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Abstract. We present the first algorithms that perform the LZ78 com-
pression of a text of length n over alphabet [1..σ], whose output is z
integers, using only O(z lg σ) bits of main memory. The algorithms read
the input text from disk in a single pass, and write the compressed out-
put to disk. The text can also be decompressed within the same main
memory usage, which is unprecedented too. The algorithms are based on
hashing and, under some simplifying assumptions, run in O(n) expected
time. We experimentally verify that our algorithms use 2–9 times less
time and/or space than previously implemented LZ78 compressors.

1 Introduction

The Ziv-Lempel algorithm of 1978 [19] (known as LZ78) is one of the most
famous compression algorithms. Its variants (especially LZW [17]) are used in
software like Unix’s Compress and formats like GIF. Compared to the stronger
LZ77 format [18], LZ78 has a more regular structure, which has made it the
preferred choice for compressed sequence representations supporting optimal-
time access [16] and compressed text indexes for pattern matching [7, 15, 3] and
document retrieval [5, 6].

Compared to LZ77, the LZ78 compressed output is also easier to build. For
example, a simple and classical implementation compresses a text of length n
over an alphabet [1..σ] into z integers, where

√
n ≤ z = O(n/ lgσ n), in O(n lg σ)

deterministic or O(n) randomized time, using O(z lg n) = O(n lg σ) bits of space.
A comparable result for LZ77 was obtained only recently [11] and it required
sophisticated compressed suffix array construction algorithms.

The time and main memory space required by compression algorithms is im-
portant. Building the compressed file within less main memory allows us com-
pressing larger files without splitting them into chunks, yielding better compres-
sion in general. The fastest deterministic LZ78 compression algorithms require
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2 LZ78 compression in low main memory space

O(n) time, but O(n lg n) bits of main memory [8]. If the main memory is limited
to O(n lg σ) bits (i.e., proportional to the input text size), then the time in-
creases to O(n lg lg σ) [11]. Finally, if we limit the main memory to O(z lg n) bits
(i.e., proportional to the compressed text size, like the classic scheme), then the
compression time becomes O(n(1 + lg σ/ lg lg n)) [1], which improves the classic
O(n lg σ) time. If we allow randomization, then the classic scheme yields O(n)
expected time and O(z lg n) bits of space.

In this paper we show that the LZ78 compression can be carried out within
just O(z lg σ) bits of main memory, which is less than any other previous scheme,
and asymptotically less than the size of the compressed file, z(lg z + lg σ) bits.
Ours are randomized and streaming algorithms. They read the text once from
disk, and output the compressed file to disk as well, and therefore they may run
within memory sizes unable to fit even the compressed file. One of our algorithms
requires O(n) expected compression time, but may rewrite the output multiple
times, whereas the other takes O(n lg σ) expected time but writes the output
only once. Both are able to decompress the file in a single O(n)-time pass on
disk and using O(z lg σ) bits of main memory, where previous decompression
algorithms need to store the whole compressed text in main memory.

Our results hold under some simplifying assumptions on randomness. Nev-
ertheless, our experimental results demonstrate that these assumptions do not
affect the practical competitiveness of the new algorithms, which outperform
current alternatives in space and/or time by a factor from 2 to 9.

To obtain the result, we build on a hash-based trie representation [14], which
has the advantage that the addresses of the nodes do not change as we insert new
leaves, and that O(lg σ) bits are sufficient to encode the trie nodes since some
of the information is implicit in their hash addresses. The main challenge is to
design schemes so that the hash tables can grow as the LZ78 parsing progresses,
so as to ensure that they have only O(z) cells without knowing z in advance.

2 LZ78 Compression

The LZ78 compression algorithm [19] parses the text into a sequence of phrases.
Assume we are compressing a text T [1..n] and we have already processed T [1..i−
1] into r phrases B0B1B2 · · ·Br−1, where phrase B0 represents the empty string.
Then, to compute Br we find the longest prefix T [i..j−1] (with j−1 < n) that is
equal to some Bq, with q < r. Then we define Br = Bq . T [j], which is represented
as the pair (q, T [j]), and we continue the parsing from T [j + 1].

If we add a unique terminator character to T , then every phrase represents
a different text substring. We call z the final number of phrases generated. It is
known that

√
n ≤ z = O(n/ lgσ n), where σ is the size of the alphabet of T .

The usual way to carry out the parsing efficiently is to use the so-called
LZTrie. This is a trie with one node per phrase, where the root node corresponds
to B0, and the node of Br = Bq . T [j] is the child of the node of phrase Bq with
the edge labeled by T [j]. Since the set of phrases is prefix-closed, LZTrie has z
nodes. Then, to process T [i..j−1], we traverse LZTrie from the root downwards,
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following the characters T [i], T [i + 1] . . . until falling out of the tree at a node
representing phrase Bq. Then we create a new node for Br, which is the child
of Bq labelled by T [j]. Since the trie has z nodes, it requires O(z(lg n+ lg σ)) =
O(n lg σ) bits for the parsing, which can be done in O(n lg σ) deterministic time
(using binary search on the children) or O(n) randomized time (using hash tables
to store the children, whose sizes double when needed).

The usual way to represent the LZ78 parsing in the compressed file consists
of two (separate or interlaced) arrays, S[1..z] of z lg σ bits, and A[1..z] of z lg z
bits. If Br = Bq . T [j] is a phrase, then we represent it by storing A[r] = q and
S[r] = T [j]. For decompressing a given phrase Br, we follow the referencing
chain using array A, obtaining the corresponding symbols from array S, until
we read a 0 in A. Thus S[r], S[A[r]], S[A[A[r]], . . . obtains Br in reverse order
in O(|Br|) time, and the complete text is decompressed in O(n) time.

An alternative way to represent the LZ78 parsing [3] uses a succinct encoding
of LZTrie, which uses just 2z + z lg σ + o(z) bits, 2z + o(z) for the topology
and z lg σ for the labels. It also stores an array L[1..z], such that L[r] stores the
preorder number of the LZTrie node corresponding to phrase Br. This array
requires z lg z bits. To extract the text for phrase Br, we start from the node
with preorder L[r] in LZTrie, and obtain the symbols labeling the upward path
up to the root, by going successively to the parent in the trie. Using succinct tree
representations that support going to the parent in constant time, this procedure
also yields O(n) total decompression time.

This second representation is more complex and uses slightly more space
than the former, more precisely, the 2z + o(z) bits for the tree topology. Yet,
it is sometimes preferred because it allows for operations other than just de-
compressing T . For instance, Sadakane and Grossi [16] show how to obtain any
substring of length ` of T in optimal O(`/ lgσ n) time (i.e., in time proportional
to the number of machine words needed to store ` symbols). In this work, a
different representation of LZTrie will allow us carrying out the compression
within O(z lg σ) bits of main memory.

3 Previous Work on LZ78 Construction

A classic pointer-based implementation of LZTrie, with balanced binary trees
to handle the children of each node, carries out the compression in O(n lg σ)
time and O(z lg n) bits of space.

Jansson et al. [10] introduce a particular trie structure to represent LZTrie,
which still uses O(z lg n) bits of space but reduces the construction time to

O
(
n lg σ · (lg lgn)2

lgn lg lg lgn

)
. The algorithm needs two passes on the text, each of

which involves n lg σ bits of I/O if it is stored on disk.
Arroyuelo and Navarro [2] manage to perform a single pass over the text, in

exchange for 2z lg z additional bits of I/O, and a total time of O(n(lg σ+lg lg n)).
The peak memory usage is z(lg n+lg σ+2) bits. They use the compact LZTrie
representation described in the previous section. An obstacle to further reducing
the space is that they need to build the whole LZTrie before they can build
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Reference RAM space in bits Compression time

Classic [19] O(z lgn) O(n lg σ)
O(z lgn) O(n)∗

Fischer et al. [8] (1 + ε)n lgn+O(n) O(n/ε2)
Köppl and Sadakane [11] O(n lg σ) O(n lg lg σ)

Jansson et al. [10] O(z lgn) O
(
n lg σ · (lg lgn)2

lgn lg lg lgn

)
Arroyuelo et al. [1] z(lgn+ lg σ + 2) O

(
n lg σ · 1

lg lgn

)
Arroyuelo and Navarro [2] z(lgn+ lg σ + 2) O(n lg σ + n lg lgn)

This paper O(z lg σ) O(n)∗

Table 1: Previous and new LZ78 compression algorithms. Times with a star mean
expected time of randomized algorithms. We first list the classic schemes, then
the deterministic methods, from fastest and most space-consuming to slowest
and least space-consuming. At the end, our randomized method uses less space
than all the others, and also matches the fastest ones in expectation.

the array L, because preorder numbers vary as new leaves are inserted. Later
improvements on dynamic tries introduced by Arroyuelo et al. [1] reduce the

time to O
(
n lg σ

lg lgn

)
. Notice that this is O(n) for small alphabets, σ = polylog(n).

However, the peak space usage remains the same.
Fischer et al. [8] finally obtained linear worst-case time. They construct the

LZ78 parsing using (1 + ε)n lg n+O(n) bits of space in O(n/ε2) time.
Recently, Köppl and Sadakane [11] showed how to construct the parsing in

O(n lg lg σ) time, using O(n lg σ) bits of working space; note this is Ω(z lg n).
Table 1 shows all these previous results, and our contribution in context. Our

results hold under some simplifying assumptions that are described in Section 8.

4 Dynamic Compact Tries

We will make use of the following data structure to maintain a dynamic trie of
up to t nodes that uses O(t lg σ) bits, while supporting insertion of edges, and
navigation upwards and downwards from nodes, within constant randomized
time [14]. The structure has two components:

1. A closed hash table H[0..M − 1], where M = m/α, m is an upper bound to
the number of nodes, and the constant α < 1 is the load factor to use. Table
H is a simple array that stores information on the nodes of the trie, using
only lg σ +O(1) bits per entry.

2. An array D[0..M − 1] to store information about the collisions (all entries
initialized with value −1).

Each trie node y is identified with the position where it is stored in H;
sometimes we will write p(y) explicitly to refer to this position. This position
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will not change with time. The root is placed at an arbitrary position, say H[0].
Every other node y is represented by a pair (x, c), where x is (the position in H
of) the parent of y and c is the character labeling the edge between x and y.

The hash function used to place y in H is h(y) = ((a ·w(y)) mod P ) mod M,
where a is an integer chosen at random in [1, P − 1], P is the first prime such
that P > M · σ, and w(y) = p(x) · σ + (c− 1). The value we store in the cell of
H associated with y is v(y) = ((a · w(y)) mod P ) div M.

With this mechanism, since P = O(Mσ) [9, p. 343], it holds v(y) = O(σ), and
thus the values stored in H require lg σ+O(1) bits. With this information we can
still reconstruct (a·w(y)) mod P = v(y)·M+h(y), and then w(y) = a−1 ·(a·w(y))
mod P , where a−1 mod P is easily computed from a and stored with the index.
From w(y) we recover the pair (x, c), which allows us traversing the trie upwards.

On the other hand, to insert a new child y = (x, c) from the position p(x), we
compute h(y) and try to write v(y) at H[h(y)]. If the cell is free (which we signal
with D[h(y)] = −1), then we write H[h(y)]← v(y) and D[h(y)]← 0. If the cell
is not free, we probe consecutive positions H[p] with p = (h(y) + k) mod M , for
k = 1, 2, . . .. The following cases may occur:

1. D[p] = −1, in which case we terminate with H[p]← v(y) and D[p]← k, so
that D[p] indicates the number of probes between h(y) and the final position
p where y is finally written. Note that p will become p(y), and from p(y) we
can recover h(y) without knowing y, with h(y) = (p(y)−D[p(y)]) mod M .

2. D[p] 6= −1, H[p] = v(y), and (p − D[p]) mod M = h(y), thus node y is
already stored in H, so we should not insert it.

3. D[p] 6= −1, but H[p] 6= v(y) or (p − D[p]) mod M 6= h(y), thus the cell is
occupied by another node and we must continue with the next value of k.

Case 2 also shows how to traverse the trie downwards, from the current node
towards its child labeled by c, to find the node y = (x, c).

Note that the values stored in D are constant in expectation, as they record
the insertion time for each element. Poyias et al. [14] show how D can be rep-
resented with a data structure using O(z) bits and constant amortized-time
operations. We refer the reader to their article for further details.

5 Using a Fixed Hash Table

In this section we show how to do the parsing of T [1..n] within O(n lg σ/ lgσ n)
bits of main memory. This space is already O(z lg σ) on incompressible texts; we
will later achieve it for all texts.

We use a compact dynamic trie to build the LZTrie associated with the
LZ78 parse of T , and to compress T accordingly. We set m to an upper bound on
the number of LZTrie nodes: m is the smallest number with m(lgσm−3) ≥ n.
Thus m = Θ(n/ lgσ n). Further, we will use an array L[0..z] to store in L[r] the
position in H where the LZTrie node of block Br is stored. Each entry of L
takes dlgMe = lg n+O(1) bits, but the array is generated directly on disk.
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To perform the parsing of a new phrase T [i..j], we start from the trie root (say,
x0, with p(x0) = 0), and use the mechanism described in the previous section to
compute x1 = (x0, T [i]), x2 = (x1, T [i+1]), and so on until xj−i+1 = (xj−i, T [j])
does not exist in the trie. At this point we insert xj−i+1 = (xj−i, T [j]), write to
disk the next value L[r]← p(xj−i+1), and continue with T [j + 1..n].

Overall, compression is carried out within the O(n lg σ/ lgσ n) bits of main
memory used by H and D, in O(n) expected time if H is chosen from a universal
family of hash functions, and T and L are read/written from/to disk in streaming
mode. When we finish the parsing, we write H and D at the end of L in the file,
and add some header information including n, σ, M , P , a, a−1.

Decompression can also be made in streaming mode and using memory space
only for H and D, which is not possible in classical schemes where each phrase
is stored as a pointer to its earlier position in the file. We load the LZTrie
into memory (i.e., tables H and D). Now we read the consecutive entries of
L[1..z] in streaming mode. For each new entry L[r] = p, we start from H[p] and
decode x0 = (x−1, c−1) from it; then we decode x−1 = (x−2, c−2), and so on,
until we reach the root x−s = L[0]. Then we append c−sc−s+1 . . . c−2c−1 to the
decompressed text in streaming mode. The stack may require up to z lg σ bits
in extreme cases, but this is still within our main memory budget. Its use can
also be avoided in standard ways, at the expense of increased I/Os.

Note that this structure permits retrieving the contents of any individual
block Br, by traversing the LZTrie upwards from L[r], just as done for decom-
pression. This can make it useful as a succinct data structure as well.

The obvious disadvantage of this simple scheme is that it uses more than
O(z lg σ) bits of space when T is highly compressible, z = o(n/ lgσ n) (that is,
when it is most interesting to compress T !). A simple workaround is to start
assuming that z = O(

√
n), since

√
n is the smallest possible value for z. If,

during the parsing, this limit is exceeded, we double the value of z and repeat the
whole process. Since we may rerun the process O(lg z) times, the total expected
time is O(n lg z) = O(n lg n) (in LZ78, lg z = Θ(lg n)). In exchange, the main
memory space is now always O(z lg σ) bits. Further, the extra space added to
the compressed file due to the tables H and D is just O(z lg σ). Apart from the
increased time, a problem with this scheme is that it reads T several times from
disk, and thus it is not a streaming algorithm. In the next sections we explore
two faster solutions that in addition scan T only once.

6 Using a Growing Table

We can obtain O(z lg σ) bits of space for any text by letting H and D grow as
more blocks are produced along the parsing. We start with a hash table of size√
n/α2, since

√
n is a lower bound on z. Then, whenever the load factor in H

reaches α, we allocate a new table H ′ (and D′) with size multiplied by 1/α, and
load them with all the current trie nodes. We will read T only once, but we will
still perform multiple rewriting passes on L.
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The main challenge is how to remap all the nodes x from H to H ′, since
their position p(x) in H are their identity, which is mentioned not only in L but
also in their children y = (p(x), c). That is, in order to map y to its new position
p′(y) in H ′, we need to know the mapped position p′(x) of its parent x, that
is, we must map the LZTrie nodes top-down. Yet, we cannot simply perform a
DFS traversal on LZTrie, because we cannot efficiently enumerate the children
of a node x in less than O(σ) time.

We remap the nodes as follows. We traverse L from left to right (on disk), and
traverse upwards from each position L[r] in H up to the root. All the nodes from
the parent of L[r] must already exist in H ′, so we stack the symbols traversed
in the upward path on H and use them to traverse downwards in H ′ from the
root. Then we insert in H ′ (and D′) the new node that corresponds to L[r], and
rewrite L[r] with the new position in H ′. If Br corresponds to T [i..j], then our
retraversal costs O(j−i) time, so the expected time to retraverse T [1..n′] is O(n′).
Since we perform O(lg z) passes, the total cost may reach O(n lg z) = O(n lg n).

We can reduce the time to O(z lgσ n) = O(n) by storing, when we have to
load H ′, O(z/ lgσ n) sampled nodes of H in a (classic) hash table W , which
stores the position in H ′ of each sampled position in H. Table W uses O(z lg σ)
bits, which is within our budget. We will guarantee that every node of LZTrie
whose depth is a multiple of lgσ n and whose height is at least lgσ n will be
sampled. This ensures that O(z/ lgσ n) nodes are sampled and that we traverse
less than 2 lgσ n nodes of H from any cell L[r] before reaching a sampled node,
from which we can descend in H ′ and insert L[r] in time O(lgσ n). Thus we
do the translation in O(|L| lgσ n) time. Since the size of L grows by a factor of
1/α each time we create a larger table, the total work amounts to O(z lgσ n).
To obtain the sampling invariant, we start by sampling the root. Then, every
time we traverse from the node of L[r] upwards, if we traverse lgσ n cells or
more before finding a sampled node, we sample the node we traversed that is at
distance lgσ n from the sampled node we reached.

Once H ′ and D′ are built, we continue with them and discard H and D. The
peak space usage of the tables, when old and new ones are active, is (1/α2 +
1/α)z lg σ+O(z) = O(z lg σ) bits. Note that we can always keep the entries of L
within lg z+O(1) bits, slightly expanding them when we retraverse L to rewrite
the new positions in H ′. At the end, L may need to point to a table H whose
size is z/α2, thus using z lg z + O(z) bits. To store H and D, we first write a
bitvector B of length at most z/α2 indicating which entries are 6= −1 in D. This
requires O(z) bits. Only the z filled entries of H and D are then written to the
compressed file. The final compressed file size is then z(lg z + lg σ) +O(z) bits.

Note that the O(z) bits spent in L can be eliminated with a final pass on L
replacing L[r] by rank1(B,L[r]), which is the number of 1s in B up to position
L[r]. This can be computed in O(z) time, and the values can be recovered in O(z)
time at decompression time using the complementary query select1(B,L[r]) [4].
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7 Using Multiple Hash Tables

A way to avoid rebuilding the hash table is to create additional hash tables apart
from the original one, H0 = H. When the load factor of H reaches α, we allocate
a new table H1, with |H1| = 2|H0|, where all the subsequent insertions will take
place. When H1 becomes full enough, we create H2, with |H2| = 2|H1|, and so
on, each time doubling the previously allocated space. Each table Hh has its
own value Mh, prime Ph, and so on.

To properly address the nodes, we need to build a global address that can
point to entries in any table. We regard the tables as their concatenation, that is,
H0H1H2 . . . The addresses within table Hh are built by adding |H0H1 . . . Hh−1|
to the normal address computation within Hh. The prime Ph must then be larger
than (M0+M1+ . . .+Mh) ·σ, so as to store any element (p(x), c) where p(x) is a
global address. This requires only O(1) extra bits per cell to store Ph/Mh ≤ 2σ.

Assume we are at a node x in a table Hg and want to add a child y = (x, c)
in the current table Hh. The entry (p(x), a) will be inserted in Hh, leaving no
indication in Hg of the existence of y. This means that, if we want to descend
from x by c, we must probe tables Hg, Hg+1, . . . ,Hh to see if it was inserted in
later tables. Therefore, the cost of traversing towards a child grows to O(lg z), as
we can build that many tables during the parsing. However, since the children
are inserted later than their parents, the current table index does not decrease
as we move down from the root towards the node where we will insert the new
block, and thus we do these O(lg z) probes once per inserted block, for a total
time of O(z lg z) = O(n lg σ).

Instead, the parent x is decoded immediately from y = (p(x), a), since p(x) is
a global address, and this allows decompressing in O(n) time. Finding the table
Hg from p(x) is a matter of dividing p(x) by

√
n and then finding the logarithm

in base 2, which is done in constant time in most architectures (and in theory,
using constant precomputed tables of small size).

This technique has the advantage that it treats T and L in streaming mode,
as it does not have to retraverse them. The values written on L are final (note
that their width grows along the process, each time we start using a new table).
These can be compacted as in the previous section if we are willing to perform
a second pass on L.

8 Simplifying Assumptions

Our expected-case analysis inherits some simplifications from Poyias et al. [14],
when it assumes constant expected time for hashing with linear probing.

A first one is that analyses usually assume that the hash function is chosen
independently of the set of values to hash. In our scheme, however, the values
(p(x), c) to hash depend on the hash function h(x) itself. So, at least in principle,
the typical assumptions to prove 2-independence do not hold, even if we changed
our function to the standard ((a0 + a1 · w(y)) mod M) mod P for randomly
chosen a0 and a1.
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File Name
Size n

σ
Number z Avg. phrase Compr.

(Megabytes) of phrases length (n/z) ratio

XML 282.42 97 16,205,171 18.27 20.50%
English 1,024.00 237 96,986,744 11.07 37.96%
Proteins 1,129.20 27 147,482,019 8.03 48.55%
Human Genome 3,182.00 51 227,419,107 14.67 27.96%

Table 2: Text files used in the experiments.

Another issue is that 2-independence may not be sufficient to assume ran-
domness in the case of linear probing. This has only been proved assuming
5-independence [12, 13]. To make it 5-independent, the component a · w(y) of
our hash function should become a0 + a1w(y) + a2w(y)2 + a3w(y)3 + a4w(y)4.
We do not know how to invert such a function in order to find w(y) given h(y)
and v(y).

In the next section we show, however, that those theoretical reservations do
not have a significant impact on the practical performance of the scheme.

9 Experimental Results

In this section we experimentally evaluate our new algorithms with some previous
implemented alternatives. We measure compression and decompression time,
RAM usage and overhead of the final file size compared with the standard LZ78
format. All the experiments were performed on an Intel(R) Core(TM) i7-5500U
CPU at 2.40 GHz. The operating system was Ubuntu 16.04.2 LTS, version 4.4.0-
72-generic Linux kernel. Our compressors were implemented in C++11, using
g++ version 4.8.4.

The texts considered are a highly compressible XML text, an English text,
and a less compressible Protein file, all obtained from the Pizza&Chili Corpus5.
We also used a DNA file generated by extracting a prefix of a human genome6.
Table 2 lists the test files used and their main statistics. For the compression
ratio we assume that each of the z phrases gives the parent phrase number and
the symbol. For the former, the next 2i phrases use i+ 1 bits, starting from the
second with i = 0. For the latter, we use dlg σe bits.

Figure 1 shows the maximum RAM used by each structure during compres-
sion, and the resulting compression time. Our approaches are labeled HLZ (fixed
hash table of maximum size, no rebuilding), MHLZ (multiple hash tables) and
GHLZ (growing hash tables, no sampling). We obtain tradeoffs by using various
load factors for the hash tables, 1/α = 1.05, 1.10, 1.20, 1.40, 1.60.

As previous work, we include LZ78-Min, the compact representation of Ar-
royuelo and Navarro [2], and LZ78-UC, their uncompressed baseline, both im-
plemented in C.

5 http://pizzachili.dcc.uchile.cl/texts
6 http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz
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Fig. 1: Maximum RAM and time used during compression.

It can be seen that MHLZ always outperforms GHLZ in space/time, using
1.0–2.2 bits and 0.2–0.3 µsec per symbol with 1/α = 1.40. For the same space,
the overhead of using multiple tables is lower than that of rebuilding the table,
which implies rereading the L array from disk. In general, the time of MHLZ
is very sensitive to high load factors, without significantly improving the space.
With a sufficiently low load factor, instead, it outperforms all the others in time
and space. It even gets close to the time of HLZ, always below 0.2 µsec, with
much less space (with the exception of Proteins, where the final-size guess of
HLZ is nearly optimal). The maximum space usage of GHLZ occurs when it has
to expand the table, at which moment it has the old and new tables in RAM.
This requires more space than MHLZ even when the MHLZ tables are emptier
on average. LZ78-Min, instead, requires 2–3 times more space and is up to 4
times slower. Finally, LZ78-UC requires 6–9 times more space than MHLZ, and
is not faster than HLZ.

Figure 2 shows the RAM used by each structure during decompression. This
time GHLZ always obtains the best time of MHLZ but using slightly less space.
GHLZ uses 0.9–1.8 bits and 0.1–0.2 µsec per symbol, even outperforming HLZ,
which uses much more space (except on Proteins). GHLZ does not need to make
the hash tables grow at decompression, thus it is much faster and uses less space
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Fig. 2: Maximum RAM and time used during decompression.

than MHLZ, which has emptier tables. MHLZ is faster than for compression
because it traverses the paths upwards, but it still uses multiple tables, and this
poses some time overhead. LZ78-Min and LZ78-UC are identical for decompres-
sion, requiring 2–3 times more space but being 2–3 times faster than GHLZ.

Finally, Figure 3 shows the ratio between the actual compressed file size and
the output of a classical LZ78 compressor (see Table 2). We exclude the HLZ
baseline because it does not really compress. While MHLZ poses 30%–40% of
overhead, GHLZ requires 25%–35%. We note that, to reach this overhead, we
need to use 1/α = 1.1 or less, that is, almost the slowest. In this case, it is
preferable to use GHLZ, which uses 1–3 bits and 0.5–0.8 µsec per symbol for
compression and 0.1–0.2 µsec for decompression. If we want to have the fastest
MHLZ compression times, we must accept an overhead of 40%–45%. On the
other hand, LZ78-Min has an overhead of 4%–15%.

10 Conclusions

We have presented new LZ78 compression/decompression algorithms based on
hashing, which under some simplifying assumptions use O(z lg σ) bits of main
memory in expectation, while running in O(n lg σ) time for compression and
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Fig. 3: Maximum RAM used at compression versus ratio of the final file size over
the classical output size.

O(n) time for decompression, where n is the text length, z the number of LZ78
phrases, and σ the alphabet size. Our algorithms read the text once, in streaming
mode, and write the output to disk. There exists no previous algorithm using so
little main memory.

Our experiments show that our new methods use 2–3 times less space for
compression than the most space-efficient implemented compressor in the liter-
ature, while being up to 4 times faster. Compared to a classical baseline, our
compressor uses 6–9 times less space and is only 50% slower. Our decompressor
uses 2–3 times less space than both baselines, but it is 2–3 times slower.

For example, our compressor can use up to 3 bits and 0.8 µsec per symbol
and our decompressor up to 2 bits and 0.2 µsec per symbol, posing a space
overhead around 30% over the optimally compressed file.

Our compressors and the competing algorithms are publicly available at
https://github.com/rcanovas/Low-LZ78.

An interesting line of future work is to use these hash-based tries as com-
pressed text representations that retrieve any text substring [16], or for the
compressed-space construction of LZ78-based text indexes [2].
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