12: 667

(phdS(a, sk1
D(a)), d(sk1

D(a)) ← p(a), not pN(a).) is split into the two rules: 668

(phdS(a, sk1
D(a)) ← p(a), not pN(a).) and 669

(d(sk1
D(a)) ← p(a), not pN(a).) 670

The same treatment is applied to the other rules with both predicates phdS and d in the head. 671

The following program is obtained: 672

Exp(PG(sk(N(PU )))) = {
p(a).,

l(a).,

phdS(a, sk1
D(a)) ← p(a), not pN(a).,

d(sk1
D(a)) ← p(a), not pN(a).,

pN(a) ← l(a), gC(a, a).,

pN(a) ← l(a), gC(a, sk1
D(a)).,

. . . ,

phdS(sk1
D(a), sk1

D(sk1
D(a))) ← p(sk1

D(a)), not pN(sk1
D(a)).,

d(sk1
D(sk1

D(a))) ← p(sk1
D(a)), not pN(sk1

D(a)).,

pN(sk1
D(a)) ← l(sk1

D(a)), gC(sk1
D(a), a).,

pN(sk1
D(a)) ← l(sk1

D(a)), gC(sk1
D(a), sk(a)).,

. . . }

Proposition 6 Let P be a ground skolemized normalized ENM-program of vocabulary LP 673

and X ⊆ GA(LP ). X is an ∃-answer set of P if and only if X is an ∃-answer set of Exp(P ). 674

Proof The only difference is on the computation of the fixed point of the classical TP 675

operator and the new TP operator defined in Definition 14 but it is clear that fixed points 676

are identical since P is ground. 677

Proposition 7 Let P be an ENM-program. Exp(PG(sk(N(P )))) is an (ground classical) 678

ASP program. 679

Proof This proposition is a direct consequence of Definitions 11, 12, 16, 17 and Proposition 2. 680

681

The last proposition establishes equivalence, up to new atoms introduced by normaliza- 682

tion, between ∃-answer sets of an ENM-program and classical answer sets of the program 683

after normalization, skolemization and expansion. 684

Proposition 8 Let P be an ENM-program of vocabulary LP and X ⊆ GA(Lsk(P )). If 685

X is an ∃-answer set of P then there exists some Y ⊆ GAN(Lsk(P )) such that X ∪ Y 686

is a (classical) answer set of Exp(PG(sk(N(P )))). If X is a (classical) answer set of 687

Exp(PG(sk(N(P )))), then X \ GAN(Lsk(P )) is an ∃-answer set of P . 688

Proof Let P be an ENM-program and X ⊆ GA(Lsk(P )). 689

– if X is an ∃-answer set of P then, by Proposition 4, there exists Y ⊆ GAN(Lsk(P )) 690

such that X ∪Y is an ∃-answer set of N(P ). By Proposition 5, X ∪Y is an ∃-answer set 691
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of PG(sk(N(P ))). By Proposition 6, X∪Y is an ∃-answer set of Exp(PG(sk(N(P )))).692

By Propositions 3 and 7, X ∪ Y is an answer set of Exp(PG(sk(N(P )))).693

– If X is a (classical) answer set of Exp(PG(sk(N(P )))) then, by Propositions 3 and 7,694

X is an ∃-answer set of Exp(PG(sk(N(P )))). By Proposition 6, X is an ∃-answer set695

of PG(sk(N(P ))). By Proposition 5, X is an ∃-answer set of N(P ). By Proposition 4,696

X \ GAN(Lsk(P )) is an ∃-answer set of P .697

698

In the next sections, we go back to the existential rules side. We present variants of a699

breadth-first forward chaining algorithm known as the chase. Since entailment with exis-700

tential rules is undecidable, we present conditions that ensure the termination of the chase701

and we discuss extension of these results for the ENM-rules.702

5 Discussion of the chase procedures703

Let us now consider a derivation from F as defined in Section 2.2.3. Rule applications may704

add redundancy. For instance, if F = {p(a)} and R = {q(Y ) ← p(X).}, we can obtain a705

derivation F = F0, F1 = {p(a), q(Y0)}, F2 = {p(a), q(Y0), q(Y1)}. Since F1 and F2 are706

semantically equivalent, any atomset that can be obtained by a derivation from F2 will be707

equivalent to an atomset that can be obtained by a derivation from F1.708

An algorithm that computes an R-derivation by exploring all possible rule applications709

in a breadth-first manner is called a chase. In the following, we will also call chase the710

derivation it computes. Different kinds of chase can be defined by using different properties711

to compute F ′
i = σi(Fi) in the derivation (hereafter we write F ′

i for σi(Fi) when there is no712

ambiguity). All these algorithms are sound and complete w.r.t. the ENTAILMENT problem713

in the sense that (F,R) |= Q iff they provide in finite (but unbounded) time a finite R-714

derivation from F to Fk such that Fk |= Q.715

5.1 Different kinds of chase716

In the oblivious chase (also called naive chase), e.g., [13], a rule R is applied according to717

an homomorphism π only if it has not already been applied according to the same homo-718

morphism. Let Fi = α(F ′
i−1, R, π), then F ′

i = F ′
i−1 if R was previously applied according719

to π , otherwise F ′
i = Fi . This can be slightly improved. Two applications π and π ′ of the720

same rule add the same atoms if they map frontier variables identically (for any frontier721

variable x of R, π(x) = π ′(x)); we say that they are frontier-equal. In the frontier chase,722

let Fi = α(F ′
i−1, R, π). We take F ′

i = F ′
i−1 if R was previously applied according to some723

π ′ frontier-equal to π , otherwise F ′
i = Fi .724

The Skolem chase [41] relies on a skolemisation of the rules: a rule R is transformed into725

a rule skolem(R) by replacing each occurrence of an existential variable Y with a functional726

term f R
Y (X), where �X are the frontier variables of R. Then the oblivious chase is run on727

skolemized rules. This is the derivation we have considered in this paper. It can easily be728

checked that frontier chase and Skolem chase yield isomorphic results, in the sense that729

they generate exactly the same atomsets, up to a bijective renaming of variables by Skolem730

terms.731



AUTHOR'S PROOF JrnlID 10472 ArtID 9563 Proof#1 - 05/08/2017

UNCORRECTED
PROOF

Bringing existential variables in answer set programming...

The restricted chase (also called standard chase) [22] detects a kind of local redundancy. 732

Let Fi = α(F ′
i−1, R, π), then F ′

i = Fi if π is useful,4 otherwise F ′
i = F ′

i−1. A slight 733

improvement would be the piece-restricted chase. Let Fi = α(F ′
i−1, H ← B., π). Let P 734

be the maximal subset of H such that α(F ′
i−1, P ← B., π) is not useful. Then we take 735

F ′
i = α(F ′

i−1, (H \ P) ← B., π). 736

The core chase [20] considers the strongest possible form of redundancy: for any Fi , F ′
i 737

is the core of Fi .5 738

A chase is said to be local if ∀i ≤ j , F ′
i ⊆ F ′

j . All chase variants presented above are 739

local, except for the core chase. This property will be critical for nonmonotonic existential rules. 740

5.2 Chase termination 741

Since ENTAILMENT is undecidable, the chase may not halt. We call C-chase a chase relying 742

on some criterion C to generate σ(Fi) = F ′
i . So C can be oblivious, skolem, restricted, core 743

or any other criterion that ensures the equivalence between Fi and F ′
i . A C-chase generates 744

a possibly infinite R-derivation σ0(F ), σ1(F1), . . . , σk(Fk), . . . 745

We say that this derivation produces the (possibly infinite) atomset (F,R)C = 746

∪0≤i≤∞σi(Fi) \ ∪0≤i≤∞(σi(Fi)), where (σi(Fi)) = Fi \ σ(Fi). Note that this produced 747

atomset is usually defined as the infinite union of the σi(Fi). Both definitions are equivalent 748

when the criterion C is local. But the usual definition would produce too big an atomset 749

with a non-local chase such as the core chase: an atom generated at step i and removed at 750

step j would still be present in the infinite union. We say that a (possibly infinite) derivation 751

obtained by the C-chase is complete when any further rule application on that derivation 752

would produce the same atomset. A complete derivation obtained by any C-chase produces 753

a universal model (i.e., most general) of (F,R): for any atomset Q, we have F,R |= Q iff 754

(F,R)C |= Q. 755

We say that the C-chase halts on (F,R) when the C-chase generates a finite complete 756

R-derivation from F to Fk . Then (F,R)C = σk(Fk) is a finite universal model. We say that 757

R is universally C-terminating when the C-chase halts on (F,R) for any atomset F . If a 758

set of rules is universally C-terminating, we say it is C-finite, and we also call C-finite, by 759

extension, the class of C-finite sets of rules. It is well known that the chase variants do not 760

behave in the same way w.r.t. termination. The following examples highlight these different 761

behaviors. 762

Example 14 (Oblivious / Skolem chase) Let R = p(X,Z) ← p(X, Y ). and F = 763

{p(a, b)}. The oblivious chase does not halt: it adds p(a, Z0), p(a, Z1), etc. The fron- 764

tier chase adds p(a, Z0) then stops. The skolem chase considers the rule p(X, f R
Z (X)) ← 765

p(X, Y ).; it adds p(a, f R
Z (a)) then halts. 766

Example 15 (Skolem / Restricted chase) Let R : r(X, Y ), r(Y, Y ), p(Y ) ← p(X). 767

and F = {p(a)}. The skolem chase does not halt: at Step 1, it maps X to a and adds 768

4Given a rule R = H ← B., a homomorphism π from B to F is said to be useful if it cannot be extended to
a homomorphism from B ∪ H to F

5An atomset F is a core if there is no homomorphism from F to one of its strict subsets. Among all atomsets
equivalent to an atomset F , there exists a unique core (up to isomorphism). We call this atomset the core of F .
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r(a, f R
Y (a)), r(f R

Y (a), f R
Y (a)) and p(f R

Y (a)); at step 2, it maps X to f R
Y (a) and adds769

r(f R
Y (a), f R

Y (f R
Y (a))), etc. The restricted chase performs a single rule application, which770

adds r(a, Y0), r(Y0, Y0) and p(Y0); indeed, the rule application that maps X to Y0 yields771

only redundant atoms w.r.t. r(Y0, Y0) and p(Y0).772

Example 16 (Restricted / Core chase) Let F = {s(a)}, R1 =773

p(X,X1), p(X,X2), r(X2, X2) ← s(X)., R2 = q(Y ) ← p(X, Y ). and774

R3 = r(X, Y ), q(Y ) ← q(X).. Note that R1 creates redundancy and R3 could be applied775

indefinitely if it were the only rule. R1 is the first applied rule, which creates new variables,776

called X1 and X2 for simplicity. The restricted chase does not halt: R3 is not applied on X2777

because it is already satisfied at this point, but it is applied on X1, which creates an infinite778

chain. The core chase applies R1, computes the core of the result, which removes p(a,X1),779

then halts.780

It is natural to consider the oblivious chase as the weakest form of chase (without the781

oblivious criterion, any rule having an existential variable would generate an infinite number782

of instantiations of that variable), and necessary to consider the core chase as the strongest783

form of chase (since the core is the minimal representative of its equivalence class). We say784

that a criterion C is stronger than C′ and write C � C′ when C′-finite ⊆ C-finite. We say785

that C is strictly stronger than C′ (and write C � C′) when C � C′ and C′ �� C.786

Consider a breadth-first derivation D = (F0, F1, . . . , Fk, . . .) that relies upon the weaker787

oblivious chase. Then consider two chase criterions X and Y . We can thus consider the788

derivations DX = (FX
0 , FX

1 , . . . , FX
k , . . .) and DY = (F Y

0 , F Y
1 , . . . , F Y

k , . . .) where, ∀1 ≤789

i, FX
i = σX

i (Fi) and FY
i = σY

i (Fi) are obtained by the simplification mechanisms of X790

and Y . We say that X is stronger than Y on D if ∀1 ≤ i, FX
i ⊆ FY

i . We say that X is791

stronger than Y (and write X ≥ Y ) when, for any such D, X is stronger than Y on D. The792

following property is immediate.793

Property 1 If X ≥ Y , then Y -finite ⊆ X-finite.794

We say that X is strictly stronger than Y (and note X > Y ) when X ≥ Y and Y �≥ X. We795

would like to obtain a property of the form “if X > Y , then Y -finite is a strict subclass of796

X-finite”. This property does not hold in the general case. Let us consider for instance a k-797

lazy-core-chase that only computes cores every k derivation steps. It is immediate to check798

that core ≥ k-lazy-core. However, core-finite and k-lazy-core-finite are the same class.799

The next property expresses that if a chase relies upon a stronger way to simplify800

atomsets, then it halts on more instances.801

Property 2 If X and Y are two local chases such that X > Y , then Y -finite ⊂ X-finite.802

It is well-known that core > restricted > skolem > oblivious (see for instance [9]). More-803

over, the frontier chase and the skolem chase halt on the same instances: π maps the frontier804

of R in a new way and produces a new atom in the frontier chase iff α(F, skolem(R), π)805

contains a new atom. Thus skolem = frontier.806

One can easily check that core > piece-restricted > restricted. It is immediate to check807

that core ≥ piece-restricted ≥ restricted. These comparisons are strict since (1) the piece-808

restricted chase is local and the core chase is not, and (2) the restricted chase does not halt809

on ({p(a, b)}, {p(Z,X), r(X, Y ) ← p(X, Y ).}, but the piece-restricted chase does (it can810

fold p(Z,X) even if r(X, Y ) cannot).811
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Note that the frontier chase does not fit nicely into this framework: when we consider 812

than X is stronger than Y , we consider the same set of rules R, whereas the frontier-chase 813

considers a skolemization of R. However, we can easily check that the frontier chase and 814

the skolem chase produce isomorphic results: π maps the frontier of R in a new way if and 815

only if α(F, skolem(R), π) contains a new atom. Then frontier-finite and skolem-finite are 816

the same class. 817

An immediate remark is that core-finite corresponds to finite expansion sets (fes) 818

defined in [5]. In turn, fes correspond to rules enjoying the bounded derivation depth 819

property (BDDP) introduced in [14] (see [6] for a proof). To sum up, the following inclu- 820

sions hold between C-finite classes: oblivious-finite ⊂ skolem-finite = frontier-finite ⊂ 821

restricted-finite ⊂ core-finite = fes. 822

6 Decidability 823

Ensuring chase termination has been widely studied, in particular various “acyclicity” 824

notions have been defined ensuring finiteness of the chase. We first give an overview of 825

known acyclicity notions. They can be divided into two main families, each of them relying 826

on a different graph: a “position-based” approach, which intuitively relies on a graph encod- 827

ing variable sharing between positions in predicates; and a “rule dependency approach” 828

which relies on a graph encoding dependencies between rules, i.e., the fact that a rule may 829

lead to trigger another (or itself). 830

Position-based approach In the first approach, cycles identified as dangerous are those 831

passing through positions that may contain existential variables; such a cycle meaning that 832

the creation of an existential variable in a given position may lead to create another existen- 833

tial variable in the same position, hence a possibly infinite number of existential variables. 834

In the Skolem chase this may lead to an infinitely deep functional symbol. Acyclicity is 835

then defined by the absence of dangerous cycles. The simplest notion of acyclicity in this 836

family is that of weak-acyclicity (wa) [22, 23] , which has been widely used in databases. It 837

relies on a directed graph whose nodes are the positions in predicates (we denote by (p, i) 838

the position i in predicate p). Then for each rule R : H ← B, and each variable X in B 839

occurring in position (p, i), edges with origin (p, i) are built as follows: if X is a frontier 840

variable, there is an edge from (p, i) to each position of X in H ; furthermore for each exis- 841

tential variable Y in H occuring in position (q, j), there is a special edge from (p, i) to 842

(q, j). A set of rules if weakly acyclic if its associated graph has no cycle passing through 843

a special edge. 844

This notion has been generalised, mainly by shifting the focus from positions to exis- 845

tential variables (joint-acyclicity (ja) [33]), or to positions in atoms instead of predicates 846

(super-weak-acyclicity (swa) [41]). Other related notions can be imported from logic 847

programming, e.g., finite domain (fd) [16], and argument-restricted (ar) [38]. 848

Rule dependency approach In the second approach, the aim is to avoid cyclic triggering 849

of rules [7, 20, 29]. We say that a rule Rj depends on a rule Ri if there exists an atomset 850

F such that Ri is applicable to F according to a homomorphism π and Rj is applicable 851

to F ′ = α(F,Ri, π) according to a new useful homomorphism. This abstract dependency 852

relation can be computed with a unification operation known as piece-unifier [10]. Piece- 853

unification takes existential variables into account, hence is more complex than the usual 854

unification between atoms. A piece-unifier of a rule body Bj with a rule head Hi is a 855
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substitution μ of vars(B ′
j ) ∪ vars(H ′

i ), where B ′
j ⊆ Bj , H ′

i ⊆ Hi , such that: μ(B ′
j ) =856

μ(H ′
i ) and existential variables in H ′

i are not unified with separating variables of B ′
j , i.e.,857

variables that occur both in B ′
j and in Bj \B ′

j ; in other words, if a variable X in B ′
j is unified858

with an existential variable Y in H ′
i , then all atoms in which X occurs also belong to B ′

j .859

It holds that Rj depends on Ri iff there is a piece-unifier of Bj with Hi satisfying easy to860

check additional conditions (atom erasing [4], and usefulness [30]).861

The graph of rule dependencies of set of rules R, denoted by GRD(R), is the862

directed graph with set of nodes R and an edge (Ri, Rj ) if Rj depends on Ri . When the863

GRD is acyclic (aGRD [7]), any derivation sequence is necessarily finite. This notion is864

incomparable with those based on positions (Fig. 1).Q3865

Toward a more general point of view Both approaches have their weaknesses: there866

may be a dangerous cycle on positions but no cycle w.r.t. rule dependencies, and there may867

be a cycle w.r.t. rule dependencies whereas rules contain no existential variables. Attempts868

Fig. 1 Relations between rule
classes
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to combine both notions only succeeded to combine them in a “modular way”: if the rules in 869

each strongly connected component (s.c.c.) of the GRD belong to a class ensuring finiteness 870

of the chase, then the chase will halt on any fact given this set of rules. In the following, we 871

propose an “integrated” way to combining both approaches, which relies on a single graph. 872

We first define the notion of basic position graph, that encodes precisely how variables 873

in a given position in the body can be propagated to another position of the head by the 874

application of a single rule. Let us consider the graph composed of the basic position graphs 875

for all rules in a given ruleset. We must now now add edges to this graph, encoding how 876

variables added by a given rule may be used by another one (i.e., edges from head positions 877

of rules to body positions of other rules). The graph obtained must be correct: if there 878

exists a variable that propagates in a given derivation, then it corresponds to an edge that 879

must be present in our graph (a precise definition is given below, it considers more correct 880

graphs since it only requires cyclic propagations to be encoded by a cycle in the graph). The 881

goal is now to obtain a correct graph having as few edges as possible (the less edges we 882

consider, the more chances we have to obtain a circuit-free graph and thus to conclude on 883

termination). 884

We define here three position graphs with increasing expressivity, i.e., allowing to check 885

termination for increasingly larger classes of rules. All these graphs rely upon the notion of 886

position in an atom, and we denote by [a, i] the ith position of atom a. 887

Definition 18 (Position Graph (PG)) The position graph of an ENM-Rule R : H ← B is 888

the directed graph PG(R) defined as follows: 889

– there is a node for each [a, i] in B or in H; 890

– for all frontier positions [b, i] in B, and all [h, j ] in H, there is an edge from [b, i] to 891

[h, j ] if term([b, i]) = term([h, j ]) or if term([h, j ]) is an existential variable. 892

In other words, there is an edge from a position in the body to a position in the head 893

when they share a frontier variable, and an edge from each position in the body containing 894

a frontier variable to each position in the head containing an existential variable. 895

Given a set of ENM rules R, the basic position graph of R denoted by PG(R) is the 896

disjoint union of PG(Ri) for all Ri ∈ R. 897

We say that a position [a, i] is infinite if term([a, i]) is an existential variable, and 898

there is an atomset F such that running the chase on F produces an unbounded number 899

of instantiations of term([a, i]). To detect infinite positions, we encode how variables may 900

be propagated between rules by adding edges to PG(R), called transition edges, which go 901

from positions in rule heads to position in rule bodies. The set of transition edges has to 902

be correct: if a position [a, i] is infinite, there must be a cycle going through [a, i] in the 903

graph. Though the existence of a transition edge does not necessarily mean that there exists 904

a derivation that will propagate a variable through that edge, its absence in a correct graph 905

means that no possible derivation will ever propagate a variable in such a way. 906

We then define three position graphs by adding transition edges to PG(R), namely 907

PGF (R),PGD(R),PGU(R). All have correct sets of transition edges. Intuitively 908

PGF (R) corresponds to the case where all rules are supposed to depend on all rules; 909

PGD(R) encodes actual paths or rule dependencies; and finally, PGU(R) adds information 910

about the piece-unifier themselves, providing an accurate encoding of variable propagation 911

from an atom position to another. 912
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Definition 19 (PGX) Let R be a set of rules. The three following position graphs are913

obtained from PG(R) by adding a (transition) edge from each position [h, k] in a rule head914

Hi to each position [b, k] in a rule body Bj , with the same predicate, provided that some915

condition is satisfied:916

– full PG, denoted by PGF (R): no additional condition;917

– dependency PG, denoted by PGD(R): if Rj depends directly or indirectly on Ri , i.e.,918

if there is a path from Ri to Rj in GRD(R);919

– PG with unifiers, denoted by PGU(R): if there is a piece-unifier μ of Bj with the920

head of an agglomerated rule (see Definition 20) R
j
i such that μ(term([b, k])) =921

μ(term([h, k])).922

Example 17 (PGF and PGD) Let R = {R1, R2} with R1 = p(X, Y ) ← h(X) and923

R2 = h(V ) ← p(U, V ), q(V ). Figure 2 pictures PGF (R) and PGD(R). The dashed924

edges belong to PGF (R) but not to PGD(R). Indeed, R2 does not depend on R1. PGF (R)925

has a cycle while PGD(R) has not.926

Example 18 (PGD and PGU ) Let R = {R1, R2}, with R1 = p(Z, Y ), q(Y ) ← t (X, Y )927

and R2 = t (V ,W) ← p(U, V ), q(U). In Fig. 3, the dashed edges belong to PGD(R) but928

not to PGU(R). Indeed, the only piece-unifier of B2 with H1 unifies U and Y . Hence, the929

cycle in PGD(R) disappears in PGU(R).930

Definition 20 (Agglomerated Rule) Given Ri and Rj rules from R, an agglomerated rule931

associated with (Ri, Rj ) has the following form:932

Rk
i = Hi ← Bi

⋃

t∈T ⊆terms(Hi)

f r(t)

where f r is a new unary predicate that does not appear in R, and the atoms f r(t) are933

built as follows. Let P be a non-empty set of paths from Ri to direct predecessors of Rj in934

GRD(R). Let P = (R1, . . . , Rn) be a path in P . One can associate a rule RP with P by935

building a sequence R1 = RP
1 , . . . , RP

n such that ∀1 ≤ l ≤ n, there is a piece-unifier μl936

of Bl+1 with the head of RP
l , where the body of R

p

l+1 is BP
l ∪ {f r(t) | t is a term of HP

l937

unified in μl}, and the head of RP
l+1 is H1. Note that for all l, HP

l = H1, however, for l �= 1,938

Fig. 2 PGF (R) and PGD(R) from Example 17. Position [a, i] is represented by underlining the i-th term
in a. Dashed edges do not belong to PGD(R)
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Fig. 3 PGD(R) and PGU (R) from Example 18. Dashed edges do not belong to PGU (R)

RP
l may have less existential variables than Rl due to the added atoms. The agglomerated 939

rule R
j
i built from {RP | P ∈ P} is R

j
i = ⋃

P∈P
RP . 940

Proposition 9 (Inclusions between PGX) Let R be a set of rules. PGU(R) ⊆ 941

PGD(R) ⊆ PGF (R). Furthermore, PGD(R) = PGF (R) if the transitive closure of 942

GRD(R) is a complete graph. 943

We now study how acyclicity properties can be expressed on position graphs. The idea 944

is to associate, with an acyclicity property, a function that assigns to each position a subset 945

of positions reachable from this position, according to some propagation constraints; then, 946

the property is fulfilled if no existential position can be reached from itself. More precisely, 947

a marking function Y assigns to each node [a, i] in a position graph PGX , a subset of its 948

(direct or indirect) successors, called its marking. A marked cycle for [a, i] (w.r.t. X and 949

Y ) is a cycle C in PGX such that [a, i] ∈ C and for all [a′, i′] ∈ C, [a′, i′] belongs to 950

the marking of [a, i]. Obviously, the less situations there are in which the marking may 951

“propagate” in a position graph, the stronger the acyclicity property is (in the sense that this 952

property will detect more terminating instances). 953

Definition 21 (Acyclicity property) Let Y be a marking function and PGX(R) be a posi- 954

tion graph for a set of rules R. The acyclicity property associated with Y in PGX(R), 955

denoted by YX , is satisfied by R if there is no marked cycle for any existential position in 956

PGX(R). If YX is satisfied, we also say that PGX(R) satisfies Y . 957

When there is no ambiguity on the set of rules R considered, we may note PGX instead 958

of PGX(R). Note also that in the following, we denote in the same way the property YX 959

and the class YX of instances that satisfy YX (thus conflating the property with the set of 960

instances satisfying the property). It allows us to write, for instance, YX ⊆ YZ when all 961

instances satisfying YX also satisfy YZ . 962

Note that all known rule classes between wa and swa can be expressed as marking 963

functions on the position graph. 964

The next propositions rely on the following lemma, that makes the link between PGD 965

and the GRD of a set of rules. 966
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Lemma 1 Let R be a set of rules, and Y be an acyclicity property. R satisfies YD if and967

only if each strongly connected components (S.C.C.) of GRD(R), except those composed968

of a single rule and no loop, satisfies Y .969

Proof Let R be a set of rules and Y be an acyclicity property. To ease the reading we970

use the notation from [30]: given an acyclicity property Y , a set of rules R satisfies Y≺ if971

all strongly connected components of GRD(R) satisfy Y , except for those composed of972

a single rule and no loop. It should appear obvious that the lemma can be reformulated as973

YD = Y≺.974

We first show that if R is not YD then it is not Y≺. Suppose that R does not satisfy975

YD . We then have an existential position [a, i] in PGD(R) such that [a, i] ∈ M([a, i]),976

where M is the marking associated with Y . Specifically, this means that there is a cycle977

going through [a, i] in PGD(R). Then all rules from this cycle belong to the same strongly978

connected component of GRD(R). Consider the restriction of R to the set of rules R′ that979

correspond to the S.C.C. in which the rules from this cycle appear. If we build PGF (R), we980

see that R′ does not satisfy YF , hence Y . We have then exhibited a S.C.C. of the GRD(R)981

that does not satisfy Y , hence R is not Y≺.982

Now we show that if R is not Y≺, then it is not YD . Assume that R does not satisfy Y≺.983

Since it does not satisfy Y≺ there is at least one S.C.C. that does not satisfy Y . Call it R′.984

Hence PGF (R′) contains an existential position [a, i] belonging to a cycle. Since R (hence985

R′) is YD , this cycle does not occur anymore in PGD(R′). However, the only edges we986

are allowed to remove in PGD(R′) are edges between rules Ri and Rj for which there is987

no path from Ri to Rj in GRD(R). Thus, we cannot remove any edge (from the definition988

of a S.C.C.). Hence, R′ is not YD .989

Proposition 10 Let Y1, Y2 be two acyclicity properties. If Y1 ⊆ Y2, then YD
1 ⊆ YD

2 .990

Proof Consider a set of rules R that satisfies YD
1 . From Lemma 1, each strongly connected991

component of (DR) satisfies Y1. Since Y1 ⊆ Y2, each S.C.C. of GRD(R) also satisfies Y2,992

therefore R satisfies YD
2 .993

Proposition 11 Let Y be an acyclicity property. If aGRD �⊆ Y then Y ⊂ YD .994

Proof LetR be a set of rules that does not satisfy Y but satisfies aGRD. From the definition995

of aGRD, GRD(R) is composed of |R| strongly connected components with no loop.996

Thanks to Lemma 1, R trivially satisfies YD . Therefore, R is a set of rules satisfying YD997

but not Y .998

Proposition 12 Let Y1, Y2 be two acyclicity properties such that Y1 ⊂ Y2, wa ⊆ Y1 and999

Y2 �⊆ YD
1 . Then YD

1 ⊂ YD
2 .1000

Proof Let R be a set of rules such that R satisfies Y2 and neither Y1 nor aGRD. R1001

can be rewritten into R′ by replacing each rule Ri = Hi ← Bi ∈ R with a new rule1002

R′
i = Hi ∪ {p(x)} ← Bi ∪ {p(x)} where p is a fresh predicate and x a fresh variable.1003

Each rule can now be unified with each rule, but the only created cycles are those which1004
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contain only atoms p(x), hence none of those cycles go through existential positions. Since 1005

wa ⊆ Y1 (and so wa ⊆ Y2), the added cycles do not change the behavior of R w.r.t. 1006

Y1 and Y2. Hence, R′ is a set of rules satisfying Y2 and not Y1, and since GRD(R′) is 1007

a complete graph, PGD(R′) = PGF (R′). We can conclude that R′ satisfies YD
2 but 1008

not YD
1 . 1009

Theorem 5 Let Y be an acyclicity property. If Y ⊂ YD , then YD ⊂ YU . Furthermore, 1010

there is an injective mapping from the sets of rules satisfying YD but not Y , to the sets of 1011

rules satisfiying YU but not YD . 1012

Proof Assume Y ⊂ YD and R satisfies YD but not Y . R can be rewritten into R′ by 1013

applying the following steps. First, for each rule Ri = Hi[�y, �z] ← Bi[�x, �y]. ∈ R, let Ri,1 = 1014

pi(�x, �y) ← Bi[�x, �y]. where pi is a fresh predicate ; and Ri,2 = Hi[�y, �z] ← pi(�x, �y).. 1015

Then, for each rule Ri,1, let R′
i,1 be the rule Hi,1 ← B ′

i,1. with B ′
i,1 = Bi,1 ∪ {p′

j,i (xj,i) : 1016

∀Rj ∈ R}, where p′
j,i are fresh predicates and xj,i fresh variables. Now, for each rule Ri,2 1017

let R′
i,2 be the rule (Bi,2 ← H ′

i,2.) with H ′
i,2 = Hi,2 ∪ {p′

i,j (zi,j ) : ∀Rj ∈ R}, where zi,j 1018

are fresh existential variables. Let R′ = ⋃

Ri∈R
{R′

i,1, R
′
i,2}. This construction ensures that 1019

each R′
i,2 depends on R′

i,1, and each R′
i,1 depends on each R′

j,2, thus, there is a transition 1020

edge from each R′
i,1 to R′

i,2 and from each R′
j,2 to each R′

i,1. Hence, PGD(R′) contains 1021

exactly one cycle for each cycle in PGF (R). Furthermore, PGD(R′) contains at least one 1022

marked cycle w.r.t. Y , and then R′ is not YD . Now, each cycle in PGU(R′) is also a cycle in 1023

PGD(R), and since PGD(R) satisfies Y , PGU(R′) also does. Hence, R′ does not belong 1024

to YD but to YU . 1025

Theorem 6 Let Y1 and Y2 be two acyclicity properties. If YD
1 ⊂ YD

2 then YU
1 ⊂ YU

2 . 1026

Proof Let R be a set of rules such that R satisfies YD
2 but does not satisfy YD

1 . We rewrite 1027

R into R′ by applying the following steps. For each pair of rules Ri, Rj ∈ R such that Rj 1028

depends on Ri , for each variable x in the frontier of Rj and each variable Y in the head of 1029

Ri , if x and Y occur both in a given predicate position, we add to the body of Rj a new atom 1030

pi,j,X,Y (X) and to the head of Ri a new atom pi,j,X,Y (Y ), where pi,j,X,Y denotes a fresh 1031

predicate. This construction will allow each term from the head of Ri to propagate to each 1032

term from the body of Rj , if they shared some predicate position in R. Thus, any cycle in 1033

PGD(R) is also in PGU(R′), without modifying behavior w.r.t. the acyclicity properties. 1034

Hence, R′ satisfies YU
2 but does not satisfy YU

1 . 1035

Definition 22 (Compatible unifier) Let R1 and R2 be two rules. A unifier μ of B2 with 1036

H1 is compatible if, for each position [a, i] in B ′
2 (where B ′

2 is the unified subset of B2, see 1037

“dependency approach in Section 6) such that μ(term([a, i])) is an existential variable Z 1038

in H ′
1, PGU(R) contains a path, from a position in which Z occurs, to [a, i], that does not 1039

go through another existential position. Otherwise μ is incompatible. 1040

Proposition 13 Let R1 and R2 be two rules, and let μ be a unifier of B2 with H1. If μ 1041

is incompatible, then no application of R2 can use an atom in μ(H1). More formally, no 1042
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application π ′ of R2 can map an atom a ∈ B2 to an atom b produced by an application1043

(R1, π) such that b = π(b′), where π and π ′ are more specific than μ.1044

Proof Consider the application of R1 to a set of facts F according to a homomorphism π ′1045

such that for an atom a ∈ B2, π ′(a) = b = π(b′), where both π and π ′ are more specific1046

than μ. Note that this implies that μ(a) = μ(b′). Assume that b contains a fresh variable1047

zi produced from an existential variable z in H1. Let z′ be the variable from a such that1048

π ′(z′) = zi . Since the domain of π ′ is the variables of B2, all atoms from B2 in which z′1049

occurs at a given position [p, j ] are also mapped by π ′ to atom containing zi in the same1050

position [p, j ]. Since zi is a fresh variable, these atoms have been produced by sequences1051

of rule applications starting from (R1, π). Such a sequence of rule applications exists only1052

if there is a path in PGU from a position of z in H1 to [p, j ]; moreover, this path cannot go1053

through an existential position, otherwise zi cannot be propagated. Hence μ is necessarily1054

compatible.1055

Definition 23 – Let R1 and R2 be rules such that there is a compatible unifier μ of B2 with1056

H1. The associated unified rule Rμ = R1 �μ R2 is defined by Hμ = μ(H1) ∪ μ(H2),1057

and Bμ = μ(B1) ∪ (μ(B2) \ μ(H1)).1058

– Let (R1, . . . , Rk+1) be a sequence of rules. A sequence s = (R1μ1R2 . . . μkRk+1),1059

where for 1 ≤ i ≤ k, μi is a unifier of Bi+1 with Hi , is a compatible sequence of1060

unifiers if :1061

– μ1 is a compatible unifier of B2 with H1;1062

– if k > 0, the sequence obtained from s by replacing (R1μ1R2) with R1 �μ1 R21063

is a compatible sequence of unifiers.1064

Definition 24 (Compatible cycles) Let Y be an acyclicity property, and PGU be a position1065

graph with unifiers. The compatible cycles for [a, i] in PGU are all marked cycles C for1066

[a, i] w.r.t. Y , such that there is a compatible sequence of unifiers induced by C. Property1067

YU+ is satisfied if, for each existential position [a, i], there is no compatible cycle for [a, i]1068

in PGU .1069

Proposition 14 Let Y be an acylicity property. Then, YU ⊆ YU+. Moreover, if YD ⊂ YU1070

then YU ⊂ YU+.1071

Proof Inclusion follows immediately from the definitions.1072

We now show that this inclusion is strict. Let R be a set of rules satisfying YU but1073

not YD . We build a set of rules R′ that satisfies YU+ but not YU . To this aim, we first1074

increase the arity of each predicate of R by two, and in each rule body and head, we put1075

two fresh variables t1 and t2 in those positions. E.g., a rule s(x, y) → t (y, z) would become1076

s(x, y, t1, t2) → t (y, z, t1, t2). Then, for each rule R = (B,H), we create four fresh pred-1077

icates p, q1, q2, r whose arity is respectively |var(H)|, 2, 2 and 2, and five fresh variables1078

z1, z2, z3, z4 and z5. Then we “split” R into four rules (where �x is a list of all variables from1079

H ):1080
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– R1 = B → p(�x, z1, z2), 1081

– R2 = p(�x, z1, z2) → q1(z1, z3), 1082

– R3 = q1(z1, z3) → s(z3, z5), 1083

– R4 = p(�x, z1, z2) ∧ q1(z1, z3) ∧ q2(z1, z4) ∧ s(z3, z5) ∧ s(z4, z5) → H . 1084

The graph of rule dependencies of those four rules contains the following edges: (R1, R2), 1085

(R2, R3), (R3, R4). It can be observed that in particular, in PGU(R′) there is a transition 1086

edge going from the last position of the atom p(�x, z1, z2) in rule R1 to the last position of 1087

the “same” atom in rule R4. The same holds for the penultimate position of these atoms. 1088

However, it can be seen that given any set of facts, rule R4 can never be applied. But the 1089

definition of PGU does not take this “complicated” interactions into account. Specifically, 1090

the set of rules is not YU anymore. 1091

Let us now consider YU+. There is no compatible cycle in PGU since the existential vari- 1092

able z1 in rule R1 has to go through new existential positions before reaching the position 1093

of z1 in rule R4. Thus, R′ is YU+. 1094

Proposition 15 Let Y1 and Y2 be two acyclicity properties. If YD
1 ⊂ YD

2 , and YD
2 ⊂ YU+

2 , 1095

then YU+
1 ⊂ YU+

2 . 1096

Proof Observe that the transformation we used in the proof of Theorem 6 actually guar- 1097

antees that all cycles which are present are compatible cycles. Thus, for the obtained set 1098

of rules R′ and any acyclicity property Y , R′ satisfies YU if and only if R′ satisfies 1099

YU+. 1100

Theorem 7 Let Y be an acyclicity property ensuring the halting the chase. Then, the chase 1101

halts for any set of rules R that satisfies YU+ (hence YU and YD). 1102

Proof (sketch) The complete proof is technically involved, and the reader is referred to [44] 1103

for more details. The idea is that if the chase does not halt, then there exists some existential 1104

position which is infinitely often populated by new individuals. Such a position must occur 1105

in some cycle in PGU , as our construction only “removes” edges that do not correspond 1106

to “real” rule applications. Furthermore, Proposition 13 ensures that the cycle cannot be 1107

ignored by YU+. 1108

Theorem 8 (Complexity of Recognition) Let Y be an acyclity property, and R be a set of 1109

rules. If checking that R satisfies Y is in coNP, then, checking that R satisfies YD , YU or 1110

YU+ is coNP-complete. 1111

Proof One can guess a cycle in PGD(R) (or PGU(R), or PGU+(R)) such that the prop- 1112

erty Y is not satisfied by this cycle. Each edge of the cycle has a polynomial certificate, since 1113

checking if a given substitution is a piece-unifier can be done in polynomial time. Since Y 1114

is in coNP , we have a polynomial certificate that this cycle does not satisfy Y . Membership 1115

in coNP follows. 1116

The completeness part is proved by a simple reduction from the co-problem of rule 1117

dependency checking (which is thus a coNP-complete problem). Rule dependency checking 1118
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is equivalent to finding an atom-erasing unifier (see “the dependency approach” in Sec-1119

tion 6). Let R1 and R2 be two rules. We first define two fresh predicates p and s of arity1120

|var(B1)| and two fresh predicates q and r of arity |var(H2)|. We build R0 = p(�x) →1121

s(�x) where �x is a list of all variables in B1, and R3 = r(�x) → p(�z) ∧ q(�x), where1122

�z = (z, z, . . . , z), where z is a variable which does not appear in H2. We rewrite R1 into1123

R′
1 = B1 ∧ s(�x) → H1 and R2 into R′

2 = B2 → H2 ∧ r(�x), where �x is a list of all1124

variables in H2. One can check that R = {R0, R
′
1, R

′
2, R3} contains a cycle going through1125

an existential variable (thus, it is not waD) iff R2 depends on R1.1126

7 Termination of ASPeRiX computations1127

Consider P an ENM-program. In Section 3, we have defined the semantics of this program1128

as the semantics of the partial grounding of its skolemization. In an ASPeRiX computation1129

of this program, the IN fields generated thus correspond to a skolem-derivation using the1130

rules in pos(P ) (i.e., the existential rules obtained by removing negative bodies from all1131

rules in P ). It is easy to check that:1132

Proposition 16 Let P be an ENM-program. If the Skolem chase halts on pos(P ) then, the1133

ASPeRiX computation halts on P .1134

This proposition allows us to use all decidability results presented in Section 6, since all1135

those decidable classes halt with the Skolem chase.1136

We have seen in Section 5 that some chases were stronger than the Skolem chase, and1137

could halt where the Skolem chase couldn’t. An immediate question is “what happens if we1138

replace the Skolem chase used in the ASPeRiX computation by some other C-chase, thus1139

defining an ASPeRiX C-computation?”1140

We first show that those different algorithms produce different results, and thus imple-1141

ment different semantics. These semantics are discussed in Section 7.1. Then we show in1142

Section 7.2 that Proposition 16 does not extend easily to other computations. Finally, in1143

Section 7.3, we provide a sufficient condition on negative bodies ensuring termination of1144

ASPeRiX computations.1145

7.1 Semantics of ASPeRiX C-computations1146

In the positive case, all chase variants produce equivalent universal models (up to skolemiza-1147

tion). Moreover, running a chase on equivalent knowledge bases produce equivalent results.1148

Do these semantic properties still hold with nonmonotonic existential rules? The answer is1149

no in general.1150

The next example shows that the chase variants presented in this paper, core chase1151

excepted, may produce non-equivalent results from equivalent knowledge bases.1152

Example 19 Let F = {p(a, Y ), t (Y )} and F ′ = {p(a, Y ′), p(a, Y ), t (Y )} be two equiv-1153

alent atomsets. Let R : r(U) ← p(U, V ), not t (V ).. For any ASPeRiX C-computation1154

other than core chase, there is a single result for (F, {R}) which is F (or sk(F)) and a single1155

result for (F ′, {R}) which is F ′ ∪ {r(a)} (or sk(F ′) ∪ {r(a)}). These sets are not equivalent.1156

Of course, if we consider that the initial knowledge base is already skolemized (including1157

F seen as a rule), this trouble does not occur with the Skolem-chase since there are no1158
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redundancies in facts and no redundancy can be created by a rule application. This problem 1159

does not arise with core chase either. Thus the only two candidates for processing ENM-rules 1160

are the core chase and the Skolem chase (if we assume a priori skolemisation, which is 1161

already a semantic shift). 1162

On the one hand, the core chase is more expensive (since at each step of the breadth-first 1163

forward chaining there is a redundancy check possibly accompanied by the computation of 1164

a core, which can be done with a number of homomorphism checks linear in the number 1165

of facts). On the other hand, the core chase allows to keep the original knowledge base and 1166

terminates more often than the Skolem chase. 1167

The choice between both mechanisms is important since, as shown by the next exam- 1168

ple, they may produce different results even when they both produce a unique result. It 1169

follows that skolemizing existential rules is not an innocuous transformation in presence of 1170

nonmontonic negation. 1171

Example 20 We consider F = i(a), R1 = p(X, Y ) ← i(X)., R2 = q(X, Y ) ← 1172

i(X)., R3 = p(X, Y ), t (Y ) ← q(X, Y ). and R4 = r(U) ← p(U, V ), not t (V ).. 1173

The core chase produces at first step p(a, Y0) and q(a, Y1), then p(a, Y1) and t (Y1) 1174

and removes the redundant atom p(a, Y0), hence R4 is not applicable. The unique result 1175

of the ASPeRiX core-computation is {i(a), q(a, Y1), p(a, Y1), t (Y1)}. With the Skolem 1176

chase, the produced atoms are p(a, f R1(a)) and q(a, f R2(a)), then p(a, f R2(a)) and 1177

t (f R2(a)). R4 is applied with p(U, V ) mapped to p(a, f R1(a)), which produces r(a). 1178

These atoms yield a unique ASPeRiX Skolem-computation result. These results are not 1179

equivalent. 1180

The relationships between both kinds of chase applied to nonmonotonic existential rules 1181

can be specified as follows: (1) For result S of the ASPeRiX core-computation, there is a 1182

result S′ of the ASPeRiX Skolem-computation with an homomorphism from S to S′; (2) 1183

the ASPeRiX Skolem-computation may produce strictly more results than the ASPeRiX 1184

core-computation, even infinitely many more. 1185

7.2 Termination of ASPeRiX C-computations 1186

We say that the ASPeRiX C-halts on (F,R) when there exists a finite ASPeRiX C- 1187

computation of (F,R) (in that case, a breadth-first strategy for the rule applications will 1188

generate it). We can thus define C-ENM-finite as the class of sets of nonmonotonic existen- 1189

tial rules R for which ASPeRiX C-halts on any (F,R). Our first intuition was to assert “if 1190

pos(R) ∈ C-finite, then R ∈ C-ENM-finite”. However, this property is not true in general, 1191

as shown by the following example: 1192

Example 21 Let R = {R1, R2} where R1 = p(X, Y ), h(Y ) ← h(X). and R2 = 1193

p(X,X) ← p(X, Y ), not h(X).. See that pos(R) ∈ core-finite (as soon as R1 is applied, 1194

R2 is also applied and the loop p(X,X) makes any other rule application redundant); how- 1195

ever the only result of an ASPeRiX core-computation of ({h(a)},R) is infinite (because 1196

all applications of R2 are blocked). 1197

The following property shows that the desired property is true for local chases. 1198

Proposition 17 Let R be a set of ENM-rules and C be a local chase. If pos(R) ∈ C-finite, 1199

then R ∈ C-ENM-finite. 1200
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We have previously argued that the only two interesting chase variants w.r.t. the desired1201

semantic properties are Skolem and core. However, the core-finiteness of the positive part1202

of a set of ENM-rules does not ensure the core-stable-finiteness of these rules. We should1203

point out now that if C ≥ C′, then C′-ENM-finiteness implies C-ENM-finiteness. We can1204

thus ensure core-ENM-finiteness when C-finiteness of the positive part of rules is ensured1205

for a local C-chase.1206

Proposition 18 Let R be a set of ENM-rules and C be a local chase. If pos(R) ∈ C-finite,1207

then R ∈ core-ENM-finite.1208

We can thus rely upon all acyclicity results in this paper (for which the Skolem chase1209

halts) to ensure that the ASPeRiX core-computation also halts.1210

7.3 Using negative bodies to ensure termination1211

We now explain how negation can be exploited to enhance all previous acyclicity notions.1212

We first define the notion of self-blocking rule, which is a rule that will never be applied in1213

any derivation.1214

Definition 25 (Self-blocking rule) Let R : H ← B+, B−
1 , . . . B−

k be an ENM-rule. R is1215

self-blocking if there is a negative body B−
i such that B−

i ⊆ B+ ∪ H .1216

Such a rule will never be applied in a sound way, so will never produce any atom. It1217

follows that:1218

Proposition 19 Let R′ be the non-self-blocking rules of R. If pos(R′) ∈ C-finite and C is1219

local, then R ∈ C-ENM-finite.1220

This idea can be further extended. We have seen for existential rules that if R′ : H ′ ← B ′1221

depends on R : H ← B, then there is a unifier μ of B ′ with H , and we can build a rule1222

R′′ = R �μ R′ that captures the sequence of applications encoded by the unifier. We extend1223

Definition 23 to take into account negative bodies: if B− is a negative body of R or R′, then1224

μ(B−) is a negative body of R′′. We also extend the notion of dependency in a natural way,1225

and say that a unifier μ of B ′ with H is self-blocking when R �μ R′ is self-blocking, and1226

R′ depends on R when there exists a unifier of B ′ with H that is not self-blocking. This1227

extended notion of dependency exactly corresponds to the positive reliance in [40].1228

Example 22 Let R = r(X, Y ) ← q(X), not p(X). and R′ = p(X), q(Y ) ← r(X, Y )..1229

Their associated positive rules are not core-finite. There is a single unifier μ of R′ with1230

R, and R �μ R′ : r(X, Y ), p(X), q(Y ) ← q(X), not p(X). is self-blocking. Then the1231

Skolem-chase-tree halts on (F, {R,R′}) for any F .1232

Results obtained from positive rules can thus be generalized by considering this extended1233

notion of dependency (for PGU we only encode non self-blocking unifiers). Note that it1234

does not change the complexity of the acyclicity tests.1235

We can further generalize this and check if a unifier sequence is self-blocking, thus1236

extend the YU+ classes to take into account negative bodies. Let us consider a compati-1237

ble cycle C going through [a, i] that has not been proven safe. Let Cμ be the set of all1238

compatible unifier sequences induced by C. We say that a sequence μ1 . . . μk ∈ Cμ is1239
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self-blocking when the rule R1 �μ1 R2 . . . Rk �μk
Rk+1 obtained by combining these uni- 1240

fiers is self-blocking. When all sequences in Cμ are self-blocking, we say that C is also 1241

self-blocking. This test comes again at no additional computational cost. 1242

Example 23 Let R1 = r(X1, Y1) ← q(X1), not p(X1)., R2 = s(X2, Y2) ← 1243

r(X2, Y2)., R3 = p(X3), q(Y3) ← s(X3, Y3).. PGU+({R1, R2, R3}) has a unique 1244

cycle, with a unique induced compatible unifier sequence. The rule R1 � R2 � R3 = 1245

r(X1, Y1), s(X1, Y1), p(X1), q(Y1) ← q(X1), not p(X1). is self-blocking, hence R1 �R2 � 1246

R3 � R1 also is. Thus, there is no “dangerous” cycle. 1247

Proposition 20 Let R be a set of ENM-rules. If, for each existential position [a, i] in a rule 1248

in R, all compatible cycles for [a, i] in PGU are self-blocking, then 1249

the ASPeRiX Skolem-computation halts on R. 1250

8 Conclusion 1251

This paper has presented a new formalism called existential non-monotonic rules (ENM- 1252

rules) which integrates ontologies and rules in a unique formalism and offers a computa- 1253

tional study of this formalism. On one hand, it expands the standard ASP formalism by 1254

allowing the use of existential variables. On the other hand, it expands the standard existen- 1255

tial rules formalism by allowing the use of default negation. From a practical point of view, 1256

the proposed translation from ENM-rules to ASP allows us to use any solvers. But let us note 1257

that we have implemented this translation as a front-end of the solver ASPeRiX which uses 1258

on-the-fly grounding [36]. This should help, in the future, for dealing with variables in a 1259

more efficient way. 1260

Compared to other approaches, the present work has the following advantages: it uses a 1261

unique formalism and a unique semantics for ontologies and rules; it does not suffer from 1262

the important restrictions sometimes imposed, such as stratified negation; and it is actually 1263

implemented. 1264

Moreover, we have revisited chase termination for existential rules with several results. 1265

First, we have presented a new tool that allows to unify and extend most existing acyclic- 1266

ity conditions, while keeping good computational properties. Second, we have discussed 1267

a chase-like mechanism for ENM-rules, and the extension of acyclicity conditions to take 1268

negation into account. 1269

The main ongoing work consists in dealing efficiently with queries in this framework. 1270

This is not obvious due to the nonmonotonic aspect of ASP and the potential inconsistency 1271

of an ASP program. It seems that very little work has been done on these aspects but it is a 1272

promising way when dealing with ontological information issued from the web. 1273
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