D. R. Tocher, Metabolism and functions of lipids and fatty acids in teleost fish, Rev. Fish. Sci, vol.11, pp.107-184, 2003.

B. T. Martin, R. Heintz, E. M. Danner, and R. M. Nisbet, Integrating lipid storage into general representations of fish energetics, J. Anim. Ecol, vol.86, pp.812-825, 2017.

J. Dalsgaard, M. S. John, G. Kattner, D. Müller-navarra, and W. ,

. Hagen, Fatty acid trophic markers in the pelagic marine environment, Adv. Mar. Biol, vol.46, pp.225-340, 2003.

J. M. Nielsen, E. L. Clare, B. Hayden, M. T. Brett, and P. Kratina, Diet tracing in ecology: Method comparison and selection, Methods Ecol. Evol, vol.9, pp.278-291, 2017.

J. I. Erdal, Ø. Evensen, O. K. Kaurstad, A. Lillehaug, R. Solbakken et al., Relationship between diet and immune response in Atlantic salmon (Salmo salar L.) after feeding various levels of ascorbic acid and omega-3 fatty acids, Aquaculture, vol.98, issue.91, pp.90319-90322, 1991.

M. T. Arts, R. G. Ackman, and B. J. Holub, Essential fatty acids" in aquatic ecosystems: a crucial link between diet and human health and evolution, Can. J. Fish. Aquat. Sci, vol.58, pp.122-137, 2001.

S. Teshima and A. Kanazawa, Biosynthesis of sterols in the lobster, Panulirus japonica, the prawn, Penaeus japonicus, and the crab, Portunus trituberculatus, Comp. Biochem. Physiol. Part B Comp. Biochem, vol.38, pp.597-602, 1971.

S. M. Budge, A. M. Springer, S. J. Iverson, and G. Sheffield, Fatty acid biomarkers reveal niche separation in an Arctic benthic food web, Mar. Ecol. Prog. Ser, vol.336, pp.305-309, 2007.

J. Folch, M. Lees, and G. H. Stanley, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem, vol.226, pp.497-509, 1957.

E. D. Dodds, M. R. Mccoy, A. Geldenhuys, L. D. Rea, and J. ,

. Kennish, Microscale recovery of total lipids from fish tissue by accelerated solvent extraction, J. Am. Oil Chem. Soc, vol.81, pp.835-840, 2004.

M. A. Litzow, K. M. Bailey, F. G. Prahl, and R. Heintz, Climate regime shifts and reorganization of fish communities: the essential fatty acid limitation hypothesis, Mar. Ecol. Prog. Ser, vol.315, pp.1-11, 2006.

M. Vagner, T. Lacoue-labarthe, J. Zambonino-infante, and D. ,

E. Mazurais, H. L. Dubillot, P. Delliou, C. Quazuguel, and . Lefrançois, Depletion of Essential Fatty Acids in the Food Source Affects Aerobic Capacities of the Golden Grey Mullet Liza aurata in a Warming Seawater Context, PLoS ONE, vol.10, p.126489, 2015.

R. Tremblay, F. Olivier, E. Bourget, and D. Rittschof, Physiological condition of Balanus amphitrite cyprid larvae determines habitat selection success, Mar. Ecol. Prog. Ser, vol.340, pp.1-8, 2007.

H. Pethybridge, N. Bodin, E. J. Arsenault-pernet, J. H. Bourdeix, and B. ,

J. L. Brisset, D. Bigot, M. Roos, and . Peter, Temporal and inter-specific variations in forage fish feeding conditions in the NW Mediterranean: lipid content and fatty acid compositional changes, Mar. Ecol. Prog. Ser, vol.512, pp.39-54, 2014.

C. Nerot, T. Meziane, G. Schaal, J. Grall, A. Lorrain et al.,

E. Paulet and . Kraffe, Spatial changes in fatty acids signatures of the great scallop Pecten maximus across the Bay of Biscay continental shelf, Cont. Shelf Res, vol.109, pp.1-9, 2015.

S. M. Budge, S. J. Iverson, and H. N. Koopman, Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation, Mar. Mammal Sci, vol.22, pp.759-801, 2006.

J. W. Young, M. A. Guest, M. Lansdell, C. F. Phleger, and P. D. Nichols, Discrimination of prey species of juvenile swordfish Xiphias gladius (Linnaeus, 1758) using signature fatty acid analyses, Prog. Oceanogr, vol.86, pp.139-151, 2010.

R. Lavaud, S. Artigaud, F. L. Grand, A. Donval, P. Soudant et al.,

T. Flye-sainte-marie, Ø. Strohmeier, A. Strand, B. Leynaert, A. Beker et al., New insights into the seasonal feeding ecology of Pecten maximus using pigments, fatty acids and sterols analyses, Mar. Ecol. Prog. Ser, vol.590, pp.109-129, 2018.

K. Schäfer, Accelerated solvent extraction of lipids for determining the fatty acid composition of biological material, Anal. Chim. Acta, vol.358, pp.69-77, 1998.

M. J. Ramalhosa, P. Paíga, S. Morais, M. R. Alves, and C. Delerue,

M. B. Matos and . Oliveira, Lipid content of frozen fish: Comparison of different extraction methods and variability during freezing storage, Food Chem, vol.131, pp.328-336, 2012.

S. Mitra and R. Brukh, Sample Preparation: An Analytical Perspective, Sample Prep. Tech. Anal. Chem, pp.1-36, 2003.

M. D. Rudy, M. J. Kainz, M. Graeve, S. M. Colombo, and M. T. Arts, Handling and Storage Procedures Have Variable Effects on Fatty Acid Content in Fishes with Different Lipid Quantities, PLOS ONE, vol.11, p.160497, 2016.

P. E. Romotowska, M. G. Karlsdóttir, M. Gudjónsdóttir, and H. ,

S. Kristinsson and . Arason, Influence of feeding state and frozen storage temperature on the lipid stability of Atlantic mackerel (Scomber scombrus), Int. J. Food Sci. Technol, vol.51, pp.1711-1720, 2016.

L. Meyer, H. Pethybridge, P. D. Nichols, C. Beckmann, and B. ,

J. M. Bruce, C. Werry, and . Huveneers, Assessing the Functional Limitations of Lipids and Fatty Acids for Diet Determination: The Importance of Tissue Type, Quantity, and Quality, Front, 2017.

C. J. Sweeting, N. V. Polunin, and S. Jennings, Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues, Rapid Commun. Mass Spectrom, vol.20, pp.595-601, 2006.

B. Kelly, J. B. Dempson, and M. Power, The effects of preservation on fish tissue stable isotope signatures, J. Fish Biol, vol.69, pp.1595-1611, 2006.

T. Fukatsu, Acetone preservation: a practical technique for molecular analysis, Mol. Ecol, vol.8, pp.1935-1945, 1999.

K. L. Bosley and S. C. Wainright, Effects of preservatives and acidification on the stable isotope ratios ( 15 N: 14 N, 13 C: 12 C) of two species of marine animals, Can. J. Fish. Aquat. Sci, vol.56, pp.2181-2185, 1999.

P. Cresson, M. Travers-trolet, M. Rouquette, C. Timmerman, C. Giraldo et al., Underestimation of chemical contamination in marine fish muscle tissue can be reduced by considering variable wet:dry weight ratios, Mar. Pollut. Bull, 2017.

C. Y. Lin, H. Wu, R. S. Tjeerdema, and M. R. Viant, Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics, Metabolomics, vol.3, pp.55-67, 2007.

G. A. Dunstan, J. K. Volkman, and S. M. Barrett, The effect of lyophilization on the solvent extraction of lipid classes, fatty acids and sterols from the oyster Crassostrea gigas, Lipids, vol.28, p.937, 1993.

K. J. Murphy, N. J. Mann, and A. J. Sinclair, Fatty acid and sterol composition of frozen and freeze-dried New Zealand Green Lipped Mussel (Perna canaliculus) from three sites in New Zealand, Asia Pac. J. Clin. Nutr, vol.12, pp.50-60, 2003.

J. Tinoco, P. Miljanich, and R. L. Lyman, Stability of lipids in lyophilized rat livers, J. Lipid Res, vol.4, pp.359-361, 1963.

M. Kainz, M. T. Arts, and A. Mazumder, Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels, Limnol. Oceanogr, vol.49, pp.1784-1793, 2004.

T. Chouvelon, G. Schaal, J. Grall, F. Pernet, M. Perdriau et al., Isotope and fatty acid trends along continental shelf depth gradients: Inshore versus offshore hydrological influences on benthic trophic functioning, Prog. Oceanogr, vol.138, pp.158-175, 2015.
DOI : 10.1016/j.pocean.2015.07.013

URL : https://hal.archives-ouvertes.fr/hal-01258089

D. Kohlbach, M. Graeve, B. A. Lange, C. David, I. Peeken et al.,

. Flores, The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable isotope analyses, Limnol. Oceanogr, vol.61, pp.2027-2044, 2016.

L. A. Carlson, Extraction of lipids from human whole serum and lipoproteins and from rat liver tissue with methylene chloride-methanol: a comparison with extraction with chloroform-methanol, Clin. Chim. Acta, vol.149, pp.90277-90280, 1985.

E. Cequier-sánchez, C. Rodríguez, Á. G. Ravelo, and R. Zárate, Dichloromethane as a Solvent for Lipid Extraction and Assessment of Lipid Classes and Fatty Acids from Samples of Different Natures, J. Agric. Food Chem, vol.56, pp.4297-4303, 2008.

C. M. Lee, B. Trevino, and M. Chaiyawat, A simple and rapid solvent extraction method for determining total lipids in fish tissue, J. AOAC Int, vol.79, pp.487-492, 1996.

R. Cruz, S. Casal, E. Mendes, A. Costa, C. Santos et al., Validation of a Single-Extraction Procedure for Sequential Analysis of Vitamin E, Cholesterol, Fatty Acids, and Total Fat in Seafood, Food Anal. Methods, vol.6, pp.1196-1204, 2013.

A. Y. Taha, A. H. Metherel, and K. D. Stark, Comparative analysis of standardised and common modifications of methods for lipid extraction for the determination of fatty acids, Food Chem, vol.134, pp.427-433, 2012.

C. C. Parrish, Determination of total lipid, lipid classes, and fatty acids in aquatic samples, Lipids Freshw. Ecosyst, pp.4-20, 1999.

W. W. Christie, Preparation of ester derivatives of fatty acids for chromatographic analysis, Adv. Lipid Methodol, vol.2, p.111, 1993.

. R-core-team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, 2013.

J. L. Guil-guerrero, J. C. López-martínez, M. A. Rincón-cervera, and P. ,

. Campra-madrid, One-Step Extraction and Concentration of Polyunsaturated Fatty Acids from Fish Liver, J. Am. Oil Chem. Soc, vol.84, pp.357-361, 2007.

M. Sabino, L. I. Couturier, F. Pernet, N. Bodin, and M. J. Arseneaultpernet, Freeze-drying samples of animal tissue may promote lipid and fatty acid oxidation during storage, P. Soudant

D. K. Essumang, D. K. Dodoo, and J. K. Adjei, Polycyclic aromatic hydrocarbon (PAH) contamination in smoke-cured fish products, J. Food Compos. Anal, vol.27, pp.128-138, 2012.
DOI : 10.1016/j.jfca.2012.04.007

N. Bodin, D. Lesperance, R. Albert, S. J. Hollanda, P. Michaud et al.,

C. Degroote, P. Churlaud, and . Bustamante, Trace elements in oceanic pelagic communities in the western Indian Ocean, Chemosphere, vol.174, pp.354-362, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01458417