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Abstract:

The development, in the last decades, of technologies for precision agriculture allows the
acquisition of crop data with a high spatial resolution. This offers possibilities for innovative
control and raises new logistics issues that may be solved using discrete event models. In
vineyards, some technologies make it possible to define zones with different qualities of grapes
and sort the grapes at harvest to make different vintages. In this context, the Differential
Harvest Problem (DHP) consists in finding a trajectory of the harvesting machine in the field
in order to obtain at least a given quantity of higher quality grapes and minimising working
time. In available literature, the DHP has been solved using Constraint Programming. In this
paper, we investigate if it is possible to solve the DHP using the Cost Optimal Reachability
Analysis feature of a model-checking tool such as UppAal-CORA. A model named DHP_PTA
has been designed based on the priced timed automata formalism and the UppAal-CORA tool.
The method made it possible to obtain the optimal trajectory of a harvesting machine for a
vine plot composed of up to 12 rows. The study is based on real vineyard data.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION & RELATED WORK

Precision Agriculture (PAg) has been a research topic for
many years. The purpose of PAg is to adapt agricultural
actions to local situation in the field so that the right
action is performed at the right place and at the right time
(McBratney et al. (2005)). Technologies for PAg are now
widespread in the farms and are being developed further.
These technologies raise decision issues about logistics
so that an adequate compromise can be found between
the different criteria of the farmer and so that certain
desired properties can be verified. Differential harvesting
in vineyards is an example of such concern. Instead of
harvesting everything in a plot for same wine quality,
one would like to define zones with different qualities
and sort the grapes. An example of such technology is
described in (Briot et al. (2015c)). Sorting grapes may
increase harvesting time and costs. The issue is then to find
the best harvesting logistics, provided that grape quality
criteria, expressed as constraints on harvesting system and
harvesting output, are met.

Timed Automata (TA), as defined by Alur and Dill (1994),
is a simple and expressive formalism to model the timed
behaviour of real-time systems. It extends finite automata

* This work has received the support of French National Research
Agency under the grant number ANR-14-CE27-0004 attributed to
AdAP2E project.

with a finite set of real-valued variables, called clocks.
UppAal is a tool designed to validate systems that can
be modeled as networks of TA. UppAal extends the TA
formalism by adding integer variables, structured data
types, user defined functions, and synchronisation channels
(Bengtsson and Yi (2004)). TA and UppAal have already
been used in the agricultural and ecosystem management
domains (e.g in Largouét et al. (2012)).

UppAal-CORA (Behrmann et al. (2004)) is a variant of
UppAal for Cost-Optimal Reachability Analysis of Priced
Timed Automata. Cost-optimal reachability is the prob-
lem of finding the minimum cost to reach a certain target
location in a given Priced Timed Automata (Bisgaard
et al. (2016)). UppAal-CORA was developed in 2004 and
Priced Timed Automata (PTA) were introduced indepen-
dently by Behrmann et al. (2001a) and Alur et al. (2001) in
2001 (Fahrenberg et al. (2013)). PTA can be viewed as TA
with one specific non-negative integer variable named cost.
The cost is a monotonous function: it never decreases when
time flows. UppAal-CORA has been used successfully for
scheduling and routing problems in several case studies
(Behrmann et al. (2004): Task Graph Scheduling, Aircraft
Landing Problem, Vehicle Routing Problem with Time
Windows, etc.). UppAal-CORA has also been used to solve
a precision spraying problem for vineyards (Saddem et al.
(2017)).

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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We investigate in this paper how UppAal-CORA can be
applied to grape harvesting logistics, which present simi-
larities with scheduling and routing problems. The reason
to investigate this topic is that an UppAal-CORA based
approach would have the advantage over alternatives for
optimisation under constraints raised by PAg, such as
Mixed Integer Programming methods or Constraints Pro-
gramming, that system dynamics involved can be rather
straightforwardly described in the PTA formalism.

Precisely, the problem studied in this paper is the Dif-
ferential Harvest Problem (DHP). Let us consider a vine
plot in which two qualities of grapes can be distinguished
before harvest so that a map with zones having quality A
and zones having quality B can be drawn. A vine plot is
planted in rows, and each row has sections with quality
A (higher quality) and sections with quality B. Let us
consider a harvester having two hoppers which can operate
in two modes: (selective) harvesting sequentially quality A
and quality B grapes and directing them to hoppers ”a”
and ”b” respectively and (non selective) filling 7a” and ”b”
hoppers indistinctly with all grapes. In selective mode, as
soon as one hopper is full, it must be emptied into a bin
located at some place in the plot. Due to time needed to
go to the bin and empty a hopper, the total working time
to harvest the plot depends on the order and direction
in which rows are harvested. The objective of DHP is to
minimise the working time of the harvesting machine while
ensuring that all grapes have been harvested and that a
given minimum quantity of grapes of the higher quality
has been sorted.

The DHP has been studied by Briot (Briot et al. (2015a),
Briot et al. (2015b)), using Constraint Programming tech-
niques (Dechter (2003)) and two alternative models. The
first one is called Step model and is based on making
3 choices at each step of building the harvester route:
which row next, in which direction, going afterwards to
bin to dump harvest - or not. The second one is called
the Precedence model. It was inspired by Kilby and Shaw
(2006) in which a Vehicle Routing Problem (VRP) was
solved using Constraint Programming. It uses a constraint
called Circuit that prevents sub-tours in visits of loca-
tions (rows, bin). According to authors, solving with the
Step model is time consuming and is limited by the high
amount of memory needed while performances obtained
with the Precedence model are better but require specific
constraints. In this paper, we investigate if it is possible
to solve the DHP using UppAal-CORA without dedicated
heuristics to guide cost optimisation during reachability
analysis.

The rest of the paper is organised as follows. In section 2,
the Differential Harvest Problem is defined in details. In
section 3, a model for expressing the DHP as a network
of priced timed automata is described. It is based on
the tool UppAal-CORA. The reachability property used
to solve DHP with the model is provided. In Section 4,
experimental results are described and discussed before
concluding.

2. DETAILED DEFINITION OF DIFFERENTIAL
HARVEST PROBLEM

In this section, we provide details about the DHP as it is
defined in Briot et al. (2015a).

In a vine field, zones can be defined according to two
grape quality grades A (higher quality) and B. A vine
field is composed of several A and B zones, respectively
containing A-grapes and B-grapes. Agronomists can define
these zones using aerial photos. A Harvesting Machine
(HM) ready for selective harvesting of two qualities has
two hoppers that we name a-hopper and b-hopper. HM is
able to direct the grapes to either hopper and can thus sort
qualities according to A and B zones. The capacity of each
hopper is limited to a maximum value C'max. When HM is
in selective mode, a-hopper contains only A-grapes and b-
hopper contains B-grapes and may contain also A-grapes
that will be lost for the high quality vintage.

The harvesting mechanism, named picking head, is com-
posed of a set of shaking rods and conveyors that move
fallen grapes to a mechanism on top of the machine that
directs grapes to hoppers. Due to the longitudinal size of
the picking head, there is a phenomenon called latency
when the machine moves from a zone to another. We can
distinguish two cases illustrated in figure 1.

The first case is that HM passes from a A-zone to a B-
zone (see scenario 1). As soon as the machine enters the
B-zone, grapes are directed to the b-hopper. The second
case is the reverse zone change and is depicted as scenario
2. When the machines enters the A-zone, A-grapes and B-
grapes can mingle in the picking head temporarily, and so
they must be sorted to the b-hopper so that the a-hopper
does not contain B-grapes. This causes the latency time on
changing from a-hopper to b-hopper. Once this time has
elapsed, there are only A-grapes in the picking head and
they can be directed to the a-hopper. During operation,
the value of latency time when moving from a B-zone to
a A-zone is considered a fixed parameter. When moving
from a A-zone to a B-zone, there is no latency.

A-grapes B-grapes

£pickin head ]—M»
ﬁl moves this way
° a-hopper
§ j (position a little later
g picking head harvester enters
@ B-grapes zone)
b-hdpper
B-grapes A-grapes

picking .head (during fatency

period);
b-hopper picking head J (fatency just
: ] finished)
| a-hoppef

latency

scenario 2

Harvesting direction —

Fig. 1. Two cases: A-zone — B-zone or B-zone — A-zone
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As a consequence of this latency time asymmetry, the
quantities of A-grapes and B-grape that can be harvested
in a row depend on the direction of HM in this row.

The agronomic objective of the DHP is to have at least a
quantity Rmin of A-grapes. If this threshold is reached,
and once the contents of both hoppers have been dumped
in the bin, HM switches to the non selective mode and
put A-grapes and B-grapes in any of the hoppers. If Rmin
has been reached and hoppers have not yet been emptied,
the machine cannot change from selective to non selective
mode. It is supposed that HM starts operations in selective
mode and switches to non selective only once and remains
after in this latter mode.

A vine field is composed of n rows. Each row i is repre-
sented by two extremities N; and S;. All N; are "on the
same side” of the field, and the same applies to the 5;.
Let us call direct orientation, the orientation from N; to
S; and inverse orientation, the orientation from S; to NN;.
It is usual and efficient practice that if a row is harvested
in the direct orientation, the row to be harvested next
should be harvested in inverse orientation and vice versa.
The model described hereafter takes advantage of this
constraint, so that state space exploration can be reduced
during problem solving, as was done in Briot et al. (2015b).

Let Q-A_D (resp. Q_.B_D) be the array that specifies the
quantity of A-grapes (resp. B-grapes) that will be collected
in each row if it will be harvested in the Direct orientation.
And Q_A_I, Q_B.I the equivalent in the Inverse orienta-
tion.

Finally, let DD be the cost matrix. DD represent distances
(that may be represented as travel times) between all
extremities and distances between each row extremity and
the bin place.

The objective of the DHP is to find the order and orienta-
tion in which rows should be harvested so that at least
Rmin of A-grapes are harvested and so that the total
travel distance of the harvesting machine is minimised.

3. MODELLING AND PROPERTIES TO CHECK

It can be acknowledged, as is done in Briot et al. (2015b),
that the DHP has similarities with a VRP.

3.1 Definition of the Model

Let us recall a definition of vehicle routing problem that
is taken from Kilby and Shaw (2006).

Definition 1. ”A set of n customers is to be served by
m vehicles. Each customer must be visited by exactly
one vehicle. Customer ¢ has demand r;, and the sum of
demands of customers assigned to vehicle £ must be less
than the vehicle capacity @. All vehicles begin and end
their route at a single depot. The objective is to minimise
the sum of travel costs”.

Each row to harvest in a DHP may be seen as a customer
and the harvesting machine HM is the only vehicle that
will serve all customers, going several times to the bin
(in other words, the depot). This relates DHP to a multi-
trip routing problem, the whole route being composed of
several trips from the bin to a subset of the rows and back

to the bin. It is supposed that there is only one bin place,
with 2 containers, one for A-grapes only and one for B-
grapes and extra A-grapes.

Solving the DHP is finding the sequence of harvested rows,
with direction for each, and emptyings that optimises the
travel (working) time of HM. The whole route of HM
must start and finish at the bin. The question of the
direction when harvesting a row distinguishes the DHP
from a classical VRP. Indeed, in the cost matrix, because
of the direction feature, a row is modelled by having two
vertices per row instead of one in the graph of distances
(travel and harvesting times).

In the following, the model representing the DHP as a
network of PTA (called DHP_PTA) and a CORA (Cost
Optimal Reachability Analysis) query are presented. The
input data of DHP_PTA is a cost matrix described below.

Cost matrix: The graph provided in figure 2 illustrates
how the matrix is built. Each row 4 in the field is rep-
resented by two extremities N; and ;. The cost matrix
represents the required time to move from a row extremity
to another or from a row extremity to the bin.

N3B
N¢B
Row ¢ Rowz| | | Row 3
= x :
1 N1N2 1 . NoNg3
[ pp— AT
1 1 ' :
X SiN1) NaS2 )
I 1 i !
1N1iS4 1 ‘ ! ‘ ! .
| 1 ' ' Bin
| 1 ! !
1
! ! : [ !
\ v | N2S, ! | NgSs
S ' P Se h * Sg
I t L !
"""" NiS2 .41l s i

Fig. 2. DHP travel data: a case with 3 rows and a bin

In this figure, a colour is assigned to each row extremity
and to the arcs from this extremity. For example, the black
colour is assigned to N;. From N, HM can visit Na, N3,
S1, Sa2, S3 and the bin (B). Because of the constraint that
two rows that are harvested one after the other have to
be harvested in opposite orientations, it follows that from
N1, HM does not need to visit Sz and S3. So N1S; (travel
time from Nj to S3) and N;S5 (travel time from N; to S3)
are not required (symbol — in the matrix). In the matrix,
F. and B mean "From” and ”Bin”, respectively. Based on
Figure 2, the cost matrix DD will be as follows:

Bin N S1 No Sa N3 Ss
F. Bin 0 BN, BS,; BN, BS, BNs BSs
F. Ny N1 B 0 N1S1 NiNy —  NijN3  —
F. Sq S1B  S1MN; 0 - S18 - S183
DD = F. N, N2B N3N;  — 0 N2Sy; N3Nz  —
F. Sp SoB - S3S81  SaNa 0 - S383
F. N3 N3B N3N; — N3Ny  — 0 N3S3
F. Sg S3B - S35, - S3Sy S3Ng 0

S;S; an N;N; are always equal to 0 because HM stays
in the same place. XY is equal to Y X with X and Y
representing one of the row extremities and bin place.
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Because this original matrix is symmetric, it can be
reduced to:

Bin Row; Rows; Rows
F.Bin (BB BN; BN, BN;

dd = F. R0w1 SlB lel N1N2 N1N3 (1)
- F. R0w2 SQB SQSl NQSQ N2N3
F. Row3 SgB 5351 5352 N353

In this reduced matrix dd, the upper triangular part
represents travel times from bin to N; extremities and
travel times between N; extremities. The diagonal column
represents the harvesting time of each row. The lower
triangular part represents travel times from .S; extremities
to bin and travel times between S; extremities.

The DHP_PTA model can now be described. It is a net-
work of n + 1 automata: a harvesting machine automaton
and n row automata. Each row automaton is instantiated
with a row index number. The variables were defined in
order to be consistent with Briot et al. (2015a).

Constants:
CmaxHopper: is the maximum capacity of each hopper.

Rmin: is the minimum quantity of A-grapes that must be
harvested, provided as a percentage of the total quantity
of A-grapes that is identified on the field map.

Q-A_D[i] (resp. Q-B_DJi]): starting from ¢ = 0, is the
quantity of A-grapes (resp. B-grapes) that will be collected
in the (i+1)*" row if this row will be harvested in the direct
orientation.

Q-B_I[i](resp.Q-A_I[i]): is the quantity of B-grapes (resp.
A-grapes) that will be collected in the (i + 1) row if this
row will be harvested in the inverse orientation.

dd: is the reduced cost matrix.
Variables:

Mixed: is a boolean variable that represents the harvest
mode. If Mized = 0, the harvest mode is differential
(Rmin quantity of A-grapes has not yet been reached and
a-hopper can contain only A-grapes). Otherwise, A-grapes
and B-grapes can be mixed in the two hoppers.

T: is a calculated integer variable that represents the time
needed by HM to perform travel to next row and harvest
it (see figure 3), or travel to bin and dump the harvest in
the appropriate containers at the bin place (see figure 4).

Location: is an integer variable that represents the current
location of HM. If Location = 0, HM is at the bin else if
Location = i with i € [1 : n] then HM is at i** row.

DumpNumber: is an integer variable. It represents the
number of dumps done since the beginning.

Orili]: is a boolean variable. If Ori[i] = 1, the (i+1)'" row
is harvested in the direct orientation else it is harvested in
the inverse orientation. The status about whether a row
has yet been harvested or not is given by state in the
corresponding row automaton.

Miz[i]: is a boolean variable. If Miz[i] = 0, the (i + 1)*?
row is harvested in differential (selective) mode else it is
harvested in non selective mode.

U_A (resp. U_B): represents the current quantity of A-
grapes (resp. B-grapes) in the a-hopper (resp. b-hopper).

Q-T_A (resp. Q_T_B): represents the quantity of A-grapes
(resp. B-grapes) dumped until then at the bin place (in
their respective containers).

¢ is a local clock for the vehicle model.

Row automata: There are two similar parts in the
automaton depicted figure 3 that correspond to each
potential orientation.

At Init state, the row 4 is not harvested. It can be har-
vested according to direct orientation (top transition) or
to inverse orientation (bottom transition). If the transition
guard value is true ((1) or (2) in green in Figure 3), then a
command event "toRow!” is sent to the vehicle automaton
and the row passes to the Harvested state.

((Mixed==0)? (U_B + Q_B_D]i-1]<=CmaxHopper

&& U_A+ Q_A_DJ[i-1]+ U_B + Q_B_DJi-1]<= 2*CmaxHopper) (1)
(U_A+Q_A_D[i-1] + U_B + Q_B_DJ[i-1]<= 2*CmaxHopper))
&&(Location==0 || Ori[Location-1]==0)

toRow!

Ori[i-1]=1,

T= dd[Location][i] + dd[i][i],

Location =i,

Mix[i-1] = Mixed,

(U_A + Q_A_DJi-1] <= CmaxHopper)? (U_A += Q_A_DI[i-1]):
(U_B=U_B+U_A+ Q_A_D[i-1]- CmaxHopper) && (U_A = CmaxHopper),
(U_B + Q_B_DJi-1] <= CmaxHopper)? (U_B += Q_B_DJi-1]):
(U_A=U_A+U_B+ Q_B_DJ[i-1]- CmaxHopper) && (U_B = CmaxHopper)

. Harvested
Init

((Mixed==0)? (U_B + Q_B_l[i-1] <= CmaxHopper

&& U_A+ Q_A_[[i-1] + U_B + Q_B_]I[i-1]<= 2*CmaxHopper) (2)
(U_A+ Q_A_I[i-1] + U_B + Q_B_[i-1]<= 2*CmaxHopper))

&& (Location==0 || Ori[Location-1]==1)

toRow!

Ori[i-1]=0,

T= dd[i][Location] + dd[i][i],

Location =1,

Mix[i-1] = Mixed,

(U_A+Q_A_I[i-1] <= CmaxHopper)? (U_A += Q_A_l[i-1]):

(U_B=U_B+U_A+Q_A_I[i-1]- CmaxHopper) && (U_A = CmaxHopper),
(U_B + Q_B_lI[i-1] <= CmaxHopper)? (U_B += Q_B_lI[i-1]):
(U_A=U_A+U_B + Q_B_I[i-1]- CmaxHopper) && (U_B = CmaxHopper)

Fig. 3. Template row automaton for each row i € [1 : n]

Let us examine the transition at the top, which has guard
(1). The row ¢ will be harvested in a direct orientation
(Ori[i-1]=1). It follows that either the previous row has
been harvested in the inverse orientation (Ori[Location —
1] == 0), or the location of HM before transition is the
bin (Location == 0).

In addition, the row automaton also checks in the guard
(1), and depending on the value of Mized variable, if
enough space remains in the hopper to harvest the grapes
of the row.

If Mized == 0, the harvest mode is differential. The quan-
tity U-B 4+ Q-B_DJ[i — 1] (grapes in the b-hopper and B-
grapes to be collected) must be limited to CmaxzH opper.
Furthermore, U_A+ U_B + Q-A_D[i — 1]+ Q_B_D[i — 1]
(grapes in the hoppers and A and B-grapes to be collected)
must be limited to 2 x CmaxzHopper (note that A-grapes
can be put in both a-hopper and b-hopper, regardless of
harvest mode).
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If Mized == 1, the harvest mode is not differential. The
row automaton checks that the quantity U_A + U_B +
Q-A_D[i—1]4+Q_B_D[i—1] is limited to 2 x CmaxH opper.

If the value of the transition guard is true, the row
automaton sends the control event toRow! and updates
the variables Ori[i — 1], Miz[i — 1], Location, U_A, U_B
and T

Orili — 1] is updated to 1 if the 7** row is harvested in
a direct orientation, else it is updated to 0. Mix[i — 1] is
updated to the value of Mixed. Location is updated to 1.

The computing of U_A and U_B deserves some explana-
tions. U_A computes the quantity of grapes in a-hopper
at the end of row i. If U_A + Q_A_D[i — 1] is lower than
CmaxHopper, then U_A is updated to the value U_A +
Q_A_DJ[i — 1]. Otherwise, U_A is updated to the value of
CmaxHopper, the rest of A-grapes (U_A4+Q_A_D[i—1]—
CmaxHopper) is put in the b-hopper and U _B is updated
accordingly.

U_B computes the quantity of grapes in the b-hopper
at the end of row i. If U_.B + Q_B_D[i — 1] is lower
than CmaxHopper, then U_B is updated to the value
U_B+Q_B_DJi]. Otherwise, U_B is updated to the value of
CmaxHopper and the rest of B-grapes (U_B+Q_B_DJi]—
CmaxHopper) is put in a-hopper. So, U_A is updated
with this rest of B-grapes. Please note that the latter will
happen only in the mixed (non differential) harvest mode.
Indeed, the case U_B + Q-B_D[i] > CmaxHopper can
occur only in the mixed mode. On the guard of transistion,
it is stated that if otherwise (Mized == 0), then U_B +
Q-B_Dli] < CmaxH opper.

T is updated to the sum of travel time and harvest time
(service time in the VRP terminology). The service time
is dd[i][7]]. The travel time depends on the orientation
with which the row will be harvested. If the row will be
harvested in the direct orientation, then the travel time is
equal to dd[Location][i] else it is equal to dd[i][Location]
(see definition of cost matrix dd in equation 1).

The lower transition is constructed similarly and does not
require further explanations.

Harvesting Machine automaton:

toRow?

cost'==0 c<=T && cost'==1
Bin G esting ext_Row

toRow?
c=0

Q_T_B+=U_B,

T = DumpTime+
((Ori[Location-1]==1)?
dd[Location][0]: dd[0][Location]),
Location = 0, DumpNumber +=1, U_A =0, U B =0, c=0,
(Q_T_A >=Rmin) ? (Mixed = 1): (Mixed = 0)

c<=T && cost'==1

Fig. 4. The Harvesting Machine (HM) automaton

In figure 4, at init time, the starting location for the
harvesting machine is the bin (state ”Bin”). Once the
HM automaton receives a synchronisation signal ”toRow?”

from a row automaton, the local clock c is reset and the
next state is ”Wait_Harvesting”.

At the state ”Wait_Harvesting”, HM waits for T time
units (time for travelling from location to row and time
for harvesting the row). Once this time has elapsed, the
HM automaton changes to state ”Next_Row”.

At this point, HM is at the end of a row. Two cases
are possible. The first case is that a synchronisation
signal "toRow?” is received from a row automaton. In
this case, the transition from the ”Next_Row” to the
state ”Wait_Harvesting” will be executed. The second
case is about going to the bin for dumping the hoppers.
In this case, the transition from the state ”Next_Row”
to the state ”Wait_Dumping” will be executed and the
HM automaton will update the variables Q_T_A, Q_T_B,
Mizxed, Location, DumpNumber, U_A, U_B, cand T.

As for Q_T_A (resp. Q-T_B), the quantities of grapes in
a-hopper U_A (resp. b-hopper U_B) are added. Location
is updated to 0 (the bin). DumpNumber is incremented.
U_A, U_B and c are reset. If Rmin is reached (Q-T-A
>= Rmin), Mixed is set to 1, else it is set to 0 (continue
differential harvest).

On this transition, T represents the travel time from
the row to the bin and the dump time (DumpTime).
The travel time depends on the orientation with which
the previous row (Location — 1) was harvested. If it was
harvested according to direct orientation (Ori[Location —
1] == 1) then the travel time is dd[Location][0], otherwise
it is dd[0][Location].

At state ”Wait_Dumping”, the HM automaton waits for
T time units (time for travelling from location to bin and
time for dumping hoppers). When this time has elapsed,
the HM automaton passes to state ”"Bin”.

3.2 Properties

Many properties can be checked on this model to verify its
consistency and its behaviour:

(1) All rows can be harvested. E <> Rowl.Harvested
and Row?2.Harvested and ... Rown.H arvested

(2) Max bound of variables:

e The number of dumps is always lower than num-
ber of rows. A[] DumpNumber < nbRow + 1

e The quantity in hoppers is always lower than
their maximum capacity of hoppers A[] U_-A <
CmaxHopper and U_B < CmaxH opper)

(3) All rows can be harvested and at least Q_T_A is
greater than Rmin and HM starts and finishes at the
bin.

E <> Rowl.Harvested and Row2.Harvested and ...
Rown.Harvested and HM.Bin and Q_T_-A > Rmin

The property that allows to solve the DHP is property 3.
4. RESULTS & DISCUSSION

In this section, we discuss some experimental results: we
study the performance of DHP_PTA model for different
instances from 7 to 12 rows extracted from a real vine
field. The vineyard is located in southern France, in the
vicinity of Gruissan.
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The characteristics of the plot and the HM are as follows:
the inter-row in the field is equal to 2.5 m, all rows are
almost equal in length, which is roughly 189 m. HM speed
during harvest in the rows is supposed to be 4 km.h~! and
9 km.h~! while moving otherwise in the field. Data were
collected for N, = 12 rows. The bin is supposed located
near No. When instances have n < n,,q. rows, the n first
rows are considered.

In the following, we apply the query described as property
3 to DHP_PTA model with UppAal-CORA set to Ran-
dom Best Depth First search. The C1 code means that
CmaxHopper is set to 1000 (unit: litre) and C2 means
that Cmaxz Hopper is set to 2000. The code R1 (resp. R2)
means that Rmin is set to 50 % (resp. 70 %) of the total
amount of A-grapes in the field.

In order to study empirically the complexity of solving
DHP with DHP_PTA, the query was first applied without
using the remaining feature of UppAal-CORA explained
hereafter.
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12000000
10000000
§000000
6000000
4000000
2000000
0
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—CIR2

C2R1
—C2R2

Number of expored states

7 8 9

Number of rows in the field

Fig. 5. Quantitative analysis of number of explored states

The high raise of practical complexity with the number of
rows that can be observed in figure 5 was expected. The
complexity of exploring which sequence over m visits is
best, without the constraints of capacity, basically grows
like m!. The DHP has some similarities with the VRP,
which is known to be NP-hard. Besides, model checking is
also well known to be exposed to combinatorial explosion.
It can be noticed that curves C2R1 and C2R2 are above
those with code C1. C2 denotes a large hopper capacity,
which means that, more often than with C1, HM has the
choice between going to the bin or harvesting another row.
Because with this experiment, there is no filtering during
optimisation according to a remaining cost lower bound,
this increases the number of states to explore compared to
C1. For same capacity, the curve with code R1 is higher
than the one with code R2. This might result from the fact
that once Rmin A-grapes have been harvested, HM can
switch to non differential harvest.

The performance of UppAal CORA can be improved by
computing in each location an estimated lower bound of
the remaining cost (remaining variable). This information
is usually used in branch and bound algorithm to delete
states and to search for promising ones (Behrmann et al.
(2001b)). Furthermore, it can reduce the size of the ex-
plored states in a spectacular way.

For DHP _PTA model and at each location, the remaining
variable was computed using the following formula:

remaining = ServiceTime + nEmptying x (DumpTime
+2 « minDBin) + (nbRowN ot Harvested — nEmptying)
* dmin

ServiceTime is the service time needed to harvest the not
yet harvested rows. nEmptying is the lower bound for the
number of hopper dumps still to be made. minD Bin is the
smallest distance between the bin and a not harvested row.
nbRowN ot Harvested is the number of not yet harvested
rows. dmin is the smallest distance between two not yet
harvested rows.

The details about handling special cases are not given here.

Table 1 shows result for solving DHP, including the man-
agement of remaining cost, for a set of model instances
(defined by nRCzRy, with n the number of rows in the
field, Cz being the hopper capacity, and Ry being the
Rmin value).

The following information is given for each instance: num-
ber of explored states (States), total cost which is the
harvesting and travel time in seconds (Cost), execution
time of the query in UppAal CORA in seconds (TE),
and maximum memory size needed for the verification in
KBytes (Maz RSS, which means max Resident Set Size).
Max RSS represents the pic in RAM memory usage and is
an indicator of practical constraints to solve the problem
on a computer with limited RAM. The meaning for C1,
C2, R1, and R2 is as above.

Table 1. Experimental results using remaining

Instance States Cost TE (s) RSS (KB)
9RC1R1 974467 827 6.76 123252
9RC1R2 449599 827 3.48 60148
9RC2R1 2591458 809 17.45 305068
9RC2R2 1918631 809 13.30 220080
10RC1R1 181584 844 1.86 35916
10RC1R2 154027 844 1.63 30212
10RC2R1 800879 825 8.63 147708
10RC2R2 793346 825 8.43 144460
11RCI1R1 | 29861147 990 203.31 3818508
11RC1R2 7659725 990 69.33 994700
11RC2R1 | 29557772 967 255.38 4105804
11RC2R2 | 30626152 967 266.12 4055288
12RC1R1 1598213 1007 19.18 297832
12RC1R2 1639723 1007 20.11 300416
12RC2R1 | 12823061 983 157.40 2429152
12RC2R2 | 12583816 983 156.28 2370280

Compared to the results without handling the remaining
cost, the number of explored states is greatly reduced, with
a factor of 5 for TC2R2 and a factor of 117 for 8C1R1.

It can be observed that the number of explored states is
higher for an odd number of rows. This results from limita-
tions of currently implemented remaining cost estimator.
Indeed, it is based on the lowest distance from row border
to bin for dumping grapes. In the case of odd number of
rows, one such dumping requires a much longer travel time,
and the estimator is less efficient than for even number of
rows cases. In Briot et al. (2015b), no results for instances
with odd number of rows are provided.

Instances with high hopper capacity appear to be more
difficult to solve than instances with lower hopper capacity.
This behaviour is different of what was observed in Briot
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et al. (2015b) with the "Precedence” Model in a Constraint
Programming approach. Indeed, the number of explored
states and Time Execution increase considerably from C1
to C2 cases for the same values of n and Rmin. Yet, the
performances of the UppAal-CORA based approach pre-
sented here compare favourably with Briot et al. (2015b).
For the instance 12RC1R2, the UppAal-CORA query for
DHP was solved in 20.11 s on an Intel(R) Xeon(R) CPU
E5-2667 3.20 GHz processor. For same instance, the exe-
cution time reported in Briot et al. (2015b) was 494 s on
an Intel(R) Xeon(R) CPU E5-2697 2.60 GHz processor.
Memory requirements were not provided in Briot et al.
(2015D).

Besides performance, the interest of our approach is that
the same model allows for verification of several properties
(see 3.2 section).

The UppAal-CORA model-checking tool currently presents
some limitations, as the available binary has been built
only for a 32 bit architecture thus limiting memory usage
to 4GB of RAM. This is the reason why it was not possible
to solve instances with more than 12 rows. Please note
that the model may be optimised regarding memory by
removing Mix and QQ_T_B variables

5. CONCLUSION AND FUTURE WORK

In this paper, we investigated how to solve the Differential
Harvest Problem (DHP) using the Cost Optimal Reacha-
bility Analysis feature implemented in the model-checking
tool UppAal-CORA. We have designed the DHP_PTA
model, based on the priced timed automata formalism
and the UppAal-CORA tool. All model details and the
property that allows to solve the DHP were explained.

The proposed approach offers good performances when
compared to previous work using Constraint Programming
techniques on same problem and offers faster execution
time. The practical importance of using a tight enough
lower bound of remaining cost in UppAal-CORA models
was underlined by our experiments.

The model might be extended in order to cover multiple
possible locations for the bins, which feature might be of
practical interest. Other optimization criteria might be
considered, like fuel consumption or length of time that
harvested grapes stay in the bin before bin is entirely filled
and transported to cave, in order to optimise quality.

The DHP_PTA model should be adaptable to other pre-
cision agriculture problems involving routing such as dif-
ferential harvest for other crops or precision spreading.
Similar models may also be of interest for optimising
robotic operations in warehouses.
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