
HAL Id: lirmm-01951638
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01951638

Submitted on 11 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CSAM: Compressed SAM format
Rodrigo Cánovas, Alistair Moffat, Andrew Turpin

To cite this version:
Rodrigo Cánovas, Alistair Moffat, Andrew Turpin. CSAM: Compressed SAM format. Bioinformatics,
2016, 32 (24), pp.3709-3716. �10.1093/bioinformatics/btw543�. �lirmm-01951638�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01951638
https://hal.archives-ouvertes.fr

Genome analysis

CSAM: Compressed SAM format

Rodrigo C�anovas1,2,* Alistair Moffat2 and Andrew Turpin2

1L.I.R.M.M. and Institut Biologie Computationnelle, Université de Montpellier, Montpellier Cedex 5, CNRS F-34392,

France and 2Department of Computing and Information Systems, The University of Melbourne, Victoria 3010,

Australia

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on May 18, 2016; revised on August 13, 2016; accepted on August 15, 2016

Abstract

Motivation: Next generation sequencing machines produce vast amounts of genomic data. For the

data to be useful, it is essential that it can be stored and manipulated efficiently. This work

responds to the combined challenge of compressing genomic data, while providing fast access to

regions of interest, without necessitating decompression of whole files.

Results: We describe CSAM (Compressed SAM format), a compression approach offering lossless

and lossy compression for SAM files. The structures and techniques proposed are suitable for rep-

resenting SAM files, as well as supporting fast access to the compressed information. They gener-

ate more compact lossless representations than BAM, which is currently the preferred lossless

compressed SAM-equivalent format; and are self-contained, that is, they do not depend on any ex-

ternal resources to compress or decompress SAM files.

Availability and Implementation: An implementation is available at https://github.com/rcanovas/

libCSAM.

Contact: canovas-ba@lirmm.fr

Supplementary Information: Supplementary data is available at Bioinformatics online.

1 Introduction

Current next-generation sequencing technologies produce millions

of small DNA fragments (reads) at once (Ansorge, 2009; Church,

2006; Mardis, 2008; Myllykangas et al., 2012), generating file sizes

in the gigabyte range at a cost of just a few hundred dollars. Each

generated read is a continuous fragment of data extracted from the

processing of a single genome, stored as a string of bases. In this

paper we consider reads composed of four fundamental bases A, C,

G and T, with the inclusion of the letter N, which is used to symbol-

ize bases that could take any value. A number of meta-data fields

are associated with each read to form alignment read information.

Some of these fields add considerably to the space requirement; in

particular, the Quality field (QUAL), which measures how accurate

the bases of the read are with respect to a reference genome, typic-

ally requires (uncompressed) the same space as the sequence of bases

(Ewing and Green, 1998; Ewing et al., 1998; Richterich, 1998).

Several standard formats for storing alignment reads have been

adopted, each aiming to make it easy to parse and then manipulate

them using text-processing tools. The most common representations

are the FastA, FastQ (Cock et al., 2010), and SAM, or Sequence

Alignment Map (Li et al., 2009) approaches. Of these, SAM is domin-

ant, partly because it includes more information about each alignment

than the other formats. SAM has become one of the most used formats

for storing alignment data, in no small part because it is the output

generated by many aligners (http://samtools.sourceforge.net/swlist.

shtml, March 2016). For example, the compressed version of the SAM

format, BAM (Section 2), is currently the preferred structure of the

1000 Genome Project (http://www.1000genomes.org/, March 2016).

In this work, different approaches that compress SAM files are

explored. Most of the techniques described focus on methods that

compress reads and/or their associated QUAL fields, which, as we

will describe, are the fields that dominate the space requirement of

compressed SAM files. Another reason for focusing on these two

fields is that most of the remaining fields can be derived from these

two. We also consider the problem of random access into the stored

data, providing data structures that allow the extraction of segments

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3709

Bioinformatics, 32(24), 2016, 3709–3716

doi: 10.1093/bioinformatics/btw543

Advance Access Publication Date: 18 August 2016

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/32/24/3709/2525655 by LIR
M

M
 user on 11 D

ecem
ber 2018

https://github.com/rcanovas/libCSAM
https://github.com/rcanovas/libCSAM
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: <xref ref-type=
Deleted Text: ,
http://samtools.sourceforge.net/swlist.shtml
http://samtools.sourceforge.net/swlist.shtml
Deleted Text: 1
http://www.1000genomes.org/
Deleted Text: 2
http://www.oxfordjournals.org/

of the information stored without the need to decompress the whole

compressed file.

Finally we introduce a new compressed SAM format, CSAM,

which uses less space for storing the data than the BAM format (tak-

ing similar or lower times to compress, decompress and access the

data), and also supporting queries over multiple alignments without

requiring whole files to be decompressed. The CSAM format com-

presses the data without using any external extra information and is

currently the only lossless SAM compressor, beside BAM itself that

offers a full compression technique supporting random access to the

data. Furthermore, CSAM is the first SAM lossy compression ap-

proach allowing random access to the stored data. We also explore

how the proposed compression techniques affect the performance of

possible uses of the compressed data.

1.1 SAM format
SAM-format data is stored as multi-line, TAB-delimited, plain text

that contain two kinds of lines: header lines; and alignment lines.

The header lines are optional, and contain commentary, information

about the reference sequence used for the alignment, the program

used to generate the alignments and so on. Each alignment line con-

tains 11 or more fields, where the first 11 must be present, but might

be ‘*’ or “0”, meaning that the information is not supplied. The

order in which these fields appear in each line is always the same.

Table 1 in the supplementary material, provides an overview; the

SAM project web page (http://samtools.sourceforge.net/, March

2016) provides more details of SAM format and its fields.

To show the proportion of the space used by the various SAM

components we extracted each of them into separate files, and meas-

ured their raw size and also their gzip-compressed sizes, the latter to

provide a sense of how repetitive and compressible each type of data

is. Figure 1 shows the results of this before and after measurement.

The bulk of the space consumption of the original SAM file arises in

the fields SEQ, QUAL and OTHER, with the QUAL field an even

larger fraction of the compressed space. Note that OTHER is one of

the optional fields, and while it is dominant in this file, may not be

present in other SAM files.

1.2 Compression
We categorize compression modalities into three distinct classes:

lossless, information-preserving and lossy. Each class has advantages

and disadvantages, depending on the importance of the information

that is stored, and on the eventual use of the data.

Lossless, or exact compression, ensures that the decompressed

data is exactly the same as the original, and means that the com-

pressed version must contain sufficient information for the decom-

presser to generate a bit stream identical to the one that was input to

the compressor. Lossy compression modalities store an approximate

representation of the input data, trading loss in fidelity of reproduc-

tion for enhanced compression effectiveness. Sitting between these

two modalities, information-preserving compression systems guar-

antee that all the information of the original file is stored, but the

order in which it is regenerated might be different than in the ori-

ginal file. In the case of SAM compression, it is assumed that the

order in which the reads are processed does not have any meaning,

and thus it is possible to reorder the reads without losing informa-

tion. In particular, the approaches described in this paper are lossless

if the input file is already ordered by sequence reference name and

alignment start position, and are information-preserving if the input

file must be sorted into that order before being processed (e.g. using

SamTools). Note further, that all of the schemes in this paper that

allow random access to compressed data, including our own, as-

sume that the input SAM file is ordered by reference name and rela-

tive position.

1.3 Random access operations
When large amounts of data are compressed and stored, it is desir-

able to be able later to extract information without needing to de-

compress the entire data set. In other words, it is beneficial to

support random access operations that extract only the part of the

data that is of interest. To achieve this goal, auxiliary information

about how the data is stored is required. For example, the BAM for-

mat generates an extra index to allow queries over the compressed

data, supporting two basic queries:

i. getInterval(rname), which returns the set of data lines with reads

that were aligned against the reference rname; and

ii. getInterval(rname, x, y), which returns the set of data with reads

that were aligned against the reference rname, with alignment

positions in the interval ½x; y�.

In Section 3 we discuss how we support these two queries in the

compressed format proposed, and support for further operations.

1.4 Downstream applications
An important process in the analysis of genomic data information, is

computing the coverage, i.e. the number of reads stored that repre-

sent a desirable zone; for example exon locations (parts of DNA

that are converted into mature messenger RNA) or a specific gene

(Anders et al., 2015; Lawrence et al., 2013; Liao et al., 2014). We

refer to these zones as genomic features. In this work we consider

the use of the featureCounts program (Liao et al., 2014), which is ‘a

highly efficient general-purpose read summarization program that

counts mapped reads for genomic features’ (http://bioinf.wehi.edu.

au/featureCounts/, March 2016). Input consists of one or more

SAM/BAM files and a list of genomic features, which can be in gen-

eral feature format (GFF) (http://www.sanger.ac.uk/resources/soft

ware/gff/spec.html, March 2016) or simplified annotation format

(SAF) (http://bioinf.wehi.edu.au/subread-package/SubreadUsers

Guide.pdf, March 2016), and the number of reads assigned to each

feature is output, plus statistical information for the overall sum-

marization results.

Fig. 1. Space percentages used for the components of a typical SAM file

(NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20120522.sam, see

Table 2), when separated into different components and compressed on a per-

component basis using gzip �9 (maximum compression). All percentages are

relative to the total space of the respective file, with the components that use less

than 10% of the total space grouped under the label of ‘Smaller Components’. In

this case, the gzip version compressed the file components to a total of approxi-

mately 18% of the original size. As can be seen, the components SEQ, QUAL and

OTHER dominate the storage in both the original and compressed representation

(Color version of this figure is available at Bioinformatics online.)

3710 R.C�anovas et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/32/24/3709/2525655 by LIR
M

M
 user on 11 D

ecem
ber 2018

Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
http://samtools.sourceforge.net/
Deleted Text: 3
Deleted Text: ,
Deleted Text: ,
Deleted Text: for example
Deleted Text: ,
Deleted Text: A
Deleted Text: O
Deleted Text: A
Deleted Text: that is
Deleted Text: ,
Deleted Text: ; Anders <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://bioinf.wehi.edu.au/featureCounts/
http://bioinf.wehi.edu.au/featureCounts/
Deleted Text: 4
http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.sanger.ac.uk/resources/software/gff/spec.html
Deleted Text: 5
http://bioinf.wehi.edu.au/subread-package/SubreadUsersGuide.pdf
http://bioinf.wehi.edu.au/subread-package/SubreadUsersGuide.pdf
Deleted Text: 6

Section 4.4 explores the featureCounts downstream application,

showing how our compression approach can be included as input to

the program, and measuring the time required, comparing against

the times obtained using SAM or BAM input files.

2 Previous approaches

The BAM format (Li et al., 2009) is a binary representation of a cor-

responding SAM file that uses about 30% of the original space by

employing the BGZF (Blocked GNU Zip Format) lossless compres-

sion suite, which is an augmented form of the standard gzip file for-

mat. Each compressed block contains a gzip’ed representation of a

span of data, preceded by extra fields that give specific information

about the file that has been compressed. In addition, the BAM for-

mat (when it is ordered by reference name and alignment start pos-

itions) offers the option to store an index containing information

about the block’s data, permitting fast retrieval of alignments given

a specified region, only decompressing and getting the data from the

block of interest. For example SamTools (http://samtools.github.io/

hts-specs/SAMv1.pdf, March 2016), allows the query

getInterval(rname, x, y) to be answered without decompressing the

whole compressed file.

CRAM (Fritz et al., 2011) is another compressed representation

of SAM/BAM files, generated using CramTools (http://www.ebi.ac.

uk/ena/about/cram_toolkit, March 2016), a suite of Java software

and APIs that compress the DNA sequence and quality data. CRAM

offers better information-preserving compression than BAM, sup-

porting fast transition between these two formats. A lossy compres-

sion mode is also supported, enabling users to choose which data

should be preserved. The only dependency of the CRAM format is

to an external reference genome. Each sequence is stored as the dif-

ference between itself and the external reference, and the same exter-

nal reference genome must thus be provided each time compression

or decompression is undertaken.

In practice the information flow between SAM, BAM and

CRAM files is not completely preserved (see Supplementary

Materials). To effectively compress a read sequence, CramTools

stores only the information of the parts of the read that are identical

or near identical to the input reference sequences, otherwise the in-

formation is not stored. In addition, CramTools allows several user-

defined options that control the lossy compression of the quality

score information. Finally, CramTools offers fast transition between

CRAM and BAM files, but does not supply random access to the in-

formation in CRAM format. Random access queries are supported

using SamTools over BAM files, requiring CRAM files to be decom-

pressed first.

In 2013 Popitsch and von Haeseler developed their NGC tool

(Popitsch and von Haeseler, 2013), offering a mechanism that com-

presses data stored in SAM/BAM format, covering only reads for

which mapped information is available (that is, for which a

RNAME field is specified). Popitsch and von Haeseler present a

pseudo information-preserving solution, and a lossy solution.

NGC focuses on compressing the read and quality score se-

quences. To compress the Read Sequences (SEQ, RNAME, POS)

field, NGC assumes that the reference sequence is an external fixed

input provided by the user at compression and decompression time.

NGC stores the differences between the reads and the reference se-

quence, instead of compressing the reads independently. In order to

store the quality scores, the NGC tool offers a simple lossless com-

pression mode in which the quality scores are compressed using

bzip2 as a separate stream. If lossy compression is desired, NGC

provides a binning strategy based on the LogBinning approach

described by Wan et al. (2012), which transforms quality scores

within predefined intervals to single representative values.

The NGC mechanism does not support random access to the

compressed data, and is a storage scheme only.

3 Methods

In the new CSAM format we focus primarily on improved represen-

tations for the SEQ and QUAL fields, since those two still occupy

significant amount of space after compression. Note that the

OTHER field is usually highly repetitive and compresses well with

gzip. Figure 2 illustrates the compression scheme followed by

CSAM, where the fields RNAME, POS and SEQ are compressed to-

gether using the ‘presumed sequence’ approach described by

C�anovas and Moffat (2013) (an overview is provided in the

Supplementary Materials); the QUAL field is losslessly compressed

using gzip or, if lossy modality is desired, using a block quality com-

pression approach such as P-Block or R-Block, described by

C�anovas et al. (2014); and each of the remaining fields are separ-

ately compressed using gzip, assuming that any additional gain in

space derived through the use of another lossless technique would

be of only marginal overall benefit. When we say that a field is com-

pressed using gzip, we mean that the information is divided into

blocks of k data lines, and then each block is compressed separately

with gzip. This allows random access to the stored information.

Other general-purpose compression tools might also be used, each

offering a different balance between processing cost and compres-

sion effectiveness. We opt to use gzip in part because it represents an

excellent compromise between these, and in part to be fair when

comparing against BAM, which also uses gzip.

We also consider the problem of random accessing the com-

pressed data, in particular, the getInterval operation described in

Section 1.3. To that end, we add an auxiliary index containing syn-

chronization points within the compressed data to allow extraction

of segments starting from these those points. Two different criteria

for choosing the synchronization points were explored: inserting

them after some fixed number of data lines, or inserting them after

some fixed number of base positions. The first of these approaches

requires storing an index into the compressed data indicating the

decoding start position for every kth encoded data line. That is,

the interval between two consecutive synchronization points spans

Fig. 2. CSAM compression scheme. The RNAME, POS, and SEQ fields are

compressed using the presumed sequence approach, and the QUAL field is

losslessly represented using gzip or lossily compressed using the block qual-

ity approach presented in by C�anovas et al. (2014). The remaining fields are

separately compressed with gzip

Compressed SAM format 3711

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/32/24/3709/2525655 by LIR
M

M
 user on 11 D

ecem
ber 2018

Deleted Text: A
Deleted Text: per cent
Deleted Text: &hx2019;
Deleted Text: &hx2019;
http://samtools.github.io/hts-specs/SAMv1.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf
Deleted Text: 7
http://www.ebi.ac.uk/ena/about/cram_toolkit
http://www.ebi.ac.uk/ena/about/cram_toolkit
Deleted Text: 8
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: <italic>&hx03BB;</italic>
Deleted Text: <italic>&hx03BB;</italic>

k data lines. The second criteria requires storing a pointer to the

first data line encoded after every qth base position. We refer to

these two options as block sample and position sample respectively.

The BAM format provides another possible criteria, which stores

synchronization points every time a certain number of input bytes

has been compressed.

In order to support the operation getInterval(rname, x, y), where

rname is a reference name, and ½x; y� defines an interval to be

searched, CSAM also stores extra information about the data con-

tained between synchronization points, depending on the method

used to generate the index. For example, if a block sample or the

BAM approach is used to generate the index, then is necessary to

know the positions (POS field value) and reference name (RNAME

field value) that correspond to the read associated with each syn-

chronization point. A search over the stored positions and reference

names can then be performed to find which synchronization points

need to be accessed. Note that in both cases, block samples and

BAM indexes, the accuracy of the search is limited by the parameter

chosen to create the index, meaning that the amount of decoding

required to compute the query is similarly limited.

On the other hand, if position samples are used to generate the

index, then selecting the particular synchronization point used to ac-

cess the compressed data given a query is straightforward, since the

bx=qc th pointer assigned to rname is the one required, without there

being any need to search for it. But now the extent of the secondary

sequential search to identify the first read aligned within the desired

range is not limited by the parameter chosen, and may vary consid-

erably, depending on the coverage of the data in question.

In the case of CSAM the aim is to create an index that permits

fast extraction of reads and their related SAM fields. With this in

mind, CSAM employs an index using a mixture of the two basic

methodologies, storing a position sample index for querying the

fields RNAME, POS and SEQ, so as to achieve fast access to these

components (see Section 3.1 of the Supplementary Materials),

assuming that the time used to search for a position interval using a

position sample scheme would be less than the time used to find the

desired synchronization points and then search for the required

data, if block sample or the BAM approach to create the index were

used. In addition, to minimize unnecessary data extraction during

sequential search, CSAM creates a separate index for the QUAL

field and the remaining SAM attributes. This allows the information

contained in these fields to be used as extra conditions that augment

getInterval queries; for example, once the desired data range is

found, to select the reads within the range that have a mapping qual-

ity higher than some value specified by the user. The information

stored in these fields does not need to be accessed until the read se-

quence data has been located. Finally, to connect the position sam-

ple index of the read sequences with the block sample index of the

remaining fields, CSAM stores an extra value per synchronization

point in the position sample indicating the number of data lines

stored through until that point. That is, each position sample con-

tains a tuple (n, d) where n is the number of lines up to the position

sample, and d is a pointer to the location of the beginning of the

read information for that position.

As presented CSAM uses two indexes (block sample and position

sample index) over the compressed data in order to provide random

access to the information stored. Query time performance thus de-

pends on the sample parameters chosen (k and q, respectively). An

example of how CSAM uses these two indexes to support

getInterval operations is shown in Figure 3, and described by the fol-

lowing scenario. If q¼1000 for the position sample index, k¼500

for the block sample index, and the query is “obtain all the data

lines where RNAME is chr20 (chromosome 20), the reads start be-

tween position (POS field) 1500 and 2500, and its CIGAR string

contains at least 10 soft clippings”, then the extraction process con-

sists of:

Assuming that the reference and interval are valid, get

entry b1500=qc from the position sample index for RNAME ‘chr20’

which gives d, the byte address where reads start for the block con-

taining POS 1500, and n, the number of lines that occur before d.

Sequentially process lines from the compressed reads beginning

at d until its POS value is higher or equal to 1500, keeping a count

of lines read, c.

Look up for the block sample index at position bnþc
k c, which

gives the disk location at which the data associated with the remain-

ing fields is stored.

Finally, extract data from all the fields until the value of POS in

an extracted line is higher than 2500, only keeping lines in which

the CIGAR string contains at least 10 soft clipping. This step is per-

formed while that the information extracted fits in RAM. If it gets

too large, the information is output, and the loop continued.

In the next section, we present the results obtained when a range

of test files are compressed and random-accessed using CSAM, com-

paring the trade-offs offered CSAM against the attributes and per-

formance of existing SAM compression mechanisms.

4 Results

Table 2 in the supplementary material lists the 13 test files used in

our experiments, varying in size from 1.4 to 21.7 GB. All experi-

ments were performed on a computer with Intel(R) Core(TM)

i7-2600 processor up to 3.40 GHz, 4 GB of main memory, 8 MB of

cache, and HDD secondary storage. The operating system was

Ubuntu 12.04, version 3.2.0-70-generic Linux kernel. The CSAM

methods described here were implemented in Cþþ, using version 4.

6.3 of the gþþ compiler.

4.1 Lossless compression
A key aim of CSAM is to attain a high level of lossless compression.

To compare CSAM against BAM we record the space associated

with the corresponding compressed formats for each of the test files,

and also measure encoding and decoding throughput. Compression

and decompression times were taken as the mean of ten consecutive

runs for each file, after an initial run to prime the cache memory.

We also computed the SD of the 10 runs. The same methodology

was used to measure compression and throughput for two general

purpose compressors, gzip and bzip2. The CSAM approach requires

Fig. 3. Example showing the query ‘chr20 1500 2500’ (where ‘chr20’ refers to

the chromosome 20) is performed using the CSAM position and block sample

indexes. The green arrow indicates how the position sample is associated

with the block sample, the red arrows show the path following to extract the

interval, and the red rectangles are the information desired

3712 R.C�anovas et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/32/24/3709/2525655 by LIR
M

M
 user on 11 D

ecem
ber 2018

Deleted Text: <italic>&hx03BB;</italic>
Deleted Text: <italic>&hx03C1;</italic>
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: <italic>&hx03BB;</italic>
Deleted Text: &hx03C1;
Deleted Text: <italic>&hx03BB;</italic>&hx2009;&hx003D;&hx2009;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: &hx2009;&hx002B;&hx002B;
Deleted Text: &hx2009;&hx002B;&hx002B;&hx2009;
Deleted Text: C
Deleted Text: standard deviation

that index parameters be chosen, and we used q¼1000 and

k¼1000 to determine the intervals between the synchronization

points. Supplementary Table S3 lists the command lines and param-

eters used for the compression methodologies used in the experimen-

tal process. We also explored the lossless compression modalities of

CRAM and NGC, both of which require the appropriate reference

sequence to be supplied as part of the encoding and decoding proto-

cols. The reference sequence is external to the file being compressed,

and is not counted as part of the compressed size, a distinction

which favors these two methods in the comparisons we carried out.

Furthermore, as explained before, these two implementations do not

offer lossless compression.

Figure 4 plots average compression ratio (that is, compressed

size divided by original size of the file) on the horizontal axis and

average decompression rate on the vertical axis, for all of the meth-

ods examined. In this figure, the “desirable” quadrant is the upper

left region. If fully lossless (rather than information preserving) com-

pression is required, then CRAM and NGC need to include all the

information of the unstored fields, instead of recomputing it. To

give an idea of the extra space involved, the cost of using gzip �9 to

store the OTHER field (in general, the largest field among the ones

recomputed by CRAM and NGC) is used to compute two further

data points, shown as NGC* and CRAM*. Tables containing all

test results are provided in the Supplementary Materials.

Of the methods plotted in Figure 4, NGC gives the best compres-

sion. The drawback of NGC is its throughput, being six to eight

times slower than the other compressors. At the other end of the

spectrum, gzip and the gzip-based BAM method provide high

throughput, but with reduced compression effectiveness compared

with NGC and CRAM. Between these two endpoints, bzip2,

CSAM, and CRAM offer further options. Amongst the non-indexed

lossless methods, CRAM offers a strong mix of attributes, with simi-

lar compression to NGC, and throughput rates close to those ob-

tained using bzip2. The two drawbacks of CRAM are that it needs

the reference sequence as extra input to the decompression and com-

pression process, and that it does not fully losslessly compress all the

SAM fields, recomputing them on decompression instead. A further

distinction to be noted is that CSAM and BAM both include index

information so as to support random access to the underlying data.

CSAM uses notably less space than BAM, but BAM offers faster

compression (see the supplementary material for details). Both

methods offer similar decompression throughput. CSAM also treats

each field separately, enabling random access to and decompression

of individual fields, without needing to access whole blocks of data

as in BAM. In addition—discussed in the next subsection—CSAM

includes two lossy compression modes which greatly reduce the

space required, at the cost of reduced fidelity of the quality scores.

4.2 Lossy compression
The two lossy techniques for handling quality scores are referred to

as CSAM-P and CSAM-R, using C�anovas et al.’s (2014) P-Block

and R-Block quality compression techniques, respectively. We set

the parameters of the two schemes empirically, choosing the values

the p ¼ 6 and r ¼ 1.4 for P-Block and R-Block, respectively, which

gives the best compression while maintaining at least 99.0% recall

and precision in the variation-call downstream application

(C�anovas, 2015).

CRAM and NGC provide lossy compression over the QUAL

field too, and also the option to dispense completely with some of

the fields. We do not explore the latter, and restrict our experiments

to the CRAM and NGC compression parameters that provide lossy

compression of the QUAL field, with all remaining fields losslessly

compressed. All CRAM results reported in this section use a lower

bound mapping quality of 50 and the Bin-Preserve mode, which

were the settings that offered the best trade-off in preliminary ex-

periments. Popitsch and von Haeseler (2013) provide a detailed ex-

perimental study of NGC in their Supplementary Materials (http://

nar.oxfordjournals.org/content/suppl/2012/10/11/gks939.DC1/nar-

7-met-n-2012-File002.pdf), and demonstrate that the modality m1

was the only one that assured over 99.0% of the original variants

were recovered following lossy compression.

Figure 5 contrasts average throughput and average compression

ratio for the lossy methods, using the same methodology as in

Figure 4. NGC again offers the highest compression rates, but with

the same drawbacks in terms of the compression and decompression

rates, and in terms of requiring that the reference sequence be made

available. Similarly, CRAM remains an attractive option if the pri-

mary functionality required is full compression and decompression

of SAM files, and if the space used to store the reference sequence is

not a determining factor. On the other hand, the CSAM-P and

CSAM-R methods, while using slightly more space than CRAM,

 0

 10

 20

 30

 40

 50

 0.13 0.15 0.17 0.19 0.21 0.23

D
ec

om
pr

es
si

on
 R

at
e

(M
B

/s
ec

)

Size Ratio

GZIP

BZIP2

BAMCSAM

CRAM

NGC

CRAM*

NGC*

Fig. 4. Average decompression time versus average compression ratio using

different lossless compression approaches over the 13 test files. CRAM* and

NGC* represent the two schemes when the OTHER field is included com-

pressed with gzip

 0

 10

 20

 30

 40

 50

 60

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

D
ec

om
pr

es
si

on
 R

at
e

(M
B

/s
ec

)

Size Ratio

CSAM-PCSAM-R

CRAM

NGC

CRAM*

NGC*

Fig. 5. Average decompression time versus average compression ratio using

different lossy compression approaches over the 13 test files. CRAM* and

NGC* represent the two schemes when the OTHER field is included com-

pressed with gzip. included

Compressed SAM format 3713

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/32/24/3709/2525655 by LIR
M

M
 user on 11 D

ecem
ber 2018

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: (in the <ext-link xmlns:xlink=
Deleted Text: &hx2013;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: 6
Deleted Text: 8
Deleted Text: to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: C
Deleted Text: &hx2019;s
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: per cent
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
http://nar.oxfordjournals.org/content/suppl/2012/10/11/gks939.DC1/nar-7-met-n-2012-File002.pdf
http://nar.oxfordjournals.org/content/suppl/2012/10/11/gks939.DC1/nar-7-met-n-2012-File002.pdf
http://nar.oxfordjournals.org/content/suppl/2012/10/11/gks939.DC1/nar-7-met-n-2012-File002.pdf
Deleted Text: 9
Deleted Text: per cent

also support random access to the data, are independent of any ex-

ternal reference sequence, and allow fast compression and decom-

pression compared with the other lossy compression techniques

shown. Tables detailing these results across the individual test files

are provided in the Supplementary Materials.

4.3 Random access
Like BAM, the CSAM compressor allows random access to the

stored data. In particular, getInterval queries (Section 1.3) are

handled without decoding the entire file. To resolve these, CSAM

uses two indexes (block sample and position sample) over the com-

pressed data; we use a parameter value of 1000 for both. Those par-

ameters were chosen as an outcome of preliminary experiments, and

provide a useful trade-off between throughput and index size.

In order to test this operation the experiments considered two

parameters for generating the queries: the number of occurrences ex-

tracted for a given interval (nc), and the number of queries to be exe-

cuted (nq). For example, if nc¼100 and nq¼1000, then the

experiment consisted of 1000 randomly selected intervals, with the

corresponding reference name from the original SAM file, with 100

lines contained in the interval. Each query batch was then ordered

by reference and start position, to facilitate ‘elevator’-style process-

ing. For each of the methodologies tested, the mean time (including

the SD) to extract each line was measured by running sets of differ-

ent sample intervals. Each experiment was run 10 times, after an ini-

tial run to prime the cache memory. The implementations used

were: the lossless CSAM; the two lossy CSAM variants used in

(CSAM-P with p ¼ 6 and CSAM-R with r ¼ 1.4); and the SamTools

software, used to compute getInterval over pre-indexed BAM for-

mat files. All of these methods receive an input file consisting of

three columns (reference name, start position end position) that are

the queries to be executed sequentially. Note that this methodology

reflects a simple version of the getInterval query, and that it is pos-

sible to add more specifications, such as minimum mapping quality

desired, number of soft-clipping bases, and so on. While SamTools

allows input from a file containing all queries to be processed, it is

also possible to run the queries in a sequential, brute force form,

where each query is given as a command line parameter to the tool,

and the program is restarted each time. A minor drawback of run-

ning the queries sequentially is that SamTools is not able to detect

overlapping intervals, returning a SAM file which could contain du-

plicate information.

Supplementary Figure S4 plots average per-line retrieval times

against the compression ratios measured for each of the 13 test files,

for four combinations of nc and nq, with nq and nc set to the same

values so as to obtain a cross-section of the overall performance pro-

file. Note the differing vertical scales in each of the panes in the fig-

ure; substantial economies of scale arise when multiple lines are

fetched from the same region of the compressed file. The CSAM

approaches offer good overall performance in three of the four

panes, but provide slightly slower per-line average access when nq ¼
nc¼10 000. As in the previous plots, the lossless version of CSAM

uses slightly less space than BAM, and the lossy CSAM variations

(which still have relatively minor loss of information) use less than

half the space of the BAM files.

Also evident in Supplementary Figure S4 is that the greater the

number of queries and the number of occurrences extracted per

query, the narrower the band of measured execution times. This

trends arise because the fraction of time spent searching is becoming

smaller, while the fraction of time spent on sequential decoding of

lines is becoming larger.

4.4 Downstream application: feature count
Section 1.4 noted that computing coverage—the number of reads

stored—over an interval is an important step in the analysis of gen-

omic data, often focusing on user-defined desirable chromosome

intervals. In this section, we examine the use of the featureCounts

mechanisms (Liao et al., 2014), which is widely used for this

purpose.

When featureCounts evaluates a query, it searches over the

aligned read information in which the condition indicated by the

genomic features are fulfilled. All queries start by indicating an

interval, and then optionally add more conditions. In this process

not all the SAM fields need to be examined, with the set required de-

pending on the genomic features being queried. We define Simple

SAM Notation format (SSN) as a SAM file in which fields not

involved in the featureCounts computation are replaced by empty

values, rather than being extracted when the subset SAM file is com-

puted. We mimic the same process by introducing the

getIntervalSSN operation, which is similar to getInterval but with

an extra parameter to indicate which SAM fields are to be extracted.

Using this function and the list of genomic features, we generate

a subset SSN file containing only the aligned reads whose start pos-

itions are relevant to the desired query intervals. Finally this file, in

addition to the list of genomic features, is given as input to

featureCounts, generating the same output as when the original

uncompressed SAM file is used.

In order to assess the performance of CSAM in regard to

featureCounts, we measure execution time including the generation

of the SSN file, using CSAM’s getIntervalSSN operation, and includ-

ing the cost of running featureCounts on the SSN data that is gener-

ated. For SAM and BAM, the corresponding cost is measured as the

time taken by featureCounts when supplied with a full data file, plus

the query. We use the same data sources as Liao et al. (2014),

namely the exon locations for the human reference hg19, and com-

pare the SAM, BAM and CSAM (the lossless version and two

representative lossy versions, CSAM-P with p ¼ 6 and CSAM-R

with r ¼ 1.4) storage format. More information about the structure

of these experiments is provided in the Supplementary Materials.

Figure 6 compares featureCounts times across the range of file

formats and across the suite of test files. Note that the vertical axis

is logarithmic and the files are ordered in the horizontal axis by

1

 10

 100

 1000

 10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
in

 s
ec

File Index

SAM
BAM

CSAM-Lossless
CSAM-Lossless-Min

CSAM-P
CSAM-P-Min

CSAM-R
CSAM-R-Min

Fig. 6. Time to compute featureCounts over hg19_RefSeq_exon.saf and the

files listed in Supplementary Table S2, using SAM, BAM, and our CSAM

approaches. The Min versions of CSAM indicate cases for which the SSN file

generated contains only the main SAM fields (FLAG, RNAME, POS, MAPQ,

CIGAR and SEQ fields) needed to calculate coverage

3714 R.C�anovas et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/32/24/3709/2525655 by LIR
M

M
 user on 11 D

ecem
ber 2018

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: A
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: standard deviation
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: 3
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: in the <ext-link xmlns:xlink=
Deleted Text:
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
Deleted Text: s
Deleted Text: A
Deleted Text: F
Deleted Text: C
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw543/-/DC1

decreasing SAM file size order, which leads to large query-time dif-

ferences between files 3 and 4 (a 12 GB difference in size between

them); between files 4 and 5 (a 2 GB difference in size); between files

9 and 10 (a difference of 1 GB); and between files 12 and 13 (an-

other 1 GB).

The description given by Liao et al. of how featureCounts oper-

ates with SAM files suggests that it searches over all the aligned

reads to identify the ones with the specified genomic features. The

timings shown in Figure 6 support that observation—the larger the

input SAM file is, the longer the time taken to finish the process of

counting the coverage for each genomic feature. For small size SAM

files (files 10–13 in Table 1), featureCounts offers a faster alterna-

tive, giving that the time used decompressing other format files in-

formation is longer than completely reading the SAM file.

Meanwhile, when the BAM or the CSAM approaches are used as in-

put, the time required by featureCounts oscillates, with BAM gener-

ally giving slightly better time performance for low coverage and

CSAM slightly faster for high coverage files.

We also measured three CSAM-Min variations, which decode

only the required fields. They provide the fastest approach for most

of the test files, the exception being when the SAM files are small, in

which case using the original SAM file as input for featureCounts is

faster. We also experimented with further variations that generated

different combinations of fields. The only case in which the times

obtained were more than slightly altered was when the QUAL field

or the OTHER field were also added to the decoded output. Neither

of these fields are employed in any of the operations currently pro-

vided as part of featureCounts.

Beside comparing the time obtained using featureCounts with

SAM, BAM and CSAM, it is also important to consider the storage

space used by each of the input files. From the results presented in

the previous sections it can be observed that BAM uses on average

around 23.1%, CSAM-Lossless 17.5%, CSAM-P (with p ¼ 6)

8.3%, and CSAM-R (with r ¼ 1.4) 7.5% of the space used by the

original SAM file. Note also that, compared with SAM and BAM, in

these experiments the CSAM approaches were used as pre-processor

for a stand-alone featureCounts process. That is, the generated SSN

file was written to disk and then passed as input to featureCounts,

at which point it was opened, re-read, and analyzed. This double-

handling could be avoided if featureCounts was modified so that the

CSAM format was handled directly.

5 Conclusion

We have described CSAM, a compressed and indexed representation

for genomic data files originally produced in SAM format, which

supports queries over the stored information without requiring

whole files to be decompressed. Each SAM field is treated individu-

ally, with a focus on compressing the Read Sequences and QUAL

fields, as those two fields use the largest amount of space amongst

the compulsory SAM fields. CSAM does not make use of any exter-

nal reference file, making it self-contained, and allowing decompres-

sion to take place without access to a library of reference sequences.

In both the CRAM and NGC methods it is necessary to store the

particular reference sequence that was used to compress a file to

guarantee that it can be decompressed accurately.

Our experimental results show that CSAM provides a useful bal-

ance of attributes, and can be applied in situations in which other

compressed formats may be inappropriate. Much of the gains that

have been achieved are a consequence of treating the 11 SAM fields

independently, and then exploring options tailored to the particular

symbol alphabets and distributions encountered. These analyses to

date have been based solely on the statistical textual properties of

the components, without considering the biological meaning of the

data. For example, we did not study how the compression of the

SEQ field could be improved if indels, soft clipping, paired ends

reads and so on were employed, nor make use of any other informa-

tion available from the SAM fields. Including these factors could

lead to higher compression effectiveness at the cost of requiring

more compression-time analysis and, potentially, lower decoding

throughput. Also, given that in CSAM each field is treated separ-

ately, it should be possible to compress and decompress some of

these fields in parallel which might lead to improved performance.

What is clear is that the format of genomic files will continue to

evolve, and hence applying separate compression methods to each

field should continue to be a useful strategy.

An interesting future research topic would be to explore other

uses of stored genomic data, and support these functionalities within

the compressed data format. For example, it would be desirable to

be able to find variations and output the respective VCF files with-

out the need for any external tool. Since the core of this work was

completed (C�anovas, 2015) new ideas have continued to emerge

(Alberti et al., 2016; Bonfield, 2014; Grabowski et al., 2015; Hach

et al., 2014; Hernaez et al., 2016; Ochoa et al., 2016; Roguski and

Ribeca, 2016); comparing the performance of these new methods

against CSAM will almost certainly lead to further insights as to

how genetic data can best be stored.

Funding

This work was supported by the NICTA Victorian Research Laboratory, and

funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian

Research Council through the ICT Center of Excellence program. We thank

Vadim Zalunin for helping with the CramTools usage; and Wei Shi and Jan

Schröder for sharing their knowledge of the area.

Conflict of Interest: none declared.

References

Alberti,C. et al. (2016) An evaluation framework for lossy compression of gen-

ome sequencing quality values. Data Compression Conference (DCC), In

To appear.

Anders,S. et al. (2015) HTSeq - A python framework to work with high-

throughput sequencing data. Bioinformatics, 31, 166–169.

Ansorge,W. (2009) Next-generation DNA sequencing techniques. New

Biotechnol., 25, 195–203.

Bonfield,J.K. (2014) The Scramble conversion tool. Bioinformatics, 30,

2818–2819.

C�anovas,R. (2015) Practical Compression for Multi-Alignment Genomic

Files. PhD Thesis, The University of Melbourne, Australia.

C�anovas,R. and Moffat,A. (2013). Practical compression for multi-alignment

genomic files. In Proc. 36th Australasian Computer Science Conference,

pp. 51–60.

C�anovas,R. et al. (2014) Lossy compression of quality scores in genomic data.

Bioinformatics, 30, 2130–2136.

Church,G.M. (2006) Genomes for all. Sci. Am., 294, 46–54.

Cock,P.A. et al. (2010) The Sanger FASTQ file format for sequences with qual-

ity scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res., 38,

1767–1771.

Ewing,B. and Green,P. (1998) Base-calling of automated sequencer traces

using Phred. II.Error probabilities. Genome Res., 8, 186–194.

Ewing,B. et al. (1998) Base-calling of automated sequencer traces using Phred.

I. Accuracy assessment. Genome Res., 8, 175–185.

Compressed SAM format 3715

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/32/24/3709/2525655 by LIR
M

M
 user on 11 D

ecem
ber 2018

Deleted Text: &hx2013;
Deleted Text: to
Deleted Text: ,
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: Alberti <italic>et<?A3B2 show $146#?>al.</italic>, 2016;
Deleted Text: ; <xref ref-type=

Fritz,M.H. et al. (2011) Efficient storage of high throughput DNA sequencing

data using reference-based compression. Genome Res., 21, 734–740.

Grabowski,S. et al. (2015) Disk-based compression of data from genome

sequencing. Bioinformatics, 31, 1389–1395.

Hach,F. et al. (2014) DeeZ: reference-based compression by local assembly.

Nat. Methods, 11, 1082–1084.

Hernaez,M. et al. (2016) A cluster-based approach to compression of quality

scores. Data Compression Conference (DCC), In To appear.

Lawrence,M. et al. (2013) Software for computing and annotating genomic

ranges. PLoS One, 9, e1003118.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Liao,Y. et al. (2014) featureCounts: an efficient general purpose program for

assigning sequence reads to genomic features. Bioinformatics, 30,

923–930.

Mardis,E. R. (2008) Next-generation DNA sequencing methods. Annual

Review of Genomics Hum. Genet., 9, 387–402.

Myllykangas,S. et al. (2012). Overview of sequencing technology platforms.

In Bioinformatics for High Throughput Sequencing. Springer, New York,

pp. 11–25.

Ochoa,I. et al. (2016) Effect of lossy compression of quality scores on variant

calling. Brief. Bioinformatics, doi: 10.1093/bib/bbw011.

Popitsch,N. and von Haeseler,A. (2013) NGC: lossless and lossy compression

of aligned high-throughput sequencing data. Nucleic Acids Res., 41, e27.

Richterich,P. (1998) Estimation of errors in “raw” DNA sequences: a valid-

ation study. Genome Res., 8, 251–259.

Roguski,Ł and Ribeca,P. (2016) Cargo: effective format-free compressed stor-

age of genomic information. Nucleic Acids Res., 44, e114.

Wan,R. et al. (2012) Transformations for the compression of FASTQ quality

scores of next-generation sequencing data. Bioinformatics, 28, 628–635.

3716 R.C�anovas et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/32/24/3709/2525655 by LIR
M

M
 user on 11 D

ecem
ber 2018

