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Abstract

Signal and image processing make intensive use of positive, bounded and
centered functions that are called kernels. Kernels are used for defining
the interplay between discrete and continuous domains, filtering, modeling a
system through a point spread function, etc. The possible analogy between
kernels and fuzzy sets has led to a wide use of fuzzy set theory for signal
and image processing [1]. The possibilistic interpretation of fuzzy sets has
recently been exploited to extend signal processing with the aim of accounting
for poor knowledge of the appropriate kernel to be used. These imprecise
kernels are called maxitive kernels. A maxitive kernel can be seen as a
convex set of conventional kernels. Within this framework, the triangular
kernel with mode 0 and spread ∆ has a specific role since it can be used to
represent a convex set of all bounded centered bell-shaped kernels of spread
δ ≤ ∆, i.e. the way kernels are usually imprecisely known (shape unknown,
spread imprecise). However, this principle has yet to be extended to more
than one dimension despite the fact that it is needed for image processing.
An extension to higher dimensions is proposed in this paper.

Keywords: Possibility, maxitive kernels, image processing, probability.

1. Introduction

In digital image processing, positive kernels are widely used for deriv-
ing a discrete operator that is initially defined in the continuous domain
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[19]. Super-resolution, computation of derivatives, tomographic reconstruc-
tion and geometrical transformations are typical examples of such problems.
Within such applications, positive kernels that sums to one (also called sum-
mative kernels in [11]) are used to model a sampling function, a point spread
function (e.g. in computed tomography, image reconstruction requires ex-
plicit modeling of the point spread function of the detector), an approxima-
tion function (e.g. to compute image derivatives [16]) or an interpolation
function (e.g. for geometrical transformations [10]). Most kernels used in
these applications are centered, even and non-increasing with the distance
to 0. Hereafter, we will call this kind of kernel: a centered bell-shaped sum-
mative kernel (cbsk). The choice of a particular kernel shape or spread is
usually prompted more by practical aspects than by any theoretical purpose,
since the ideal kernel should be spatially unbounded for unbounded signals
while digital images are bounded. However, there is high dependance on this
choice of obtained discrete operator.

In recent work, the obvious analogy between probability density functions
(pdf) and positive kernels has been used to extend the signal processing the-
ory to the case where the modeling is imprecisely known [11]. In these studies,
possibility measures [3] are used to define maxitive kernels that can be seen
as convex sets of summative kernels. By analogy, the core of a maxitive
kernel is the (convex) set of conventional positive kernels whose associate
probability measure is dominated by the possibility measure associated with
the maxitive kernel.

Most maxitive-based signal processing extensions lead to interval-valued
signals that represent the set of all signals that would have been obtained by
the corresponding conventional method using a positive kernel that belongs
to the core of the maxitive kernel [14] . This allows us to represent scant
knowledge on the appropriate kernel to be used in a given application.

It can be technically stated as follows. Let R be the real line. Let f be
a real signal, i.e. a function from R to R. Let κ be the summative kernel
associated to the impulse response of a filter (κ : R → R). Convoluting f
with κ leads to a new signal g : R → R which is the signal f processed
by the considered filter. This operation can be written g = f ⊗ κ with
g(x) =

∫

R
f(u).κ(x− u)du.

The extension proposed in [11] consists in considering replacing the sum-
mative kernel κ by a maxitive kernel π that defines a convex set of summative
kernels M(π). The extension of the convolution they proposed is such that
[g] = f⊗π is an interval-valued function, i.e. ∀x ∈ R, [g](x) is a real interval.
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Within this extension, if κ is a summative kernel belonging to M(π), then
∀x ∈ R, (f⊗κ)(x) belongs to (f⊗π)(x). Moreover, ∀x ∈ R, ∀y ∈ (f⊗π)(x),
∃κ ∈ M(π) such that y = (f ⊗ κ)(x). Working with π is then equivalent to
working with a convex set of summative kernels which allows us to represent
imprecise knowledge of the summative kernel.

As an illustration, Figure 1 presents an electrocardiographic signal (in
cyan) that has been filtered by a low-pass summative kernel based filter and
a maxitive kernel based filter. The output of the summative kernel based
filter are plotted in black. The upper (rsp. lower) values of the output of
the maxitive based filter are plotted in blue (rsp. in red). The considered
summative kernel belongs to the core of the considered maxitive kernel.

Time in milisec.

E
C

G
 s

ig
n

al

upper filtered values

lower filtered values

filtered values

Figure 1: Electrocardiographic signal (in cyan), summative kernel based low-pass filtered
signal (in black), upper (blue) and lower (red) values of the maxitive based interval-valued
filtered signal.

For example, in [17] this modeling was used to perform deconvolution of
a measured signal when the point spread function of the measurement device
was imprecisely known. Other applications have been proposed, especially
in image processing, to account for the fact that the relation between the
continuous domain, where the problem is defined, and the discrete domain,
where the problem has to be solved, is imprecisely known (see e.g. [12, 6, 15,
9]).
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The triangular maxitive kernel plays an important role within this frame-
work. As shown in [5], a triangular fuzzy set of mode m and spread ∆ defines
the most specific possibility distribution whose associate possibility measure
dominates any probability whose associate pdf is symmetric, non -increasing
with the distance to m and with support [m − δ,m + δ], with δ ≤ ∆ [5].
The effect of this theorem on maxitive-based signal processing is that when
a centered triangular maxitive kernel of spread ∆ is used, then the obtained
interval-valued signal includes any signal that would have been obtained by
the corresponding conventional method using any bounded cbsk (bcbsk) with
a spread lower than ∆. This allows us to represent imprecise knowledge of
a bcbsk shape and spread. Note that this set of kernels also includes the
uniform kernel which is not really bell-shaped. In signal processing, uniform
kernels can be used to represent a nearest neighbor interpolation [8] or to
model the fact that the point spread function of a sensor is uniform.

However, extending this idea to image processing requires definition of a
bi-dimensional maxitive kernel that has the same kind of domination prop-
erty as the triangular maxitive kernel, i.e. a maxitive kernel that dominates
any bi-dimensional bcbsk with a spread that can be bounded. So far, this ex-
tension has always been performed by hypothesizing separable bi-dimensional
kernels [12, 7, 15, 9]. When kernels are separable, then most image process-
ing operations has the advantage of reducing to two uni-dimensional signal
processing operations w.r.t. rows and colomns. However, this hypothesis
weakens the power of the obtained representation since some image process-
ing operations cannot be achieved by considering two uni-dimensional ker-
nels. For example in [6], the super-resolution operation requires alignement
of a series of low resolution images by using a bi-dimensional kernel. Con-
sidering a separable operation restricts this alignement to pure translational
movements (no rotation or zoom).

Thus, defining maxitive based image processing requires an extension
of the maxitive kernel concept into two dimensions. In image processing,
bi-dimensional fuzzy subsets have often been used since the outset for repre-
senting image information at different levels (seen e.g. [1] for a nice overview
on fuzzy set based image processing). However, so far, no studies have been
devoted to extending the work of [5] to two (or more) dimensions.

In this paper, we consider 2D maxitive kernels – i.e. possibility distribu-
tions – whose cores include all conventional positive centered symmetric 2D
kernels whose support is bounded. We envisage the two most useful cases:
first, the radial case, i.e. the case where the kernels – i.e. pdf(s) – are radial,
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and, second, the separable case, i.e. the case where the 2D kernels – i.e.
pdf(s) – are defined by their marginals. We then consider extending the two
dimensional case to higher dimensions. For the radial case, we show that
extending the proposition of [5] to two or more dimensions is rather straight-
forward. For the separable case, we show that, contrary to the radial case,
there is no single solution for the 2D extension, i.e. there are several possi-
ble 2D optimal maxitive kernels having the same specificity. Extending this
proposition to higher dimension is no longer trivial. We provide some poten-
tial ways to obtain this extension. We also consider a very simple maxitive
kernel that dominates all optimal maxitive kernels. Naturally, this kernel is
not optimal in the sense of [5], i.e. it is not the most specific kernel that
dominates the set of bcbsk.

In this paper, since maxitive kernels can be seen as possibility distri-
butions and bcbsk as pdf, for the sake of simplicity we will only argue by
considering possibility distributions and bounded bell-shaped centered prob-
ability density functions.

After this introduction, in Section 2 we propose to provide some necessary
background on possibility distributions. In Section 3 we recall the main
Theorem of [5] and propose to extend it to higher dimensions. We also
propose another way to prove this Theorem that we will use in the sequel.
Section 4 proposes a study of the radial case, i.e. the case where the pdf(s)
are radial, in two then in higher dimensions. In section 5 we study the
separable case, i.e. the case where the pdf(s) are defined by their marginals.
We show that extending this case to higher dimensions is not trivial. We
then conclude this article.

2. Possibility measures and domination

2.1. Concave capacities

Let Ω be a bounded set of reference (e.g. bounded set of R, R2, N, . . . )
and L(Ω) be the set of all Lebesgue measurable sets of Ω. Ac denotes the
complementary set of the subset A ⊂ Ω, and ∅ the empty set of Ω.

A capacity is a confidence measure defined on Ω.

Definition 2.1.1. A capacity ν is a set function ν : L(Ω) → [0, 1] such that
ν(∅) = 0, ν(Ω) = 1, and ν(A) ≤ ν(B) for all A ⊂ B ∈ L(Ω).

A capacity ν such that ∀A,B ∈ L(Ω), ν(A∪B)+ν(A∩B) ≤ ν(A)+ν(B)
is said to be concave. The core of a concave capacity ν, denoted M(ν), is

5



the set of probabilities P on L(Ω) such that ∀A ∈ L(Ω), ν(A) ≥ P (A). We
say that ν dominates P .

2.2. Probability measures

A probability measure P is a special case of capacity that complies with
the additivity axiom, i.e. ∀A,B ∈ L(Ω), P (A ∪ B) + P (A ∩ B) = P (A) +
P (B). The core of a probability measure is the probability measure itself. A
continuous probability measure is completely defined by its associated pdf p,
which is a mapping from Ω to R

+:

∀A ∈ L(Ω), P (A) =

∫

A

p(ω)dω. (1)

2.3. Possibility measures

A possibility measure is an interesting way to represent uncertainty when
information is scarce or imprecise [13]. A possibility measure Π is a spe-
cial case of a concave capacity that complies with the maxitive axiom:
∀A,B ∈ L(Ω), Π(A ∪ B) = max(Π(A),Π(B)). Here, we consider the pos-
sibility measures that are completely defined by an associated possibility
distribution π, which is a mapping from Ω to [0, 1]:

∀A ∈ L(Ω),Π(A) = sup
ω∈A

π(ω). (2)

A specificity ordering of possibility measures can be obtained by compar-
ing the integral of their distributions, i.e. Sp(Π) =

∫

Ω
π(ω)dω. A possibility

measure Π1 is at least as informative as another one Π2 if their respective
distributions π1 and π2 follow: ∀ω ∈ Ω, π1(ω) ≤ π2(ω) [3]. In that case, Π1 is
at least as specific as Π2 and also Sp(Π1) ≤ Sp(Π2). If, in addition, ∃ω0 ∈ Ω,
such that π1(ω0) < π2(ω0) then Π1 is more specific than Π2.

3. Triangular possibility distribution

In this section, Ω = R.

3.1. The domination Theorem

In this section, we recall the main result of [5] and formulate it in a way
that makes its extension to higher dimensions easier.
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Let p be a pdf and Pp its associated probability measure. As a first step,
the probability to possibility transform defined in [5] allows us to define a
possibility distribution π∗

p whose associated possibility measure Ππ∗
p
is the

most specific that dominates Pp. The second step follows: if p is unimodal,
symmetric, with spread δ and mode m and non-increasing with the distance
to m then π∗

p is unimodal, symmetric, non-increasing with the distance to m
with spread δ, and mode m (i.e. π∗

p(m) = 1 and ∀x ∈ R, x 6= m, π∗
p(x) < 1).

Here, we aim to find a possibility distribution that dominates any centered
even bounded pdf, non-increasing with the distance to 0 and having a spread
δ ≤ ∆. This problem can be reduced to finding the possibility distribution
that dominates any centered even bounded pdf having a spread in [0, 1]. As
noted in [5], such a possibility distribution is also centered and has a spread in
[0, 1]. In the following, we call Λ the set of bounded centered even possibility
distributions, non-increasing with the distance to 0 and with spread in [0, 1],
and Θ the set of bounded centered even pdf, non-increasing with the distance
to 0 with a spread in [0, 1].

Let π△ be the triangular possibility distribution with mode 0 and spread
1 defined by:

∀x ∈ R, π△(x) =

{

1− |x|, if x ∈ [−1, 1]
0, otherwise.

(3)

Definition 3.1.1. A pdf p belongs to Θ iff:

i) ∀x /∈]− 1, 1[, p(x) = 0,

ii) p is continuous on ]− 1, 1[,

iii) p is even,

iv) p is non-increasing on [0, 1[.

Definition 3.1.2. A possibility distribution π belongs to Λ iff:

i) π(0) = 1,

ii) ∀x /∈]− 1, 1[, π(x) = 0,

iii) π is even,

iv) π is non-increasing on [0, 1[.

As a shortcut, for simplification, we can take for granted that “the pdf
p is dominated by a possibility distribution π” means “the measure Pp is
dominated by Ππ”.
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The triangular possibility distribution defined above can be considered as
the most specific possibility distribution belonging to Λ that dominates the
uniform pdf p� defined on R by:

∀x ∈ R, p�(x) =

{

1
2
, if x ∈]− 1, 1[
0, otherwise.

(4)

Theorem 3.1.1. (optimal domination of π△)
i) ∀p ∈ Θ, ∀A ∈ L(R),

Pp(A) ≤ Ππ△(A) := sup
x∈A

π△(x). (5)

ii) Ππ△ is the most specific possibility that dominates any probability induced
by a pdf of Θ in the sense that, with π ∈ Λ being a possibility distribution:

(

∃x ∈ R | π(x) < π△(x)
)

=⇒
(

∃A ∈ L(R), ∃p ∈ Θ | Pp(A) > Ππ(A)
)

. (6)

3.2. Reformulating the triangular domination

In this section, we suggest another way of presenting the proof of Theorem
3.1.1 that will be useful for extending this Theorem to higher dimensions.

This proof needs the following Lemma, where we denote Br =]− r, r[.

Lemma 3.2.1.
∀p ∈ Θ, ∀π ∈ Λ, we have

(∀r ∈ [0, 1], Pp(B
c
r) ≤ Ππ(B

c
r)) ⇐⇒ (∀A ∈ L(R), Pp(A) ≤ Ππ(A)) .

Proof of the Lemma.
Only the right implication is non-trivial.
First, 0 ∈ A ⇒ Ππ(A) := supx∈A π(x) = 1 because π(0) = 1 (since π ∈ Λ).
This yields the inequality.
Second, if 0 /∈ A, consider the positive distance r = infx∈A |x|. Then
A ⊂ Bc

r ⇒ Pp(A) ≤ Pp(B
c
r) ≤ Ππ(B

c
r). Moreover, since π ∈ Λ, π is even

and non-increasing on [0, 1]. This implies that Ππ(B
c
r) = Ππ(A), which

terminates the proof. �

Proof of the Theorem.
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Proof of i). Thanks to Lemma 3.2.1, we just have to show that ∀p ∈ Θ
and ∀r ∈ [0, 1], Pp(B

c
r) ≤ Ππ△(Bc

r) := supx∈Bc
r
(1− |x|) = 1 − r, that is

Pp(Br) ≥ r. By parity of p (Definition 3.1.1) , this comes down to showing
that ϕ(r) :=

∫ r

0
p− r/2 ≥ 0, ∀r ∈ [0, 1].

We have ϕ′(r) = p(r) − 1/2. Thus ϕ′ verifies ϕ′(0) = p(0) − 1/2 ≥ 0.
Indeed ϕ′(0) < 0 implies p(0) < 1/2. Since p is non-increasing on [0, 1], this

would make p verify
∫ 1

0
p < 1/2, which is a contradiction. We also note

that, by definition, ϕ′(1) = p(1) − 1/2 = −1/2 < 0. Moreover, since p is a
bijection on [0, 1[, as a continuous and non-increasing function (Definition
3.1.1), so is ϕ′. Thus, there is a single r0 ∈ [0, 1[ |ϕ′(r0) = 0, which is the

maximum of ϕ. Finally, we have ϕ(0) = 0 and ϕ(1) =
∫ 1

0
p− 1/2 = 0. Thus,

∀r ∈ [0, 1], ϕ(r) ≥ 0, which ends the proof of point i).

Proof of ii). Consider the uniform density p� ∈ Θ defined by Expres-

sion (4). Then Pp�(B
c
r) = 2

∫ 1

r
1
2
= 1 − r = Ππ△(Bc

r). Now, suppose that
π ∈ Λ dominates any p ∈ Θ and ∃ r ∈ R such that π(r) < π△(r). Then
we would have Pp�(B

c
r) = Ππ△(Bc

r) > Ππ(B
c
r). Thus, by Lemma 3.2.1, we

would have a subset A such that Pp�(A) > Ππ(A), a contradiction that ends
the proof of point ii). �

4. Optimal domination: the radial case

We call the radial case that in which the pdf is radial. Defining a possi-
bility distribution inducing a possibility measure that dominates any prob-
ability measure associated with a radial pdf is very similar to the previous
unidimensional situation.

Let Br = {x ∈ R
n ; ‖x‖ < r} denote the open ball of radius r, where ‖.‖

is the Euclidean norm, and Sr = {x ∈ R
n ; ‖x‖ = r} the sphere of radius r.

Let Vr denote the volume of Br (i.e. its n–dimensional Lebesgue measure)
and Ar the area of Sr (i.e. its (n− 1)–dimensional Lebesgue measure). We
also set B = B1, S = S1, V = V1, A = A1, and recall that Vr = Vrn,
Ar = Arn−1, and A = nV (see [2]).

We define a set of radial probability densities Θ in a very similar manner
as in 1D.

Definition 4.1. (the set of n-D radial probabilities Θ)
A pdf p belongs to Θ if it is defined as a function on the unit ball B verifying:
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i) p ≥ 0 and
∫

B
p = 1,

ii) p is continuous,

iii) p is radial, i.e. ∃ψp : R → R
+, p(x) = ψp(‖x‖),

iv) ψp is non-increasing on [0, 1[,

v) ∀u ∈ [1,∞[, ψp(u) = 0.

We also define the set of radial possibility distributions Λ.

Definition 4.2. (the set of n-D radial possibilities Λ)
A distribution of possibility π ∈ Λ is defined as a function on B verifying:

i) π ≥ 0 and π(0) = 1,

ii) π is radial, i.e. ∃ψπ : R → [0, 1], π(x) = ψπ(‖x‖),

iii) ψπ is non-increasing on [0, 1[,

iv) ∀u ∈ [1,∞[, ψπ(u) = 0.

Let π△ ∈ Λ denote the radial distribution of possibility defined by

π△(x) = max(0, 1− ‖x‖n), (7)

i.e. ∀u ∈ R, ψπ△(u) = max(0, 1− un).

We have the following result:

Theorem 4.1. (optimal n-D radial domination of π△)
i) ∀p ∈ Θ, ∀A ∈ L(Rn),

Pp(A) ≤ Ππ△(A) := sup
x∈A

π△(x). (8)

ii) Ππ△ is the most specific possibility that dominates any probability induced
by a pdf of Θ in the sense that, with π ∈ Λ being a possibility distribution:

(∃x ∈ R
n, π(x) < π△(x)) =⇒ (∃A ∈ L(B), ∃p ∈ Θ | Pp(A) > Ππ(A)) . (9)

Proving Theorem 4.1 requires a Lemma that is close to Lemma 3.2.1.

Lemma 4.1.
∀p ∈ Θ, ∀π ∈ Λ we have:
(∀r ∈ [0, 1], Pp(B

c
r) ≤ Ππ(B

c
r)) ⇐⇒ (∀A ∈ L(B), Pp(A) ≤ Ππ(A)) .

10



Proof of the Theorem.
Proof of i). Again, thanks to Lemma 4.1, we just have to show that ∀p ∈ Θ
and ∀r ∈ [0, 1], Pp(B

c
r) ≤ Ππ△(Bc

r) := maxx∈Bc
r
(1− ‖x‖)n) = 1 − rn. That

comes down to showing that ϕ(r) :=
∫

Br
p − rn = A

∫ r

0
ψp(t)t

n−1 dt − rn ≥

0, ∀r ∈ [0, 1]. Its derivative is ϕ′(r) = Arn−1ψp(r) − nrn−1 =
Arn−1(ψp(r) − n/A) = Arn−1(ψp(r) − 1/V), as A = nV. It vanishes
on ]0, 1[ for the single value r0 such that ψp(r0) = 1/V (as ψp is clearly a bi-
jection on [0, 1[). This value r0 still exists, as in 2D, because ψp(0)−1/V ≥ 0.
Indeed, ψp(0) < 1/V implies, since ψp is non-increasing on [0, 1], that p

would verify
∫

B
p = A

∫ 1

0
ψp(r)r

n−1 dr < A
∫ 1

0
ψp(0)r

n−1 dr < A/(nV) = 1,
which is a contradiction. Finally, we have ϕ′(0) = 0, ϕ′(r0) = 0 and
ϕ′(1) = −n < 0. Thus, ϕ(0) = 0, ϕ(1) =

∫

B
p− 1 = 0 and ϕ is maximal for

r0: this yields ϕ(r) ≥ 0, ∀r ∈ [0, 1], which ends the proof of point i).
Proof of ii). Consider the uniform density p� such that ψp�(r) =

1
V
, ∀r ∈

[0, 1[ and 0 otherwise, verifying the properties of Definition 4.1. Then
Pp�(B

c
r) =

∫

Bc
r

1
V
= 1

V
(V − Vrn) = 1 − rn = Ππ△(Bc

r). Now, suppose that

π ∈ Λ dominates any p ∈ Θ and ∃x ∈ R
n such that π(x) < π△(x). Then, for

r = ‖x‖, we would have Pp�(B
c
r) = Ππ△(Bc

r) > Ππ(B
c
r). Thus, by Lemma

4.1, we would have a subset A such that Pp�(A) > Ππ(A), a contradiction
that ends the proof of point ii). �

For example, when conventional (2D) image processing is concerned, the
most specific radial maxitive kernel is defined by the possibility distribution
π△(x) = max(0, 1− ‖x‖2) (see Figure (2)).

5. Optimal domination: the separable case

In this section, we consider the case where the variables are independent,
i.e. the probability density is fully defined by its marginal probability density
functions. This case is more intricate than the radial case. Indeed, while the
radial case in n dimensions can be seen as a direct extension of the unidimen-
sional case, in the separable case, there are several possibility distributions
that are Pareto optimal in the sense that they dominate any separable non-
increasing probability density and cannot be specificity ordered. That is, if
π1 and π2 are Pareto optimal,

∫

Ω
π1(x)dx =

∫

Ω
π2(x)dx while π1 6= π2.

We first consider the 2-dimensional case. After proposing a straightfor-
ward extension of the unidimensional case, we show that there are many other
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Figure 2: π△(x) = max(0, 1− ‖x‖2)

possible extensions. We attempt an interpretation based on aggregation func-
tions. We finally propose some possible extensions in the n-dimensional case
(n > 2).

5.1. The 2-dimensional case

5.1.1. Separate variables in dimension 2 - a straightforward extension

In this section, we show that this case can be treated as a simple extension
of the 1D case.

Let us first define Θ as the set of two-dimensional bounded probability
density functions of separate variables as follows:

Definition 5.1.1. (the set of 2D separate variable probabilities Θ)
A pdf p belongs to Θ iff:

i) there are two densities of probability p1 and p2 such that p(x, y) =
p1(x)p2(y).

ii) ∀i ∈ {1, 2}, ∀x /∈]− 1, 1[, pi(x) = 0,

iii) ∀i ∈ {1, 2}, pi is continuous on ]− 1, 1[,

iv) ∀i ∈ {1, 2}, pi is even,

v) ∀i ∈ {1, 2}, pi is non-increasing on [0, 1[.
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Note that
∫

[−1,1]2
p =

∫ 1

−1
p1

∫ 1

−1
p2 = 1.

Let us now define Λ as the set of 2D possibility distributions that are
decreasing functions of max(|x|, |y|).

Definition 5.1.2. (The set of 2D possibilities Λ)
A possibility distribution π belongs to Λ iff:

i) ∀(x, y) /∈]− 1, 1[2, π(x, y) = 0,

ii) There is a function ψπ such that π(x, y) = ψπ(max(|x|, |y|)),

iii) ψπ(0) = 1 and ψπ ≥ 0,

iv) ψπ is non-increasing on [0, 1[.

As in the 1D case, Pp and Ππ denote the measures of probability and
possibility respectively associated with the density p and the distribution
π. π△ ∈ Λ also denotes the distribution of possibility depicted in Figure 3,
defined by

π△(x, y) = 1−max(|x|, |y|)2. (10)

Figure 3: π△(x, y) = 1−max(|x|, |y|)2

As proved below, π△ is optimal in Λ in the sense that there is no possibility
distribution that belongs to Λ that is more specific than π△ and dominates
any pdf p ∈ Θ.

13



Theorem 5.1.1. (optimal domination of π△ in Λ)
i) ∀p ∈ Θ, ∀A ∈ L(R2),

Pp(A) ≤ Ππ△(A) := max
(x,y)∈A

(

1−max(|x|, |y|)2
)

. (11)

ii) If a possibility distribution π ∈ Λ is dominated by π△, then Ππ cannot
dominate any probability induced by a pdf of Θ:

(

∃(x, y) ∈ R
2 | π(x, y) < π△(x, y)

)

=⇒
(

∃A ∈ L(R2), ∃p ∈ Θ | Pp(A) > Ππ(A)
)

.
(12)

To prove the Theorem, we need the following Lemma:

Lemma 5.1.1.
Let us define Hα = {(x, y) ∈ [−1, 1]2,max(|x|, |y|) < α}.Then ∀p ∈ Θ, ∀π ∈
Λ we have

(∀α ∈ [0, 1], Pp(H
c
α) ≤ Ππ(H

c
α)) ⇐⇒

(

∀A ∈ L(R2), Pp(A) ≤ Ππ(A)
)

.

Proof of the Lemma.
To prove the right implication, let us consider a set A ∈ L(R2).
First, if 0 ∈ A, we have by definition Ππ(A) := max(x,y)∈A π(x, y) =
max(x,y)∈A ψπ(max(|x|, |y|)) = ψπ(0) = 1 and thus Pp(A) ≤ Ππ(A).
Second, if 0 /∈ A, consider the positive value α = sup{β |A ⊂ Hc

β}. Then
A ⊂ Hc

α ⇒ Pp(A) ≤ Pp(H
c
α) ≤ Ππ(H

c
α). As ψπ is non-increasing on [0, 1], it

is maximal for α on the set Hc
α, by definition. This means that π(x, y) is

maximal on the set A for at least one point (x, y) such that max(|x|, |y|) = α.
So we have Ππ(H

c
α) = Ππ(A), an equality that ends the proof of ii). �

Remark 5.1.1. In this part, a key point is that the value α plays the same
role as the distance r = infx∈A ‖x‖ in the proofs of Lemma 3.2.1

Proof of the Theorem.
Proof of i). Thanks to Lemma 5.1.1, we just have to show that ∀p ∈ Θ and
∀α ∈ [0, 1], we have Pp(H

c
α) ≤ Ππ△(Hc

α) := max(x,y)∈Hc
α
(1−max(|x|, |y|)2) =

1−α2. This is equivalent to showing that ∀α ∈ [0, 1] , ϕ(α) := Pp(Hα)−α
2 ≥

0. Let us consider the first quadrant [0, 1]2 of [−1, 1]2 and recall that p(x, y) =
p1(x)p2(y). By symmetry of p we have ϕ(α) = 4

∫ α

0

∫ α

0
p(x, y) dxdy − α2 =

14



(

2
∫ α

0
p1(x) dx

) (

2
∫ α

0
p2(y) dy

)

− α2 ≥ 0, as a direct consequence of the 1D
computation made in the proof of Theorem 3.1.1. This proves point i).
Proof of ii). Consider the uniform density p� defined by
p�(x, y) = 1

4
, ∀(x, y) ∈] − 1, 1[2 and p�(x, y) = 0 otherwise (still

verifying the properties of Definition 5.1.1). Then, by parity,
Pp�(H

c
α) =

∫

Hc
α

1
4

= 1 − 4(1
4
)
∫ α

0

∫ α

0
dydx = 1 − α2 = Ππ△(Hc

α). Now,

suppose we have π ∈ Λ that dominates any p ∈ Θ and (x, y) ∈ R
2 such

that π(x, y) < π△(x, y). Then, for a value α ∈ [0, 1], we would have
Pp�(H

c
α) = Ππ△(Hc

α) > Ππ(H
c
α). Thus, by Lemma 5.1.1, there would be a

subset A such that Pp�(A) > Ππ(A), a contradiction that ends the proof of
point ii). �

5.1.2. Separate variables in dimension 2: generalization

In Section 5.1.1 , we have proved that, among the possibility distributions
belonging to Λ, π△(x, y) = 1−max(|x|, |y|)2 is optimal.

In Definition 5.1.2, the set Λ was completely defined by the function
s(x, y) = max(|x|, |y|), i.e. π ∈ Λ =⇒ ∃ψπ | ∀(x, y) ∈ R

2, π(x, y) =
ψπ(s(x, y)). A relevant question arises: what would happen if we chose
another function s(x, y) for defining Λ?

For instance, function s(x, y) = min(|x|, |y|) has contour lines that differ
from those of max(|x|, |y|) (four squares in the corners instead of a single
square centered at the origin). A similar approach would show that

π△(x, y) = (1−min(|x|, |y|))2 (13)

is optimal in that case. As a last example, choosing s(x, y) = |xy| (with
hyperbolic contour lines) yields

π△(x, y) = 1− |xy|+ |xy| log |xy| (14)

to be optimal. In fact, we will prove that a set Λs corresponds to each
function s.

A separate variable probability following Definition 5.1.1 has a pdf
p(x, y) = p1(x)p2(y) symmetric w.r.t. both x and y axes. It is therefore
obvious that s should have the same symmetries.

Definition 5.1.3. (the set of sink functions Υ)
A function s belongs to Υ iff:

15



Figure 4: π△(x, y) = (1−min(|x|, |y|))2

Figure 5: π△(x, y) = 1− |xy|+ |xy| log |xy|
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i) ∀(x, y) /∈]− 1, 1[2, s(x, y) = 0,

ii) s(1, 1) = 1,

iii) s(0, 0) = 0,

iv) ∀(x, y) ∈ [−1, 1]2 s(x, y) = s(y, x)

v) s is non-decreasing w.r.t. |x| and |y|.

In the following, we show that many sink functions s ∈ Υ define a set Λs

that has a single optimal possibility distribution π△
s . The above properties

are required for ψπ(s(x, y)) to be an aggregation function as defined in [4].
We also show that the optimal distributions for two different sink-shaped
functions s cannot be compared in the sense that none of them dominates
the other. Moreover, ∀s ∈ Υ, with π△

s being the optimal distribution in Λs,
its specificity Sp(π△

s ) = 2.
With s being a sink-shaped function as defined above, we define Λs.

Definition 5.1.4. (the set of possibilities Λs)
Let s ∈ Υ and ψπ : R 7→ [0, 1] be a continuous function. A possibility
distribution π belongs to Λs iff:

i) π(x, y) = ψπ(s(x, y)),

ii) π ≥ 0 and π(0) = 1,

iii) ψπ is non-increasing on [0, 1[,

iv) ∀u ∈]1,∞[, ψπ(u) = 0.

Definition 5.1.5. (contour lines and level sets)
For α ∈ [0, 1], we define the contour lines and their associated level sets:

i) Cα = {(x, y) ∈ [−1, 1]2, s(x, y) = α},

ii) Hα = {(x, y) ∈ [−1, 1]2, s(x, y) < α},

iii) Hc
α = {(x, y) ∈ [−1, 1]2, s(x, y) ≥ α}.

Since s is symmetric w.r.t. the x and y axis, we only consider working in
the first quadrant [0, 1]2.

In many cases, contour lines associated with a sink function s, can be
defined by a function ℓα : x → ℓα(x). In these cases, under some other
conditions, there exists an optimal possibility distribution π△

s associated to
s. Before stating the main result, we first need to define the contour function
ℓα.
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Definition 5.1.6. (contour line function in the first quadrant)
For α ∈ [0, 1], we define ℓα : [0, 1] → [0, 1], x→ ℓα(x) by
Cα = {(x, ℓα(x)), x ∈ [0, 1]} = {(x, y) ∈ [0, 1]2, s(x, y) = α}.

Theorem 5.1.2. (π△
s is the optimal dominating possibility in Λs)

Let s ∈ Υ be a sink-shaped function. Let Hα and ℓα be respectively the level
sets and the contour line functions of s.

Let us define ψ△
s by:

ψ△
s (α) = Pp� (Hc

α) =
1

4
L2 (H

c
α) , (15)

where p� is the uniform probability density function on [−1, 1]2

(p�(x, y) = 1
4
, ∀(x, y) ∈] − 1, 1[2 and p�(x, y) = 0 otherwise) and L2

is the two dimensional Lebesgue measure.

If ℓα is piecewise derivable and verifies one of the following properties:
1) ℓα maps [0, α] into [0, α], with ℓα(0) = α, ℓα(α) = 0,
2) ℓα maps [α, 1] into [α, 1], with ℓα(α) = 1, ℓα(1) = α,

then the possibility function π△
s ∈ Λs defined by ∀(x, y) ∈ [−1, 1]2,

π△
s (x, y) = ψ△

s (s(x, y))
i) is the most specific possibility in Λs that dominates any probability induced
by a pdf of Θ: ∀p ∈ Θ, ∀A ∈ L(R2), Pp(A) ≤ Π

π
△
s
(A) := max(x,y)∈A π

△
s (x, y),

and ∀πs ∈ Λs we have:

(

∃(x, y) ∈ R
2|πs(x, y) < π△

s (x, y)
)

⇒
(

∃A ∈ L(R2), ∃p ∈ Θ|Pp(A) > Ππs
(A)

)

,

ii) has a specificity equal to 2.

Examples.
a) Optimal possibility derived from s(x, y) = |xy| (namely π△

s (x, y) =
1− |xy|+ |xy| log |xy|) has hyperbolic contour lines that verify 1).
b) π△

s (x, y) = 1 − max(|x|, |y|)2, considered as the natural generalization
(made in previous section 5.1.1) of π△(x) = 1 − |x|, and derived from
s(x, y) = max(|x|, |y|) is a limit case of possibilities verifying 1).
c) Optimal possibility derived from s(x, y) = 1 − (1 − |x|)(1 − |y|) (namely
π△
s (x, y) = 1 − |xy| + (1 − |xy|) log(1 − |xy|)) has hyperbolic contour lines

that verify 2).
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d) π△
s (x, y) = (1−min(|x|, |y|))2, derived from s(x, y) = min(|x|, |y|), is a

limit case of possibilities verifying 2).

Proof of the Theorem.

Proof of i).
By construction of Hα, both in situations 1) and 2), the proof of the prelim-
inary result: ∀p ∈ Θ, ∀π ∈ Λs,

(∀α ∈ [0, 1], Pp(H
c
α) ≤ Ππ(H

c
α)) ⇐⇒

(

∀A ∈ L([−1, 1]2), Pp(A) ≤ Ππ(A)
)

is straightforward, i.e. being similar to the proof of Lemma 5.2.1 in the case
of s(x, y) = max(|x|, |y|).

According to the definition of the possibility given by formula (15),
πs(x, y) = ψπ(s(x, y)) with ψπ(α) = Pp� (H

c
α), showing that, ∀α ∈ [0, 1],

Pp(H
c
α) ≤ Ππs

(Hc
α) is equivalent to showing that g(α) := 4

∫∫

Hc
α

(p− 1
4
) ≤ 0. Let

us focus on the first quadrant Q of [−1, 1]2. As
∫∫

[−1,1]2
(p− 1

4
) = 0 and by sym-

metry of Hα and p, we have to show that ϕ(α) := −1
4
g(α) =

∫∫

Hα∩Q

(p− 1
4
) ≥ 0.

Recalling that p(x, y) = p1(x)p2(y) and formulating p1 = 1
2
+ q1, p2 =

1
2
+ q2, we have p− 1

4
= 1

2
q1 +

1
2
q2 + q1q2 =

1
2
q1(1 + q2) +

1
2
q1(1 + q2). Then,

by symmetry, ϕ(α) = 1
2

∫∫

Hα∩Q

q1(1 + q2) +
1
2

∫∫

Hα∩Q

q2(1 + q1) =
∫∫

Hα∩Q

q1(1 + q2).

Consider situation 1). On Q, level sets are determined by a
non-increasing, continuous and piecewise derivable function ℓα such
that: ℓα maps [0, α] into [0, α], with ℓα(0) = α, ℓα(α) = 0. Then

ϕ(α) =
∫ α

0

∫ ℓα(x)

0
q1(x)(1 + q2(y)) dxdy =

∫ α

0
q1(x)(ℓα(x) + ρ2(ℓα(x))) dx,

where ρ2(x) =
∫ x

0
q2. Integrating by parts, we get ϕ(α) =

[ρ1(α)(ℓα(α) + ρ2(ℓα(α)))− ρ1(0)(ℓα(0) + ρ2(ℓα(0)))] −
∫ α

0
ρ1(x)(ℓ

′
α(x) +

ℓ′α(x)q2(ℓα(x))) dx, where ρ1(x) =
∫ x

0
q1. As ρ1(0) = ρ2(0) = 0 and

ℓα(α) = 0, ϕ reduces to ϕ(α) = −
∫ α

0
ρ1(x)ℓ

′
α(x)(1 + q2(ℓα(x))) dx. As

p1 is even and non-increasing and as ρ1(1) =
∫ 1

0
(p1 − 1

2
) = 0, then

ρ1(x) =
∫ x

0
(p1 − 1

2
) ≥ 0. Moreover, q2 ≥ −1

2
and ℓ′α ≤ 0. Thus,

ϕ(α) ≥ 0 , ∀α ∈ [0, 1].
Consider situation 2). Now, ℓα maps [α, 1] into [α, 1], with

ℓα(α) = 1, ℓα(1) = α. Let us make the decomposition ϕ(α) =
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∫∫

Hα∩Q

q2(1 + q1) =
∫ α

0

∫ 1

0
q1(x)(1 + q2(y)) dxdy +

∫ 1

α

∫ ℓα(x)

0
q1(x)(1 +

q2(y)) dxdy = ρ1(α)(1 + ρ2(1)) +
∫ 1

α
q1(x)(ℓα(x) + ρ2(ℓα(x))) dx. Not-

ing that ρ2(1) =
∫ 1

0
(p2 − 1

2
) = 0 and integrating by parts yields

ϕ(α) = ρ1(α) + [ρ1(1)(ℓα(1) + ρ2(ℓα(1)))− ρ1(α)(ℓα(α) + ρ2(ℓα(α)))] −
∫ 1

α
ρ1(x)ℓ

′
α(x)(1 + q2(ℓα(x))) dx = ρ1(α) − ρ1(α) −

∫ 1

α
ρ1(x)ℓ

′
α(x)(1 +

q2(ℓα(x))) dx ≥ 0, as in situation 1).
Finally, if contour line functions present a configuration mixing situations

1) and 2) – which is the case for Examples (d) and (e) – then the above
properties still hold. Those properties can be proved in the same manner by
using the proofs of 1) or 2), depending on the situation.
Proof of ii).
Let Gβ be the β-level set of π△

s . Relation (15) leads to β = 1
4
L2(G

c
β) =

1
4
(4 − L2(Gβ)). Then we get L2(Gβ) = 4(1 − β) which entails
∫∫

[−1,1]2
π△
s =

∫ 1

0
L2(Gβ) dβ = 4

∫ 1

0
(1− β) dβ = 2. Therefore Sp(π△

s ) = 2. �

Corollary 5.1.1. Let s1, s2 ∈ Υ, then the two optimal possibilities π△
s1

and
π△
s2

cannot be compared by the relation π△
s1

≤ π△
s2

since they are continuous
functions verifying Sp(π△

s1
) = Sp(π△

s2
) = 2.

Proposition 5.1.1. (πdom dominates every π△
s )

The possibility πdom defined by: ∀(x, y) ∈ [−1, 1]2, πdom(x, y) := 1 − |xy|
dominates any π△

s whatever the sink-shaped function s (say Π
π
△
s
(A) ≤

Ππdom
(A), ∀A ∈ L(R2)), but is not optimal.

Proof of the Proposition.
We just need to verify that, for any sink-shaped function s, π△

s ≤ πdom on
the contour lines of s in the first quadrant Q of [−1, 1]2, i.e. π△

s (x, ℓα(x)) ≤
1 − xℓα(x), ∀x ∈ [0, 1]. As, by definition, π△

s (x, ℓα(x)) = ψπ(s(x, ℓα(x))) =
ψπ(α) = 1

4
L2 (H

c
α) = L2 (H

c
α ∩Q), this is equivalent to verifying that

xℓα(x) ≤ L2 (Hα ∩Q) , ∀x ∈ [0, 1]. In both configurations 1) and 2) in The-
orem 5.1.2, the fact that ℓα is non-increasing implies that [0, x]× [0, ℓα(x)] ⊂
Hα∩Q (with x ∈ [0, α] in case 1) and x ∈ [α, 1] in case 2)). Note that in case
1) we naturally have the relation Ππdom

(Hα ∩Q) := maxHα∩Q(1−xy) = 1 ≥
Π

π
△
s
(Hα ∩Q) so the result is immediate.
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The specificity of πdom is equal to 4. Therefore πdom is not optimal,
otherwise the comparison π△

s ≤ πdom would lead to a contradiction. �

As an illustration, in Figure 6 we give a plot of πdom. This possibility
distribution has avantages over other functions due to its very simple
computation and the fact that it avoids choosing a particular sink-shaped
function. Moreover, its specificity equals 3, which is just at the mid-point
between the specificity of the optimal dominating possibility distributions
and the least specific one π� defined by ∀(x, y) ∈ [−1, 1]2, π�(x, y) = 1 and
0 otherwise whose specificity is Sp(π�) = 4.

Remark 5.1.2. It would have been interesting to find a possibility distribu-
tion that is the supremum of all optimal possibilities (in the sense above). In
fact, it would avoid the user to question him-/her-self about the appropriate
sink function to consider. Unfortunately, a Monte-Carlo simulation shows
that this supremum has smaller specificity.

Figure 6: πdom(x, y) = 1− |xy|
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5.1.3. Discussion about the sink function and its relation to aggregation op-
erators

In Section 5.1.2, the notion of sink function has been introduced, which
leads to a multiple choice for the most specific possibility distribution that
dominates any pdf belonging to Θ. In fact, this is in line with the comment
of Sudkamp in [18]: each sink function can be associated with an aggregation
function of the two fuzzy triangular set associated with each variable. Let
π△
X and π△

Y respectively be the triangular possibility function associated with
x and y. Those are defined by: π△

X (x) = 1 − |x| for ∀x ∈ [−1, 1] and
0 elsewhere (the same for y). Thus, ∀u ∈ [−1, 1], |x| = 1 − π△

X (x) and
|y| = 1 − π△

Y (y). Now let us define Ts byt Ts(π
△
X (x), π

△
Y (y)) = 1 − s(x, y) =

1− s(1− π△
X (x), 1− π△

Y (y)). By construction, if s ∈ Υ, Ts follows:

i) Ts(0, 0) = 1,

ii) Ts(1, 1) = 0,

iii) ∀(α, β) ∈ [0, 1]2 Ts(α, β) = Ts(β, α),

iv) Ts(α, β) is non-increasing w.r.t. α and β.

Therefore Ts is an aggregation operator [4]. Thus choosing s amounts
to choosing a function to aggregate the two triangular marginal possibility
distributions. Let us review the examples of Section 5.1.2.

a) s(x, y) = |xy| ⇐⇒ Ts(α, β) = 1− α− β + αβ, i.e. T-conorm,

b) s(x, y) = max(|x|, |y|) ⇐⇒ Ts(α, β) = min(α, β), i.e. a T-norm,

c) s(x, y) = 1− (1− |x|)(1− |y|) ⇐⇒ Ts(α, β) = αβ, i.e. a T-norm,

d) s(x, y) = min(|x|, |y|) ⇐⇒ Ts(α, β) = max(α, β), i.e. T-conorm,

e) s(x, y) = |x|+|y|
2

⇐⇒ Ts(α, β) =
α+β

2
, is another possible example using a

mean operator,

f) etc.

This could be an avenue to decide whether a sink function could be more
adapted to a problem than another. In an epistemic interpretation of the
possibility distribution, the optimal possibility distribution π△

s is sought in
a family of distributions that can be seen as functions of a combination the
two marginal distributions π△

X and π△
Y by using the aggregation operator Ts:

where π△
s is the optimal possibility distributions among all those that can be

written as ϕ
(

Ts(π
△
X , π

△
Y )

)

. For example, considering Ts(α, β) = max(α, β)
can be interpreted as an attempt to search for a pessimistic disjonctive based
possibility distribution. However, this interpretation may be limited w.r.t.
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the possibility theory. The use of this interpretation to choose an appropriate
maxitive kernel w.r.t. specific application is a very interesting avenue for
future work.

5.2. The n-dimensional case

In this section, we propose to extend the previous results to more than
2 dimensions. The good news is that for many n-dimensional sink-shaped
functions this extension is rather straightforward. The bad news is that
contrary to the 2-dimensional case we were able to prove this for only a few
sink-shaped functions in n dimension.

In section 5.2.1, we propose an n-dimensional extension for
s(x1, . . . , xn) = max(|x1|, . . . , |xn|). This proof can be easily derived for
e.g. s(x1, . . . , xn) = min(|x1|, . . . , |xn|) and s(x1, . . . , xn) = |x1||x2| . . . |xn|.
Section 5.2.2 is an attempt to prove this for any sink-shaped function. Some
partial results will be presented.

5.2.1. Separate variables in dimension n - a straightforward extension

This section is the natural extension of the 1D, and is consequently very
similar to the 2D natural extension presented in Section 5.1.1.

We define Θ for n separate variables (n marginal densities of probability),
and a set of possibilities Λ similar to the 2D case. We denote x = (x1, . . . , xn).

Definition 5.2.1. (the set of n-D separate variables probabilities Θ)
A pdf p belongs to Θ iff:

i) there are n densities of probability p1, . . . , pn such that p(x) =
p1(x1) . . . pn(xn),

ii) ∀i ∈ {1, . . . , n}, ∀t /∈]− 1, 1[, pi(t) = 0,

iii) ∀i ∈ {1, . . . , n}, pi is continuous on ]− 1, 1[,

iv) ∀i ∈ {1, . . . , n}, pi is even,

v) ∀i ∈ {1, . . . , n}, pi is non-increasing on [0, 1[.

Note that
∫

[−1,1]n
p =

∫ 1

−1
p1· · ·

∫ 1

−1
pn = 1.

Definition 5.2.2. (the set of n-D separate variables possibilities Λ)
A possibility distribution π belongs to Λ iff:

i) ∀x /∈]− 1, 1[n, π(x) = 0,

ii) There is a function ψπ such that π(x) = ψπ(max(|x1|, . . . , |xn|)),
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iii) ψπ(0) = 1 and ψπ ≥ 0,

iv) ψπ is non-increasing on [0, 1[.

Let π△ ∈ Λ denote the distribution of possibility defined by

π△(x) = 1−max(|x1|, . . . , |xn|)
n. (16)

Then, a similar result follows: as proved below, π△ is the most specific
possibility distribution that belongs to Λ that dominates any pdf belonging
to Θ.

Theorem 5.2.1. (optimal domination of π△ in Λ)
i) ∀p ∈ Θ, ∀A ∈ L(Rn),

Pp(A) ≤ Ππ△(A) := max
x∈A

(1−max(|x1|, . . . , |xn|)
n) .

ii) Ππ△ is the most specific possibility that dominates any probability induced
by a pdf of Θ in the sense that, with π ∈ Λ being a possibility distribution,
we have:

(

∃x ∈ R
n | π(x) < π△(x)

)

=⇒
(

∃A ∈ L(Rn), ∃p ∈ Θ | Pp(A) > Ππ(A)
)

.

To prove this Theorem, we need the following Lemma, very close to
Lemma 5.1.1, whose very similar proof is left to the reader.

Lemma 5.2.1.
Let us define Hα = {x ∈ [−1, 1]n,max(|x1|, . . . , |xn|) < α}.Then ∀p ∈
Θ, ∀π ∈ Λ we have

(∀α ∈ [0, 1], Pp(H
c
α) ≤ Ππ(H

c
α)) ⇐⇒ (∀A ∈ L(Rn), Pp(A) ≤ Ππ(A)) .

The proof of the Theorem follows directly:

Proof of the Theorem.
Proof of i). Thanks to Lemma 5.2.1, we just have to show
that ∀p ∈ Θ and ∀α ∈ [0, 1], we have Pp(H

c
α) ≤ Ππ△(Hc

α) :=
maxx∈Hc

α
(1−max(|x1|, . . . , |xn|)

n) = 1 − αn. This is equivalent to show-
ing that ∀α ∈ [0, 1] , ϕ(α) := Pp(Hα) − αn ≥ 0. Let us consider the
first quadrant [0, 1]n of [−1, 1]n and recall that p(x) = p1(x1) . . . pn(xn).
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By symmetry of p, we have ϕ(α) = 2n
∫ α

0
· · ·

∫ α

0
p(x) dx − αn =

(

2
∫ α

0
p1(x1) dx1

)

. . .
(

2
∫ α

0
pn(xn) dxn

)

−αn ≥ 0, also as a direct consequence
of the 1D computation made in the proof of Theorem 3.1.1. This proves
point i).
Proof of ii). Consider the uniform density p� such that p�(x) = 1

2n
, ∀x ∈

] − 1, 1[n and p� = 0 otherwise (still satisfying the properties of Definition
5.2.1). Then, by parity, Pp�(H

c
α) = Ππ△(Hc

α). Now, suppose that π ∈ Λ
dominates any p ∈ Θ and x ∈ R

n such that π(x) < π△(x). Then, for an
α ∈ [0, 1], we would have Pp�(H

c
α) = Ππ△(Hc

α) > Ππ(H
c
α). Thus, by Lemma

5.2.1, Pp�(A) > Ππ(A), a contradiction that ends the proof of point ii). �

5.2.2. Separate variables in dimension n: an attempt at generalization

Our aim is to extend the 2D generalizations in Section 5.1.2 to the n-
dimensional case. We show in this section that this construction is rather
easy for several interesting sink-shaped functions.

We follow the same path and denote x = (x1, . . . , xn)) ∈ R
n. A

separate variable probability following Definition 5.2.1 has a pdf p(x) =
p1(x1) . . . pn(xn) where each pi (i = 1 . . . n) follows Definition 3.1.1. A proof
like that of Theorem 5.2.1 can easily be derived for many other sink-shaped
functions, such as those provided below. Let s be a sink-shaped function, as
previously we define Λs:

Definition 5.2.3. (the set of possibilities Λs)
Let s : [−1, 1]n 7→ [0, 1] and ψπ : R 7→ [0, 1] be continuous functions. A
possibility distribution π belongs to Λs iff:

i) π(x) = ψπ(s(x)),

ii) π ≥ 0 and π(0) = 1,

iii) ψπ is non-increasing on [0, 1[,

iv) ∀u ∈]1,∞[, ψπ(u) = 0.

We now consider five different examples of sink-shaped functions with
their associate optimal possibility distribution. As previously, we combine
each sink-shaped s with an aggregation operator Ts. Proving the optimality
of each π△

s (x) in their respective sets Λs follows the same path as in the
2-dimensional case.
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Examples.
a) Optimal possibility derived from s(x) = |x1 . . . xn| (namely
π△
s (x) = 1 − |x1 . . . xn| + |x1 . . . xn| log |x1 . . . xn|) has contour lines

that verify 1) with Ts(α1 . . . αn) = 1− (1− α1) . . . (1− αn).
b) π△

s (x) = 1−max(|x1|, . . . , |xn|)
n, considered as the natural generalization

(as shown in previous section 5.2.1) of π△(x) = 1 − |x|, and derived from
s(x) = max(|x1|, . . . , |xn|) is a limit case of possibilities verifying 1) with
Ts(α1 . . . αn) = min(α1, . . . , αn).
c) Optimal possibility derived from s(x) = 1−(1−|x1|) . . . (1−|xn|) (namely
π△
s (x) = 1−|x1 . . . xn|+(1−|x1 . . . xn|) log(1−|x1 . . . xn|)) has contour lines

that verify 2) with Ts(α1 . . . αn) = α1 . . . αn.
d) π△

s (x) = (1−min(|x1|, . . . , |xn|))
n, derived from s(x) =

min(|x1|, . . . , |xn|), is a limit case of possibilities verifying 2) with
Ts(α1 . . . αn) = max(α1, . . . , αn).

Proposition 5.2.1. Let s be a sink-shaped function and π△
s its associate

optimal possibility distribution. Let Hα be the level set function of s.
Let us define ψ△

s by: ‘

ψ△
s (α) = Pp� (H

c
α) =

1

2n
Ln (H

c
α) , (17)

where p� is the uniform probability density function on [−1, 1]n, (p�(x) =
1
2n
, ∀x ∈] − 1, 1[n and p�(x) = 0 otherwise) and Ln is the n–dimensional

Lebesgue measure.
Then π△

s has a specificity equal to 2n−1.

Proof of the Proposition.
Let Gβ be the β-level set of π△

s . Relation (17) leads to β =
1
2n

Ln(G
c
β) = 1

2n
(2n − Ln(Gβ)), that entails Ln(Gβ) = 2n(1 − β). Thus,

∫

[−1,1]n
π△
s =

∫ 1

0
Ln(Gβ) dβ = 2n

∫ 1

0
(1− β) dβ = 2n−1.

A very significant corollary follows:

Corollary 5.2.1. Let s1 and s2 be two sink-shaped functions, then the two
optimal possibilities π△

s1
and π△

s2
cannot be compared by the relation π△

s1
≤ π△

s2

since they are continuous functions verifying Sp(π△
s1
) = Sp(π△

s2
) = 2n−1.
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Therefore, it would be of significant interest to be able to interpret the
sink-shaped functions either w.r.t. the possibility theory or w.r.t. maxitive
kernel signal processing to be able to choose the possibility distribution that
is optimal w.r.t. a particular application. The analogy mentioned in Section
5.1.3 could be a nice option for this interpretation.

Remark 5.2.1. As in the 2D case (Theorem 5.1.2 and end of Section
5.1.2), the very simple possibility distribution πdom defined by ∀x ∈ [−1, 1]n,
πdom(x) := 1 − |x1 . . . xn| dominates any optimal possibility distribution π△

s

whatever the sink-shaped function s (say Π
π
△
s
(A) ≤ Ππdom

(A), ∀A ∈ L(Rn)),
but is not optimal (proving this domination and the non-optimality can be
conducted easily following the same avenue).
However, choosing πdom is really not appropriate in high dimension. In fact,
its specificity is equal to 2n − 1, i.e. very close to 2n, the specificity of the
binary possibility distribution π� defined by ∀x ∈ [−1, 1]n, π�(x) = 1 and 0
otherwise.

6. Conclusion

Using maxitive kernel based signal processing to achieve image process-
ing requires extending some unidimensional concepts into higher dimensions.
Among all the concepts associated with maxitive kernels, the possibility that
this technique offers to model a kernel whose shape is poorly known and
whose spread is imprecisely known is significant. This possibility comes from
the fact that a centered triangular maxitive kernel of spread ∆ dominates
any bounded centered bell-shaped kernel of spread δ ≤ ∆. It is based on the
main Theorem of [5].

In this paper, we have proposed to extend this Theorem to higher di-
mensions. As a main result, we found that, contrary to the unidimensional
case, there was no single solution. We have considered two useful cases, i.e.
the radial case (the case where the pdf – i.e. the kernel – is radial) and the
separable case (the case where the pdf is completely defined by its marginals,
i.e. the variables are independent) which are the most relevant for the sig-
nal processing applications we would like to consider. For the radial case,
we have extended the Theorem for any dimension. This is very interesting
since many kernels used in image processing are radial. For the separable
case, we have shown that equivalent solutions (in terms of the distribution
specificity) can be obtained by considering particular shape functions that
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we have named sink-shaped functions that are related to some aggregation
functions used in fuzzy logic. This has been proved for any sink-functions in
the 2-dimensional case. In higher dimension, this has only been proved for
some sink-shaped functions whose associate aggregation function is classical
in fuzzy logic.

There are many different interesting follow ups to this work. First, for
the separable case, the main Theorem for any dimension and any sink-shaped
function still requires a general proof. Second, it would be necessary to have
an interpretation of the sink-shaped functions. This would help to choose a
maxitive kernel that is appropriate for each application. Third, it would be
interesting to consider the situation where the variable dependance is known
or even better when this dependance exists but is unknown.
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