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Abstract: Value-at-Risk (VaR) has become the most important benchmark for measuring risk in
portfolios of different types of financial instruments. However, as reported by many authors,
estimating VaR is subject to a high level of uncertainty. One of the sources of uncertainty stems from
the dependence of the VaR estimation on the choice of the computation method. As we show in our
experiment, the lower the number of samples, the higher this dependence. In this paper, we propose
a new nonparametric approach called maxitive kernel estimation of the VaR. This estimation is based
on a coherent extension of the kernel-based estimation of the cumulative distribution function to
convex sets of kernel. We thus obtain a convex set of VaR estimates gathering all the conventional
estimates based on a kernel belonging to the above considered convex set. We illustrate this method
in an empirical application to daily stock returns. We compare the approach we propose to other
parametric and nonparametric approaches. In our experiment, we show that the interval-valued
estimate of the VaR we obtain is likely to lead to more careful decision, i.e., decisions that cannot be
biased by an arbitrary choice of the computation method. In fact, the imprecision of the obtained
interval-valued estimate is likely to be representative of the uncertainty in VaR estimate.

Keywords: risk measures; quantile estimation; financial time series; Value-at-Risk; choquet integral;
possibility theory; maxitive kernel; kernel estimation; parametric models

1. Introduction

Controlling financial risk is an important issue for financial institutions. For the necessity of risk
management, the first task is to measure risk. Value-at-Risk (VaR) is probably the most widely used
risk measurement in financial institutions. It has made its way into the Basel II Capital-Adequacy
framework. VaR is an estimate of the largest loss over a specified time horizon at a particular probability
level. For example, if the daily VaR of an investment portfolio is $10 million with a 95% confidence
level, this means that we can be 95% confident that the portfolio will not lose more than $10 million
over the next day. In a more formal way, the VaR of a portfolio at a probability level α can be defined
as McNeil et al. (2005, p. 38).

VaRα = inf{x, FX(x) = P(X ≤ x) ≥ α} = F−1
X (α), (1)

where X is a random variable representing daily percent return for a total stock index with Cumulative
Distribution Function (CDF) FX. As McNeil et al. (2005) point out, VaR is simply a quantile of the
corresponding loss distribution, which makes its computation easy. Various methods have been
proposed in the relevant literature to compute the VaR. Each method differs in the methodology used,
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the hypotheses, and the way the models are implemented. A highly questionable fact is that each
method leads to different results. Thus the choice of computational method is likely to have a large
impact on the way a financial institution manages its credit portfolio.

The most commonly used approach is the nonparametric Historical Simulation (HS) method
described in Linsmeier and Pearson (1997). It is based on the empirical CDF of the historically
simulated returns by attributing an equal probability weight to each day’s return. The HS approach is
easy to implement but suffers from two major drawbacks: First, the success of the approach depends
on the ability to collect a large series of data; second, this is an unconditional model and thus we
need a number of extreme scenarios in the historical record to provide more informative estimates
of the tail of the loss distribution McNeil et al. (2005). Moreover, estimates of extreme quantiles are
inefficient since extrapolation beyond past observations is impossible. To avoid these drawbacks,
several parametric and nonparametric approaches have been developed. For example, Butler and
Schachter (1998) propose the kernel estimators in conjunction with the historical simulation method.
Also, Charpentier and Oulidi (2010) calculate the VaR by using several nonparametric estimators based
on Beta kernel. This study shows that those estimators improve the efficiency of traditional ones,
not only for light tailed, but also heavy tailed distributions.

Numerous recent VaR models are referred to as parametric. From the point of view of the
risk manager, estimate VaR assuming normal distribution of asset returns is inappropriate and
lead to underestimate the left tail at low probability level. For this reason, most recent research
papers deal with going beyond the normal model and attempt to capture the related phenomena
of heavy and long tails and asymmetric form of the returns series. EVT (Extreme Value Theory)
and the so-called GHYP (Generalized HYPerbolic) distributions are among the most widely used.
The main advantage of hypothesizing a GHYP distribution is its ability to account for the statistical
properties of financial market data such as volatility clustering, asymmetry and heavy-tail phenomena
(see McNeil et al. (2005) for an introduction and Paolella and Polak (2015) for a recent application).
Kuester et al. (2006) use an EVT-based approach and focuses on the long tails of the return distribution.
Braione and Scholtes (2016) study the performance of forecasting VaR under different parametric
distributional assumptions and show the predominance and the predictive ability for the skewed and
heavy-tailed distributions in the univariate case. The main drawback of using a parametric model
is the high dependency of the obtained method to the hypothesized distribution model. To lower
this dependency, some authors have proposed a group of semiparametric methods that are based on
extreme value theory. These methods have been successfully used by financial analysts in estimating
VaR Danielsson and De Vries (2000). However, all the above mentioned attempts have the common
weakness of a low robustness to modelling leading to variations in the VaR estimation. To enable this
method to be used in a prudent manner, it would be of instrumental interest to estimate the variation
of the computed VaR w.r.t. the modelling. Some attempts have been proposed to achieve such a goal.
For example, Butler and Schachter (1998) propose a method to measure the precision of a VaR estimate.
Jorion (1996) suggests that VaR always be reported with confidence intervals and shows that it is
possible to improve the efficiency of VaR estimates using their standard errors. Kupiec (1995) proposes
a method for quantifying the uncertainty, in the estimated VaR, induced by the fact that the return
distribution is unknown. Pritsker (1997) proposes to estimate a standard error by using a Monte Carlo
VaR analysis.

In this paper, we propose a completely new approach to estimate the variations in the VaR
induced by choosing a particular model in a kernel-based approach. The idea is that an estimate of
the CDF of the daily percent return can be used to compute the VaR as suggested by Equation (1).
Such an estimate can be obtained by using a kernel-based approach Silvermann (1986). In Kernel
Density Estimation (KDE), the role of the kernel is to achieve an interpolation to lower the impact of
sampling on the obtained estimation. Roughly speaking, it smoothes the empirical CDF. However,
as in the above mentioned methods, there is a systematic bias induced by the choice of the kernel
used to estimate the CDF. Our proposal is to focus on the new nonparametric approach developed by
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Loquin and Strauss (2008a) to estimate the CDF. This approach makes use of the ability of a new kind of
interpolating kernel, called maxitive kernel, to represent a convex set of conventional kernels—that we
call summative kernels Loquin and Strauss (2008b). Within this approach, the estimate of the CDF is
interval-valued. Such an interval-valued estimate of the CDF, also called a p-box Destercke et al. (2007),
is the convex set of all the CDF that would have been computed by using the convex set of conventional
summative kernel represented by the maxitive kernel. We show that this approach can advantageously
be used to compute with accuracy the corresponding convex set of kernel-based VaR estimates.
This approach has advantages over Monte Carlo based approaches since its complexity is comparable
to that of classical kernel estimation. Moreover, within this approach the bounds are exact while Monte
Carlo approaches provide an inner estimation of those bounds.

This paper is structured as follows. Section 2 reviews some nonparametric and parametric
approaches and bootstrap methods used to compute the confidence interval of VaR. In Section 3,
we introduce the empirical distribution function and the kernel cumulative estimator based on
summative kernel. We define in Section 4 the maxitive kernel, which forms the basis of our approach,
and it is shown how an interval-valued estimation of VaR, based on maxtive kernel, can be derived that
has relevant properties in this context. Section 5 presents and discusses our empirical findings. Firstly,
we show how the choice of kernel function affects the VaR estimates. Secondly, we investigate the
performance of the interval-valued proposed in this paper by comparing it to three very competitive
approaches: The simple Normal VaR, the HS VaR, and the GHYP VaR. Finally, Section 6 concludes this
paper with some further remarks.

Throughout this paper, we consider that the observations belong to a convex and compact
subset (universe) Ω of IR, called the reference set. P(Ω) is the collection of all measurable subsets of
Ω. It naturally contains the empty set and is closed under complementation and countable unions.
Then (Ω,P(Ω)) is a measurable space. Let L(Ω) be the set of functions defined on Ω with values in IR.

2. A Review of Some Statistical Approaches and Nonparametric Bootstrap Methods

2.1. Historical Simulation

The HS method calculates the Value-at-Risk using real historical data of asset returns and captures
the non-normal distribution of the returns. HS is a nonparametric method because it doesn’t make a
specific assumption about distribution of returns. However HS method assumes that the distribution
of past returns is a good and complete representation of expected future returns.

The VaR with α% of probability level is calculated as the α% percentile of the sorted data return
values. For example, with a returns data with 1000 observations, the 1% VaR estimate is simply the
negative of the 10th sample order statistic. This HS VaR can be defined as follows:

VaRα = percentile
(
{rt}T

t=1, α%
)

,

where rt is the asset return at time t.

2.2. GHYP Parametric Distribution

The generalized hyperbolic distribution (GHYP) was introduced by Barndorff-Nielsen (1978) to
fit financial returns. The GHYP is an asymmetric heavy-tailed distribution that can account for the
extreme events and cater for skewness embedded in the data. It has since been applied in diverse
disciplines such as physics, biology, financial mathematics (see Eberlein and Keller (1995); Sørensen
and Bibby (1997); Paolella (2007, chp. 9)).

The probability density function (pdf) of univariate GHYP distribution with the parameterization
of Eberlein et al. (1998) is given, for x ∈ R, by:
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fGHD(x; λ, χ, ψ, µ, σ2, γ) = aKλ−1/2

(√(
χ +

(x− µ)2

σ2

)(
ψ +

γ2

σ2

))
exp

(
γ
(x− µ)

σ2

)(
(χ +

(x− µ)2

σ2 )(ψ +
γ2

σ2 )

)λ/2−1/4

,

with the normalizing constant

a =
(χψ)−λ/2ψλ(ψ + γ2

σ2 )
1/2−λ

(2π)1/2σKλ(
√

χψ)
,

where

(a) Kλ denotes a modified Bessel function of the third kind with index λ.
(b) λ defines the subclasses of GHYP and is related to the fail flatness.
(c) χ and ψ determine the distribution shape; in general, the larger those parameters are, the closer

the distribution is to the normal distribution.
(d) µ is the location parameter.
(e) σ is the dispersion parameter (standard deviation)
(f) γ is the skewness parameter (if γ = 0, the distribution reduces to the symmetric generalized

hyperbolic distribution).

The GHYP family contains many special cases known under special names, listed as follows:

• Hyperbolic Distribution (HYP)

If λ = 1, we get the hyperbolic distribution. However, HYP distribution is characterized by having
a hyperbolic log-density function whereas the logdensity for the normal distribution is a parabola.
Thus, one may expect the HYP distribution to be coherent alternatives for heavy tailed data.

• Normal Inverse Gaussian (NIG) Distribution

If λ = − 1
2 , then the distribution is known as normal inverse gaussian (NIG). NIG distribution is

also widely used in financial modeling.

• Variance Gamma (VG) Distribution

If λ > 0 and χ = 0, then we obtain the limiting case which is known as variance gamma
(VG) distribution.

• The Skewed Student’s -Distribution (St)

When λ < 0 and χ = 0 we get another limiting case called the generalized hyperbolic skew
student’s t distribution because it generalizes the usual Student t distribution, obtained from the
skewed-t by setting the skewness parameter γ = 0.

In order to estimate the unknown parameters (λ, χ, ψ, µ, σ2, γ), one can use the maximum
likelihood (ML) with numerical optimization method (EM-based algorithm).

2.3. Nonparametric Bootstrap Approach

The bootstrap method is used in an important number of statistics topics based on building a
sampling distribution for a statistic by resampling from the data at hand. The term bootstrap was
coined by Efron (1979), and is an allusion to the expression pulling oneself up by one’s bootstraps—in
this case, using the sample data as a population from which repeated samples are drawn Fox (2002).
The nonparametric bootstrap allows us to empirically estimate the sampling distribution of a statistic
θ—such as a mean, median, standard deviation, or quantile (VaR)—or an estimator θ̂ without making
assumptions about the form of the population, and without deriving the sampling distribution
explicitly. The basic idea of the nonparametric bootstrap is as follows: Assuming a data set S =

(x1, . . . , xn) is available. We draw a sample of size n from among the elements of S , sampling with
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replacement. This result is called bootstrap sample S?1 = (x?11, . . . , x?1n). We repeat this procedure a
large number of times, B, selecting many bootstrap samples; the bth such bootstrap sample is denoted
S?b = {x?b1, . . . , x?bn}. Next, we compute the statistic θ for each of the bootstrap samples; that is
θ?b = t(x?b ), with t denoting some function, that we can use to estimate from data. Then the distribution
of θ?b around the original estimate θ is analogous to the sampling distribution of the estimator θ around
the population parameter. The variance is estimated by the sample variance (but for the bootstrap
sample of θ̂) and the bias is estimated by the difference between the average of the bootstrap sample
and the original θ̂. Then, the bootstrap estimates of bias and variance are given approximately by:

Bias(θ̂?) ≈ 1
B

B

∑
b=1

θ̂?i − θ̂ = θ̂? − θ̂ and var(θ̂?) ≈ 1
B− 1

B

∑
b=1

(θ̂?i − θ̂?)2.

There are various methods for constructing bootstrap confidence intervals. The normal-theory
interval assumes that the distribution of θ̂ is normally distributed (which is often approximately the
case for statistics in sufficiently large samples), and uses the bootstrap estimate of sampling variance,
and perhaps of bias, to construct a 100(1− α)-percent confidence interval of the form:[

(θ̂ − θ̂?)− z1− α
2
se(θ?), (θ̂ − θ̂?) + z1− α

2
se(θ̂?)

]
,

where se(θ̂?) =
√

var(θ̂?) is the bootstrap estimate of the standard error of θ̂, and z1− α
2

is the 1− α
2 quantile

of the standard-normal distribution (e.g., 1.96 for a 95-percent confidence interval, where α = 0.05).
We can also estimate confidence intervals using percentiles of the sample distribution: The upper

and lower bounds of the confidence interval would be given by the percentile points (or quantiles)
of the sample distribution of parameter estimates. This alternative approach, called the bootstrap
percentile interval, is to use the empirical quantiles of θ?b to form a confidence interval [θ?(lo), θ?(up)],
where θ?(1), . . . , θ?(r) are the ordered bootstrap replicates of the statistic; lo = [(r + 1)α/2]; up = [(r +
1)(1− α/2)]; and [•] is the nearest integer function. This basic percentile interval approach is limited
itself, particularly if parameter estimators are biased Dowd (2005). It is therefore often better to use
the bias-corrected, accelerated (or BCa) percentile intervals. In order ton find the BCa, we firstly calculate

z = Φ−1ρ, where Φ−1(•) is the standard-normal quantile function, and ρ =
∑r

b=1(θ
?
b≤θ)

r+1 is the adjust
proportion of bootstrap replicates at or below the original-sample estimate θ. If the bootstrap sampling
distribution is symmetric, and if θ is unbiased, then this proportion will be close to 0.5, and z will
be close to 0. Now, let θ(−i) be the value of θ produced when the ith observation is deleted from the
sample there are n of these quantities. Let θ̄ = 1

n ∑n
i=1 θ(−i) be the average of the θ(−i). We calculate

β =

n

∑
i=1

(
θ(−i) − θ̄

)3

6

[
n

∑
i=1

(
θ(−i) − θ

2
)] 3

2
.

We calculate

β1 = Φ

[
z +

z− z1− α
2

1− β(z− z1− α
2
)

]
and β2 = Φ

[
z +

z + z1− α
2

1− β(z + z1− α
2
)

]
,

where Φ(•) is the standard-normal cumulative distribution function. The values β1 and β2 are used to
locate the endpoints of the corrected percentile confidence interval: [θ?

(lo?), θ?(up?)], where lo? = [rβ1]

and up? = [rβ2]. When β and z are both 0, β1 = Φ(−z1− α
2
) = Φ(z α

2
) = α

2 and β2 = Φ(z1− α
2
) = 1− α

2 ,
which corresponds to the (uncorrected) percentile interval.

For more background on the bootstrap approach and a broader array of applications see Efron
and Tibshirani (1993); Davison and Hinkley (1997).
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The bootstrap approach can be used to estimate the Value-at-Risk (VaR) and a confidence
intervals for VaR. A resampling method based on the bootstrap and a bias-correction to improving
the Value-at-Risk (VaR) forecasting ability of the normal-GARCH model has been developed in
Hartz et al. (2006). As mentioned in Dowd (2005), if we have a data set of n observations, we create a
new data set by taking n drawings, each taken from the whole of the original data set. Each new data
set created in this way gives us a new VaR estimate. We then create a large number of such data sets
and estimate the VaR of each. The resulting VaR distribution function enables us to obtain estimates
of the confidence interval for our VaR. For estimate confidence intervals using a bootstrap approach,
we produce a bootstrapped histogram of resample-based VaR estimates, and then read the confidence
interval from the quantiles of this histogram. A very good discussion on this and other improvements
can be seen in Dowd (2005, chp. 4). In Section 5.3, we use the bias corrected method to estimate the
confidence interval of VaR obtained form HS, Normal and GHYP distribution. The purpose of this
simulation exercise is to compare these methodologies with our maxitive kernel approach, in order to
identify that our interval-valued estimation of VaR perform properly.

3. Summative Kernels

3.1. Summative Kernels and Probability Distributions

Kernels are used in signal processing and nonparametric statistics to define a weighted
neighborhood around a location u ∈ Ω. In kernel regression, it is used to estimate the conditional
expectation of a random variable (see e.g., Silvermann 1986; Wand and Jones 1995).

Definition 1. A summative kernel—or conventional kernel—is a positive function κ : Ω −→ IR+ that verifies
the summativity property ∫

Ω
κ(u)du = 1.

From a basic summative kernel κ, we can define a summative kernel κx
∆ translated in x ∈ Ω and

dilated with a bandwidth ∆ > 0 by

∀u ∈ Ω, κx
∆(u) =

1
∆

κ(
u− x

∆
).

By convention, κ(u) = κ0
1(u).

The most used summative kernels in functional estimation are usually unimodal, symmetric,
and centered (i.e., defining a weighted neighborhood around the origin). When κ(u) is symmetric and
unimodal function, then the following conditions are fulfilled∫

Ω
uκ(u)du = 0 and

∫
Ω

u2κ(u)du = c > 0.

For example, the Epanechnikov kernel proposed by Epanechnikov (1969) illustrated in Figure 1 is
defined by

κ(u) =

{
3
4
(
1− u2) if |u| ≤ 1,

0 otherwise.
(2)

In the following, K(Ω) represents the set of unimodal, symmetric, and centered kernels.
A summative kernel κ can be seen as a probability distribution inducing a probability measure
Pκ : P(Ω)→ [0, 1] on the measurable space (Ω,P(Ω)). Pκ is defined by

∀A ⊆ Ω, Pκ(A) =
∫

A
κ(u)du.
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Ω

κ(u)du = 1

Ω

κ

Figure 1. Epanechnikov kernel with a bandwidth ∆ = 1.

Considering the summative kernel κ, we can define what we call the summative expectation
as follows:

Definition 2. Let s be a function of L(Ω) and let κ be a summative kernel ofK(Ω). The summative expectation
of s, in the neighborhood defined by κ, is the classical expectation of s w.r.t. Pκ :

Eκ(s) =
∫

Ω
sdPκ =

∫
Ω

s(u)κ(u)du, (3)

since dPκ = κ(u)du.

3.2. Empirical Distribution Function

Let (x1, . . . , xn) be a finite set of observations of n random variables (X1, . . . , Xn) i.i.d with
unknown pdf f and CDF F. One can estimate F by the empirical CDF Fn defined by

Fn(x) =
1
n

n

∑
i=1

1l(xi ≤ x), (4)

where 1l is the indicator function, namely 1l(xi ≤ x) = 1 if xi ≤ x and zero otherwise. Obviously
1l(xi ≤ x) = 1 with probability P(xi ≤ x) = F(x), and 1l(xi ≤ x) = 0 with probability P(xi > x) =
1− F(x). Then 1l(xi ≤ x) is a Bernoulli random variable with success probability F(x). Since the xi
are independent, so are the 1l(xi ≤ x). Thus Yn = ∑n

i=1 1l(xi ≤ x) (a sum of independent Ber{F(x)}
random variables) is a Bin{n, F(x)} random variable, and

Fn(x) ∼ 1
n
Bin{n, F(x)}.

Then ∀x ∈ Ω,

E(Fn(x)) = F(x) and Var(Fn(x)) =
F(x)(1− F(x))

n
.

This implies that the empirical CDF is convergent in probability to the true CDF:

∀x ∈ Ω, Fn(x) P−−−→ F(x).

Thus the empirical estimate of Value-at-Risk



Econometrics 2018, 6, 47 8 of 30

VaRα,n = inf
{

x, Fn(x) = P(X ≤ x) ≥ α
}

, (5)

converges towards the true VaRα.

3.3. Summative Kernel Cumulative Estimator

The empirical distribution function (Equation (4)) is not smooth as it jumps by 1
n at each point

xi (i = 1 . . . n). A kernel estimator of the CDF, introduced by authors such as Nadaraya (1964);
and Watson and Leadbetter (1964), is a smoothed version of the empirical distribution estimator.
Such an estimator arises as an integral of the Parzen-Rosenblatt kernel density estimator (see
Rosenblatt 1956; Parzen 1962).

Definition 3. The summative-kernel cumulative estimator of the CDF (also called the Parzen-Rosenblatt kernel
cumulative estimator), based on the summative kernel κ is given, in each point x ∈ Ω, by

F̂n
κ (x) =

1
n

n

∑
i=1

Γ
(
x− xi

)
, (6)

where Γ(x) =
∫ x

−∞
κ(u)du.

Let κ ∈ K(Ω) be a summative kernel function of the second order with support [−1, 1],
the function Γ(u) verifies the following properties

Γ(u) =

{
0 if u ∈]−∞,−1],

1 if u ∈]1, ∞].

∫ 1

−1
Γ2(u)du ≤

∫ 1

−1
Γ(u)du = 1,∫ 1

−1
Γ(u)κ(u)du =

1
2

,∫ 1

−1
uΓ(u)κ(u)du =

1
2

(
1−

∫ 1

−1
Γ2(u)du

)
.

Note that if κ is the pdf of a probability measure Pκ , then Γ is the cumulative distribution function
of Pκ . For example, κ being the Epanechnikov kernel defined by (2), the function Γ, depicted in Figure 2,
has the following expression:

Γ(u) =


0 if u ≤ −1,

−1
4

u3 +
3
4

u +
1
2

if |u| ≤ 1,

1 if u ≥ 1.

(7)

Let κ ∈ K(Ω) be a summative kernel with support [−1, 1], for a fixed x, the bias and the variance
of F̂n

κ (x) are given by

E
(

F̂n
κ (x)

)
− F(x) =

∆2

2
f ′(x)

∫
Ω

u2κ(u)du + o(∆2),

var(F̂n
κ (x)) =

1
n

{
F(x)

(
1− F(x)

)
+ ∆ f (x)

( ∫ +1

−1
κ2(u)du− 1

)
+ o(∆)

}
.

Some theoretical properties of the estimator F̂n
κ have been investigated, among others,

by Winter (1973); Winter (1979); Sarda (1993); Yamato (1973); and Jones (1990). Some properties
have long been known, e.g., the uniform convergence of F̂n

κ towads F when the pdf f = dF is
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continuous Nadaraya (1964); and Yamato (1973) or without conditions on f Singh et al. (1983). The
asymptotic expression of the Mean Integrated Squared Error (MISE) (i.e.,

∫
Ω(F̂n

κ (x)− F(x)dx)2 has
been studied in Swanepoel (1988). For a continuous pdf f , it has been proved that the best kernel is the
uniform kernel of bandwidth ∆ > 0 defined by κ(u) = 1

2∆ 1l[−∆,∆](u) and for a discontinuous function f ,
in a finite number of points, the best kernel is the exponential kernel of bandwidth ∆ > 0 defined by
κ(u) = ∆

2 e−∆|u|.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Ω

Γ

Figure 2. Integrated Epanechnikov κ kernel with a bandwidth ∆ = 1.

The method of choosing the optimal value of bandwidth in kernel estimation of the cumulative
distribution function is of crucial interest. Many procedures—such as plug-in and cross validation—have
been proposed in the relevant literature (see e.g., Sarda 1993; Polansky and Baker 2000; Altman and
Leger 1995) to choose (estimate) the optimal bandwidth for estimating the CDF of the random process
underlying a sample. As mentioned in Quintela Del Rio and Estevez-Perez (2013), the Polansky and
Baker plug-in bandwidth is given by

∆PB =
( ζ(κ)

−nξ2
2(κ)V̂2(g2)

)1/3
,

where

ξ2(κ) =
∫

Ω
u2κ(u)du ; ζ(κ) = 2

∫
Ω

uκ(u)Γ(u)du,

V̂r(g) =
1

n2gr+1

n

∑
i=1

n

∑
j=1

H(r)
( xi − xj

g

)
estimates

Vr =
∫

Ω
f (r)(u) f (u)du,

where r ≥ 2 is an even integer and

g2 =
( 2H(2)(0)
−nξ2

2(H)V4

)1/5
.

The kernel function H is not necessarily equal to κ. An iterative method for calculating the plug-in
bandwidth has been proposed by Polansky and Baker (2000). As mentioned in Quintela Del Rio and
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Estevez-Perez (2013), the plug-in bandwidth is calculated as follows: let b > 0 be an integer, firstly,
we calculate V̂2b+2 using

V̂r =
(−1)r/2r!

(2σ̂(xi))r+1(r/2)!(3.14)1/2 ,

where σ is the standard deviation of the data which can be estimated by σ̂(xi) = min{ŝ, Q3−Q1
1.349 },

with ŝ is the sample standard deviation, and Q1, Q3 denoting the first and third quartile, respectively.
Secondly, begin form j = b to j = 1, we calculate V̂2j(ĝ2j), where

ĝ2j =
( 2H(2j)(0)
−nξ2(H)V̂2j+2

)1/(2j+3)
,

with

V̂2j+2 =

{
V̂2b+2, if j = b,

V̂2j+2(ĝ2j+2), if j < b.

Thirdly, the plug-in bandwidth is

∆̂PB =
( ζ(κ)

−nξ2
2(κ)V̂2j(ĝ2j)

)1/3
.

In practice, for most applications, we consider b = 2 Quintela Del Rio and Estevez-Perez (2013).
Sarda (1993) introduced a cross-validation method to estimate the optimal bandwidth which

minimize the MISE:

CV(∆) =
n

∑
i=1

(
Fn(xi)− F̂n

κ;−i(xi)
)2

,

where Fn is the empirical distribution function (Equation (4)) and F̂n
κ;−i is the kernel cumulative

distribution estimator computed by leaving out xi:

F̂n
κ;−i(u) =

1
n− 1 ∑

j 6=i
Γ(u− xj).

Adrian et al. (1998) proposed a modified cross-validation method which minimizes the function

CV(∆) =
1
n

n

∑
i=1

∫
Ω

(
1l(u− xi)− F̂n

κ;−i(u)
)2

du.

For more details about bandwidth selection of summative kernel CDF estimation, we refer our
reader to Quintela Del Rio and Estevez-Perez (2013).

Now, if we suppose that all parameters have been chosen appropriately for F̂n
κ to be a consistent

estimate of the CDF, then a kernel estimator of VaR, denoted V̂aRα,κ , can be easily obtained by inverting
the equation F̂n

κ (x) = α. In that case, V̂aRα,κ satisfies:

1
n

n

∑
i=1

Γ
(
VaR̂α,κ − xi

)
= α. (8)

The kernel VaR estimator V̂aRα,κ can be seen as a smoothed version of the empirical distribution
function of VaR (VaRα,n) defined by (Equation (5)). For further details about the properties of the
kernel VaR estimator (see e.g., Gourieroux et al. 2000; Chen and Tang 2005; Sheather and Marron 1990).
However, the validity of such an estimate highly depends on the appropriateness of the chosen
kernel and bandwidth. In the next Section, we propose another approach that allows to estimate the
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dependance of the obtained estimate to the parameters of the method, and therefore to increase the
robustness of the decision process based on the data.

4. Maxitive Kernels

4.1. Maxitive Kernels and Possibility Distributions

In many applications the summative kernels and their bandwidth are chosen in a very empirical
way. As proposed in Loquin and Strauss (2008b), the empirical character of choosing a kernel could be
taken in consideration by taking a family of kernels rather than one kernel. This family of kernels can
be represented by using a maxitive kernel.

Definition 4. A maxitive kernel is a positive function π : Ω −→ [0, 1] that verifies the following
maxitivity property

sup
u∈Ω

π(u) = 1.

From a basic maxitive kernel π, we can define a maxitive kernel πx
∆ translated in x ∈ Ω and

dilated with a bandwidth ∆ > 0 by

∀u ∈ Ω, πx
∆(u) = π

(u− x
∆

)
.

By convention, π(u) = π0
1(u).

For example, the triangular maxitive kernel proposed in Loquin and Strauss (2008b) illustrated in
Figure 3 is defined by

π(u) =

{
1− |u| if |u| ≤ 1,

0 otherwise.
(9)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

sup
u∈Ω

π(u) = 1

Ω

π

Figure 3. Triangular maxitive kernel with a bandwidth ∆ = 1.

A maxitive kernel can be seen as a possibility distribution Loquin and Strauss (2008b), inducing
two dual non-additive confidence measures, a possibility measure Ππ , and a necessity measure Nπ

Dubois and Prade (1988); and De Cooman (1997) defined, ∀A ⊆ Ω, by
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Ππ(A) = sup
x∈A

π(x) (possibility),

Nπ(A) = 1−Ππ(Ac) (necessity),

with Ac being the complementary set of A in Ω.
A maxitive kernel π is said to dominate a summative kernel κ Loquin and Strauss (2008b), if the

possibility measure Ππ dominates the probability measure Pκ , i.e.,

∀A ⊆ Ω, Pκ(A) ≤ Ππ(A).

In that sense, a maxitive kernel defines the convex set of summative kernels it dominates. This set
is denotedM(π) and defined by

M(π) =
{

κ ∈ K(Ω)/∀A ⊆ Ω, Nπ(A) ≤ Pκ(A) ≤ Ππ(A)
}

. (10)

The specificity of a maxitive kernel π, defined by its integral, i.e., Sp(π) =
∫

Ω π(u)du, is a measure
of the information contained by the possibility measure associated to π Loquin and Strauss (2008b).
A maxitive kernel π1 is at least as informative as another one π2 if ∀u ∈ Ω, π1(u) ≤ π2(u)
Dubois (2006). In that case π1 is at least as specific as π2. It also characterizes the amount of summative
kernels dominated by π in the sense that, if ∀u ∈ Ω, π1(u) ≤ π2(u), then Sp(π1) ≤ Sp(π2) and
M(π1) ⊆ M(π2). Moreover, if ∃u0 ∈ Ω, such that π1(u0) < π2(u0) , then Sp(π1) < Sp(π2) and
M(π1) ⊂M(π2).

In this context, Dubois et al. (2004) proved that the triangular maxitive kernel, defined by
(Equation (9)), with a support [−∆,+∆] is the most specific maxitive kernel that dominates all
summative symmetric and unimodal kernels whose support belongs to [−∆,+∆].

4.2. Choquet Integrals and Maxitive Expectation

We start with the definition of a capacity or non-additive measure which generalize the notion of
additive measure, i.e., probability. The notion of capacity was introduced by Gustave Choquet in 1953
and has played an important role in game theory, fuzzy set theory, Dempster-Shafer theory and many
others (see Denneberg 1994; Shafer 1976; Choquet 1953).

Definition 5. Let (Ω,P(Ω)) be the measurable space. A capacity ν on (Ω,P(Ω)) is a set function ν :
P(Ω)→ [0, 1] satisfying:

• ν is normalized (i.e., ν(∅) = 0 and ν(Ω) = 1).
• ν is monotone (i.e., ∀A, B ∈ P(Ω), A ⊆ B ⇒ ν(A) ≤ ν(B)).

One of the most important concepts closely related to additive measures is integration. It has
a natural generalization to non-additive measure theory. Historically the first applied integral with
respect to non-additive measures is the Choquet Integral formalized by Gustave Choquet.

Definition 6. Let (Ω,P(Ω)) be the measurable space and ν : P(Ω)→ [0, 1] a capacity. Let s be a bounded
function of L(Ω). The continuous Choquet integral of s w.r.t. ν is defined by

Cν(s) = C
∫

Ω
sdν =

∫ 0

−∞

(
ν
(
{u ∈ Ω : s(u) ≥ z}

)
− 1
)

dz +
∫ ∞

0
ν
(
{u ∈ Ω : s(u) ≥ z}

)
dz, (11)

where the integral on the right hand side is a Riemann integral.
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Definition 7. Let ν be a capacity on (Ω,P(Ω)) and x = (x1, . . . , xn) ∈ Ωn be a discrete function
[1, . . . , n]→ Ω of n samples. The discrete Choquet integral of x w.r.t. ν is defined by:

Cν(x) = C
∫

Ω
xdν =

n

∑
i=1

(
xτ(i) − xτ(i−1)

)
ν(Aτ(i)), (12)

where τ is the permutation on [1, . . . , n], such that xτ(1) ≤ · · · ≤ xτ(n), Aτ(i) := {τ(i), . . . , τ(n)} and
xτ(0) = 0 by convention.

Note that, a probability P being a special case of (additive) capacity, the Choquet integral w.r.t.
P coincides with the classical expected value w.r.t. P.

Recall that, if X is a random variable defined on a probability space (Ω,P(Ω), P), then the classical
expected value of X is given by

EP(X) =
∫

Ω
XdP =

∫
Ω

X(u)dP(u), (13)

where P : P(Ω)→ [0, 1] is a probability measure on the measurable space (Ω,P(Ω)) and the integral
is a Lebesgue-Stieltjes integral.

The notion of expectation w.r.t. a summative kernel can be extended to a maxitive kernel,
as defined in Loquin and Strauss (2008b).

Definition 8. Let π be a maxitive kernel and let s be a bounded function of L(Ω). The expectation of s w.r.t π

is defined by:

Eπ(s) =
[
Eπ(s),Eπ(s)

]
=
[
CNπ (s),CΠπ (s)

]
, (14)

where Ππ (rsp. Nπ) is the possibility (rsp. necessity) measure induced by the maxitive kernel π and C is the
Choquet integral.

An important property, that will be used in the sequel, is that the maxitive interval-valued
expectation of s w.r.t. π is the convex set of all the summative precise-valued expectations w.r.t. all the
summative kernels dominated by π Loquin and Strauss (2008b).

Property 1. Let π be a maxitive kernel and let M(π) be the set of the summative kernels it dominates
(see Equation (10)). Let s be a bounded function of L(Ω). We have

∀g ∈ Eπ(s), ∃κ ∈ M(π) : Eκ(s) = g, (15)

and
∀κ ∈ M(π),Eκ(s) ∈ Eπ(s), (16)

where Eκ(s)
(
resp. Eπ(s)

)
is the summative (resp. maxitive) expectation of s w.r.t. κ (resp.π).

4.3. Maxitive Kernel Cumulative and VaR Estimator

As mentioned in Loquin and Strauss (2008a) (Theorem 4), the summative kernel cumulative
estimator F̂n

κ , defined by (Equation (3)), in each point x ∈ Ω, can be written as the summative
expectation of the empirical CDF Fn, defined by (Equation (4)), in a probabilistic neighborhood defined
by the summative kernel κ translated in x

F̂n
κ (x) = Eκx (Fn). (17)

Based on this reformulation, Loquin and Strauss (2008a) propose an extension of the summative
kernel estimator of the CDF. This extension called maxitive kernel estimator of the CDF or
interval-valued estimation of the CDF.
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Definition 9. Let Fn be the empirical CDF based on the sample (x1, . . . , xn). Let π be a maxitive kernel and
let Eπ(•) be the maxitive expectation w.r.t. π (Expression (14)). The maxitive kernel cumulative estimator is
defined, ∀x ∈ Ω, by

Fn
π(x) =

[
Fn

π(x), Fn
π(x)

]
= Eπx (Fn) =

[
Eπx (Fn),Eπx (Fn)

]
. (18)

The computation of Fn
π involves two Choquet integrals. This computation

Loquin and Strauss (2008a) is given, for all x ∈ Ω, by

Fn
π(x) = Eπx (Fn) = CNπx (Fn) =

1
n

n

∑
i=1

((
1− πx(xi)

)
1l(xi ≤ x)

)
, (19)

Fn
π(x) = Eπx (Fn) = CΠπx (Fn) =

1
n

n

∑
i=1

(
πx(xi)1l(x ≤ xi) + 1l(xi ≤ x)

)
. (20)

The estimation of the CDF is usually computed on p regularly spaced points of Ω. Let {yj}j∈{1,...,p}
be those p points. The algorithm of compute of

{
Fn

π(yj)
}

j∈{1,...,p}, in each point {yj}j∈{1,...,p} of Ω,
is given by Algorithm 1.

Algorithm 1: Computation of
{ [

Fn
π(yj), Fn

π(yj)
] }

j∈{1,...,p}
.

Data: The considered location {yj}j∈{1,...,p}, the observations {xi}i∈{1,...,n} and the maxitive
kernel π.

Result:
{ [

Fn
π(yj), Fn

π(yj)
] }

j∈{1,...,p}
.

1 begin
2 for j = 1 to p do
3 Fn

π(yj)← 0, Fn
π(yj)← 0

4 for i = 1 to n do
5 if yj <= xi then
6 Fn

π(yj) = Fn
π(yj) + 1

7 else
8 πi = πyj(xi)

9 Fn
π(yj) = Fn

π(yj) + πi

10 end
11 if yj >= xi then
12 Fn

π(yj) = Fn
π(yj) + 1

13 else
14 πi = πyj(xi)

15 Fn
π(yj) = Fn

π(yj) + πi

16 end
17 end
18 Fn

π(yj) =
1
n Fn

π(yj)

19 Fn
π(yj) = 1− 1

n Fn
π(yj)

20 end
21 end

The interval-values estimate Fn
π based on a maxitive kernel π (Expression (9)) is the most

specific interval containing all summative estimate F̂n
κ (Expression (6)) based on a summative kernel κ

dominated by π, i.e., such that κ ∈ M(π).
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Property 2. Let π be a maxitive kernel on Ω andM(π) the set of all the summative kernels dominated by π.
We have

∀x ∈ Ω, ∀κ ∈ M(π), F̂n
κ (x) ∈ Fn

π(x),

and
∀g ∈ Fn

π(x), ∃κ ∈ M(π), F̂n
κ (x) = g.

Notice that, due to Property 2, both Fπ and Fπ are also estimates of the sought after CDF.
Clearly, Fn

π and Fn
π are two strictly increasing continuous functions on Ω, and so they both have an

inverse. Then, we can infer immediately an maxitive interval-valued estimation of the VaR VaRα,π =

[VaRα,π , VaRα,π ]:

VaRα,π = inf
{

x, Fπ(x) = P(X ≤ x) ≥ α
}
= F−1

π (α),

VaRα,π = inf
{

x, Fπ(x) = P(X ≤ x) ≥ α
}
= F−1

π (α),

that inherits from the properties of the CDF: VaRα,π =
{

V̂aRα,κ |κ ∈ M{π}
}

.
The MATLAB program computing the interval-valued estimation of VaR is outlined in Appendix A

to the present paper.

5. Experiment: Empirical Results

5.1. Data and Experimental Process

The data used in the present study consisted of daily closing prices collected between January
2010 and December 2016 for four stock indexes from developed countries: S&P500, DJI, Nikkei225,
and CAC40. The daily close prices were converted to daily log-returns. We took the first differences
of the natural logarithm of the daily prices. For an observed price Pt, the corresponding one-day
log-return on day t was defined by: rt = ln

(
Pt

Pt−1

)
. Table 1 contains descriptive statistics for the sample

return of the four considered stock indexes. We observed that the returns were negatively skewed
and characterized by heavy tails since the kurtoses were significantly greater than 3. The series had a
distribution with tails that were significantly fatter than those of normal distribution. The Jarque-Bera
test also indicated that hypothesizing the four data to be normally distributed can be rejected with a
very low significance level.

Table 1. Descriptive statistics of daily returns on 4 stock indexes of a financial institution observed
between 1 January 2010 and 1 September 2016.

Index S&P500 Nikkei225 DJI CAC40

No. of observations 1702 1673 1702 1581
Min −6.895 −11.15 −5.7 −5.634
Max 4.63 10.66 4.15 9.22

Mean 0.0379 0.027 0.032 0.0038
Standard deviation 0.991 1.467 0.92 1.379

Skewness −0.441 −0.468 −0.384 −0.015
Kurtosis 7.08 9.77 6.416 5.85

Jarque-Bera
1239.5 3262.7 869.91 535.17
p-value p-value p-value p-value
0.000 0.000 0.000 0.000

Due to these properties, the normal distribution would be an inappropriate model for calculating
the daily VaR—as mentioned in the introduction. We thus rather envisage a nonparametric asymmetric
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approach based on kernel estimation of the CDF. However, as previously mentioned, estimating the
VaR using a kernel based approach can be highly biased, since the choice of the kernel has an important
impact on assessing the VaR estimate at a given probability level.

In this section, we propose to gauge this impact by estimating the VaR at a several probability
levels with different types of kernels, whose bandwidths have been adapted to the available datasets.
We confirmed that no kernel can be considered as optimal in this context and show that the new
maxitive interval-valued nonparametric approach we propose leads to a more cautious behavior
when applied to real data. In fact, the bounds of the interval-valued estimate of the VaR, for a given
probability level, can be instrumental in applications such as reserve requirements for banks. We then
show that this approach allows discarding some parametric approaches since they are not adapted to
heavy tailed data like those we consider.

5.2. Nonparametric Estimate of the VaR: Comparing Summative and Maxitive Approaches

In this experiment, we have considered estimating the VaR for low probability levels—namely at
levels lower than 0.1—for each of the four datasets. In the first experiment, we have focused on DJI and
Nikkei225 indexes. The CDF(s) have been estimated by considering four of the most used summative
kernels whose bandwidth have been adapted using the rule of thumb method: Epanechnikov, normal,
biweight, and triweight (linear)—see Silvermann (1986) for their analytical expressions. Figure 4
illustrates the impact of the kernel choice in the VaR estimation. This impact is more marked with high
volatility stocks (Nikkei225). For example, referring to Figure 4a, it can be seen that the VaR estimate
based on the Epanechnikov kernel is absolutely greater than the one based on the normal kernel at the
probability level of 1% while the opposite situation occurs at the probability level of 2.5%. Referring to
each plots of Figure 4, it is obvious that no kernel can be seen as always providing the upper or lower
valued CDF. Since the CDF curves intersect each other for different probability levels then the risk of
bias in the VaR estimate is relatively great, especially when the number of observations in the data set
is low—compare Figure 4b–d. In this context, no kernel function can be considered as more or less
conservative than the others. Also, other indexes would have produced similar results.

This first experiment shows that the high dependence of the CDF estimate to the chosen kernel
shape can highly impact and bias the VaR estimate. The goal of the second experiment aims to show
that none of the four considered kernel can be considered as optimal in this context. This experiment
needs a ground truth which is not available. A resampling methodology was carried out to estimate
such a ground truth. This methodology consists of five steps:

• Step 1: Fit a GARCH model to the four stock returns data. The fitted model considered for the
returns rt is a AR(1)1- GARCH(1,1) given by:

rt = µt + εt,

εt = σtzt, ∀t = 1, ..., n,

σ2
t = η0 + η1ε2

t−1 + η2σ2
t−1,

where rt is the return value at time t, zt is a standard Normal random variable and n is the sample
size (n = 200 and 1500). The conditional mean µt, is assumed to follow an AR(1) model given
by: µt = ϕ0 + ϕ1rt−1. By definition εt is serially uncorrelated with mean zero, but a time varying
conditional variance equal to σ2

t . The three positive parameters η0, η1, η2 and the two parameters
ϕ0, ϕ1 are, respectively, the parameters of the GARCH(1,1) and the AR(1) models. The ML method
provides a systematic way to adjust the parameters of the model to give the best fit. Table 2 lists
the fitted models for each daily stock returns data.

1 Autoregressive of order 1.
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Table 2. Fitted GARCH models.

Sample Size Index µt  AR(1) GARCH(1,1)

S&P500 rt = 0.032− 0.132rt−1 + εt σ2
t = 0.08 + 0.23ε2

t−1 + 0.663σ2
t−1

200 Nikkei225 rt = −0.05− 0.08rt−1 + εt σ2
t = 0.179 + 0.12ε2

t−1 + 0.827σ2
t−1

DJI rt = 0.033− 0.116rt−1 + εt σ2
t = 0.08 + 0.25ε2

t−1 + 0.63σ2
t−1

CAC40 rt = −0.05− 0.031rt−1 + εt σ2
t = 0.032 + 0.044ε2

t−1 + 0.93σ2
t−1

S&P500 rt = 0.046− 0.063rt−1 + εt σ2
t = 0.078 + 0.207ε2

t−1 + 0.69σ2
t−1

1500 Nikkei225 rt = 0.068− 0.0043rt−1 + εt σ2
t = 0.088 + 0.176ε2

t−1 + 0.814σ2
t−1

DJI rt = 0.039− 0.069rt−1 + εt σ2
t = 0.07 + 0.22ε2

t−1 + 0.68σ2
t−1

CAC40 rt = 0.025− 0.027rt−1 + εt σ2
t = 0.03 + 0.0767ε2

t−1 + 0.906σ2
t−1
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(a) DJI (n = 200)
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(b) DJI (n = 650)
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(c) Nikkei225 (n = 200)
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(d) Nikkei225 (n = 650)

Figure 4. Cumulative distribution function (CDF) Kernel smoothed estimators for the DJI daily returns
with sample size 200 (a) and 650 (b); and for the Nikkei225 daily returns with sample size 200 (c) and
650 (d). The black curve is the Epanechnikov distribution; red curve is the Triweight distribution.
The blue curve corresponds to the Biweight distribution and the green curve is the Normal distribution.

• Step 2: Generate 1000 simulated samples from each returns data using the coefficients obtained
from the above fitted models. The main reason behind proposing GARCH models to simulate
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our real data is the dependence properties and the volatility phenomena of stock returns;
see Engle (1982).

In a first step, we generate an i.i.d series, zt, by the random generator in MATLAB (R2010a) and
another series σt. The random numbers sampled were all assumed to be normally distributed
with expectation zero and unit variance. Then, the innovations for the GARCH series have
been obtained via the equation εt = σtzt. Finally the generation of rt from the AR(1) process
is straightforward. Therefore we run the series for 1500 and 200 times in each of the 1000
simulated samples.

• Step 3: Calculate the VaR estimates for each sample data generated in step two using the 4 kernel
functions. These VaRs are calculated at five chosen levels of probability (α = 1%, 2.5%, 5%, 7.5%,
10%) with 2 times horizons (n = 200 and n = 1500).

• Step 4: Assess the performance of each kernel function by comparing their VaRs with the empirical
VaRs. The performance criterion we examine is the mean square error (MSE), i.e.,:

MSE = E
((

Q̂(n)(p)−Q(p)
)2
)
' 1

m

m

∑
k=1

(
Q̂(k)

n (p)−Q(p)
)2

, (21)

where Q̂(n)(p) is a vector of quantiles obtained from the simulated samples.
• Step 5: Tabulate the results that lead us to some important conclusions.

The results of the MSE of each α (%) VaR estimates are reported in Tables 3 and 4. From Tables 3
and 4, for S&P500, the best kernel function that estimate the VaR at level of 10%, 7.5%, 5% and 2.5% is
the Epanechnikov kernel, while the Normal kernel is the best at 1% probabilities level. For Nikkei225,
it seems that the Normal perform better than the other kernel functions. For DJI, the Epanechnikov
kernel is more accurate to estimate the VaR, while for CAC40 the Normal and is matched more
accurately. From Table 4, when n = 200, it appears that the Biwieight and Epanechnikov kernel are
more likely to estimate VaR more accurately at several probability levels. However, the performance of
kernel functions rapidly declines as n and α get smaller.

Table 3. Mean square error results for several types of kernel functions and n = 1500.

α Index Epanechnikov Normal Biweight Triweight Best

S&P500 0.01285 0.01287 0.01286 0.01286 Epanechnikov

10% Nikkei225 0.226 0.223 0.227 0.2265 Normal
DJI 0.00535 0.00533 0.00534 0.0535 Normal

CAC40 0.0256 0.0255 0.02551 0.02551 Normal

S&P500 0.03575 0.03580 0.035764 0.035763 Epanechnikov

7.5% Nikkei225 0.0316 0.0315 0.0318 0.0318 Normal
DJI 0.01075 0.01075 0.01074 0.01075 Biweight

CAC40 0.0339 0.034 0.0341 0.0342 Normal

S&P500 0.07288 0.07295 0.07289 0.07289 Epanechnikov

5% Nikkei225 0.0435 0.042 0.0435 0.0436 Normal
DJI 0.03877 0.03879 0.03878 0.03882 Epanechnikov

CAC40 0.078 0.0784 0.0782 0.0781 Normal

S&P500 0.01763 0.01764 0.017635 0.017637 Epanechnikov

2.5% Nikkei225 0.0858 0.0857 0.0859 0.08578 Normal
DJI 0.141 0.1409 0.1408 0.1409 Epanechnikov

CAC40 0.132 0.131 0.133 0.134 Normal

S&P500 0.05804 0.05801 0.05804 0.058017 Normal

1% Nikkei225 0.246 0.2467 0.2481 0.2482 Epanechnikov
DJI 0.2404 0.2405 0.2406 0.2407 Epanechnikov

CAC40 0.363 0.363 0.364 0.362 Triweight
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Table 4. Mean square error results for several types of kernel functions and n = 200.

α Index Epanechnikov Normal Biweight Triweight Best

S&P500 0.0337 0.0335 0.0336 0.0338 Normal

10% Nikkei225 0.766 0.765 0.767 0.766 Normal
DJI 0.0441 0.0443 0.0442 0.0442 Epanechnikov

CAC40 0.0347 0.0348 0.0346 0.0348 Biweight

7.5% S&P500 0.0632 0.0634 0.0633 0.064 Epanechnikov
Nikkei225 0.938 0.937 0.939 0.936 Triweight

DJI 0.0614 0.0615 0.0612 0.0613 Biweight
CAC40 0.0588 0.0591 0.0592 0.0594 Epanechnikov

S&P500 0.1169 0.1173 0.1167 0.1183 Biweight

5% Nikkei225 1.131 1.129 1.131 1.127 Triweight
DJI 0.0975 0.0977 0.0974 0.0977 Biweight

CAC40 0.148 0.149 0.147 0.0148 Epanechnikov

S&P500 0.28 0.284 0.281 0.283 Biwieght

2.5% Nikkei225 1.453 1.451 1.453 1.448 Triweight
DJI 0.252 0.255 0.253 0.254 Epanechnikov

CAC40 0.2905 0.2888 0.287 0.2889 Biweight

S&P500 0.869 0.821 0.87 0.881 Epanechnikov

1% Nikkei225 1.977 1.995 1.981 1.980 Epanechmikov
DJI 0.702 0.691 0.696 0.693 Normal

CAC40 0.794 0.791 0.788 0.793 Biweight

The simulations results showed that, for large sample sizes (here n = 1500), all kernel functions
are consistent estimators, i.e., MSE values are close to 0. On the other hand, MSE values are larger for
the smaller sample size (here n = 200). This demonstrates that choosing a particular kernel, when the
sample size is low, is risky. Therefore a coherent interval-valued of VaR as we propose is likely to
provide a more careful decision in this context.

5.3. Interval Estimation of Value-at-Risk and Some Numerical Comparisons

Here we apply the maxitive kernel estimator presented in Section 4.3 to obtain the lower and upper
bound for VaR corresponding to each four stock indexes for three probability levels (α = 10%, 5%, 1%).
To obtain the optimal bounds for the VaR, the bandwidth has been, once again, chosen using the
most popular methods such as biased cross-validation method and plug-in method presented in
Section 3.3. As shown in Table 5, the maximum available bandwidth is taken to insure that all kernel
estimators are inside the interval given by the maxitive kernel estimator. In order to examine the
performance of the maxitive kernel estimation method, we divide the data into three samples: the
first sample corresponds to data with 6 year time horizons, the second sample is chosen with time
horizons of 3 years and the third correspond to one year time horizon. In a first step, after choosing
the best-fit distribution from the family of GHYP distribution by using the AIC2 criteria, we compute
the VaR across the candidate distribution. Next, we compute the VaR confidence interval based on
these three distributions using the bias-corrected and accelerated (BCa) bootstrap method. Finally,
we compare our proposed maxitive interval-valued with those based on the bootstrap technique under
different samples sizes. So far, the bootstrap confidence interval of VaR for the three distributions:
GHYP, Normal, and HS are presented together in Tables 6–8. With these punctual VaRs at hand for
comparison purposes, we evaluate the performance of our approach. In this section, we have chosen to
illustrate our results and to discuss the benefit of our approach in two ways. In Tables 6–8, we show the

2 Akaike Information Criterial. AIC = −2 ln
(

L
(
GHYP

))
+ 2ς, where ς is the number of estimated parameters and L(GHYP)

is the likelihood of the GHYP model.
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explicit results for the minimum and maximum value, as well as the width of the interval estimation
of VaR for several probability levels between 1% and 10%. Figure 5 shows the PP-plots, i.e., the F̂(xi)

of all models against the F(xi). Based on the numerical results we can formulate several conclusions:
Evidently, the lower and upper bounds increase with the probability level α. However, it is important
to note that the intervals estimation of VaRs for the two indexes Nikkei225 and CAC40 are larger than
those of DJI and S&P500 indexes. Note also that the influence of the volatility stock market is much
more important than the influence of the sample size. Also, the widths of maxitive VaR intervals are
rather tight than those derived from the GHYP, HS, and normal distributions. For example, for the
short time horizon 1 year with the high volatility stock (Nikkei225) and at the 1% of probability level
the width of the interval-valued of VaR is 1.073 while the widths of the BCa (99%) confidence interval
based on HS, normal, and GHYP distributions are respectively 4.236, 1.925, and 4.246 respectively
(See Table 6). Furthermore, we can remark that the maxitive interval-valued estimation of the VaR is
on the left side of the normal VaR and this shows the ability of our approach to model very dangerous
financial risks while the normal distribution is not consistent with tail-thickness and right tail risk.
This results indicate that our approach is more accurate and informative especially for the smaller
sample size.

Table 5. Optimal bandwidth estimation for the four stocks return data.

Return Data Time Horizon Bandwidth Epanechnikov Normal Biweight Triweight Maxitive
Selection Method Kernel Bandwidth

S&P500

6 years Plug-in 0.189 0.084 0.245 0.250 0.250Cross validation 0.174 0.060 0.190 0.211

3 years Plug-in 0.228 0.101 0.269 0.294 0.294Cross validation 0.197 0.118 0.211 0.267

1 year Plug-in 0.318 0.141 0.376 0.405 0.405

Nikkei225

Cross validation 0.277 0.092 0.338 0.397

6 years Plug-in 0.332 0.147 0.405 0.440 0.440Cross validation 0.330 0.110 0.331 0.412

3 years Plug-in 0.406 0.180 0.480 0.540 0.540Cross validation 0.307 0.101 0.390 0.430

1 year Plug-in 0.840 0.374 0.996 1.118 1.118

DJI

Cross validation 0.841 0.382 0.994 1.098

6 years Plug-in 0.173 0.077 0.205 0.224 0.224Cross validation 0.150 0.050 0.180 0.208

3 years Plug-in 0.228 0.101 0.270 0.294 0.294Cross validation 0.189 0.113 0.210 0.223

1 year Plug-in 0.360 0.160 0.425 0.468 0.468

CAC40

Cross validation 0.326 0.148 0.381 0.422

6 years Plug-in 0.323 0.143 0.382 0.431 0.446Cross validation 0.374 0.080 0.390 0.446

3 years Plug-in 0.423 0.188 0.498 0.564 0.564Cross validation 0.433 0.144 0.501 0.544

1 year Plug-in 0.93 0.416 1.107 1.250 1.250Cross validation 0.934 0.411 1.150 1.230
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Table 6. A comparison between the bound estimates of the daily VaR based on the maxitive kernel estimation method and bootstrap confidence intervals of Value-at-Risk (VaRs) based on three different
distributions: Historical simulation method (HS), Normal, and Generalized HYPerbolic (GHYP) distributions. These VaR methods are applied to four daily stock returns at several probability levels α% and time
horizon of 1 year.

Returns α
Interval-Valued of VaR

pdf Estimated Bootstrap Confidence Intervals of VaRs

VaR BCa (90%) BCa (95%) BCa (99%)
L.B. U.B. Width L.B. U.B. Width L.B. U.B. Width L.B. U.B. Width

HS −0.933 −1.089 −0.773 0.316 −1.126 −0.758 0.368 −1.162 −0.665 0.497
10% −1.092 −0.751 0.341 Normal −1.117 −1.303 −0.933 0.370 −1.336 −0.893 0.443 −1.379 −0.825 0.554

GHYP −0.839 −0.993 −0.724 0.269 −1.016 −0.694 0.322 −1.094 −0.673 0.421
HS −1.325 −1.552 −1.146 0.406 −1.581 −1.109 0.472 −1.632 −1.07 0 0.562

S&P500 5% −1.605 −1.152 0.453 Normal −1.440 −1.716 −1.256 0.460 −1.757 −1.234 0.523 −1.822 −1.131 0.691
GHYP −1.264 −1.486 −1.053 0.433 −1.555 −1.015 0.540 −1.595 −0.900 0.695

HS −2.196 −2.548 −1.938 0.610 −2.631 −1.876 0.755 −2.773 −1.736 1.037
1% −3.240 −2.117 1.123 Normal −2.052 −2.399 −1.818 0.581 −2.456 −1.788 0.668 −2.469 −1.678 0.791

GHYP −2.281 −2.589 −1.997 0.592 −2.683 −1.963 0.720 −2.701 −1.851 0.850

HS −4.331 −5.055 −3.713 1.342 −5.176 −3.590 1.586 −5.906 −3.419 2.487
10% −5.013 −3.236 1.777 Normal −2.401 −2.805 −2.100 0.705 −2.831 −1.906 0.925 −2.970 −1.768 1.202

GHYP −3.889 −4.588 −3.434 1.154 −4.772 −3.376 1.396 −4.875 −3.144 1.731
HS −5.797 −6.852 −5.196 1.656 −7.054 −5.121 1.933 −7.054 −4.789 2.265

Nikkei225 5% −6.760 −5.010 1.750 Normal −3.061 −3.625 −2.677 0.948 −3.687 −2.601 1.086 −3.806 −2.431 1.375
GHYP −5.567 −6.458 −4.806 1.652 −6.886 −4.743 2.143 −7.009 −4.615 2.394

HS −9.259 −10.31 −7.788 2.522 −10.710 −7.639 3.071 −11.320 −7.084 4.236
1% −10.170 −9.097 1.073 Normal −4.301 −5.233 −3.774 1.459 −5.409 −3.743 1.666 −5.512 −3.587 1.925

GHYP −9.907 −11.53 −8.766 2.764 −11.760 −8.549 3.211 −11.970 −7.724 4.246

HS −0.897 −1.081 −0.752 0.329 −1.157 −0.708 0.449 −1.184 −0.648 0.536
10% −1.099 −0.766 0.333 Normal −1.081 −1.276 −0.938 0.338 −1.362 −0.915 0.447 −1.376 −0.858 0.518

GHYP −0.838 −1.016 −0.694 0.322 −1.040 −0.673 0.367 −1.061 −0.623 0.438
HS −1.262 −1.550 −1.097 0.453 −1.576 −0.999 0.577 −1.138 −0.669 0.469

DJI 5% −1.540 −1.094 0.446 Normal −1.394 −1.597 −1.181 0.416 −1.642 −1.142 0.500 −1.741 −1.078 0.663
GHYP −1.237 −1.459 −1.085 0.374 −1.470 −1.039 0.431 −1.496 −0.989 0.507

HS −2.006 2.303 −1.727 −4.030 −2.349 −1.669 0.680 −2.439 −1.568 0.871
1% −2.949 −1.837 1.112 Normal −1.982 −2.295 −1.760 0.535 −2.315 −1.690 0.625 2.396 −1.588 −3.984

GHYP −2.166 −2.458 −1.919 0.539 −2.532 −1.863 0.669 −2.646 −1.715 0.931

HS −2.670 −3.075 −2.246 0.829 −3.16 0 −2.198 0.962 −3.184 −2.074 1.110
10% −3.555 −2.154 1.401 Normal −1.920 −2.184 −1.616 0.568 −2.305 −1.561 0.744 −2.388 −1.515 0.873

GHYP −2.702 −3.258 −2.099 1.159 −3.257 −2.234 1.023 −3.258 −2.099 1.159
HS −3.605 −4.142 −3.102 1.040 −4.156 −3.045 1.111 −4.415 −2.940 1.475

CAC40 5% −4.202 −3.184 1.018 Normal −2.446 −2.700 −1.991 0.709 −2.818 −1.961 0.857 −2.978 −1.961 1.017
GHYP −3.576 −4.084 −3.106 0.978 −4.150 −2.936 1.214 −4.433 −2.608 1.825

HS −5.100 −5.759 −4.618 1.141 −6.129 −4.477 1.652 −6.125 −4.477 1.648
1% −6.051 −4.771 1.280 Normal −3.433 −3.836 −2.979 0.857 −3.903 −2.863 1.040 −4.124 −2.757 1.367

GHYP −5.463 −6.391 −4.860 1.531 −6.71 0 −4.821 1.889 −6.717 −4.411 2.306
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Table 7. A comparison between the bound estimates of the daily VaR based on the maxitive kernel estimation method and bootstrap confidence intervals of VaRs based on three different distributions: Historical
simulation method (HS), Normal, and GHYP distributions. These VaR methods are applied to four daily stock returns at several probability levels α% and time horizon of 3 years.

Returns α
Interval-Valued of VaR

pdf Estimated Bootstrap Confidence Intervals of VaRs

VaR BCa (90%) BCa (95%) BCa (99%)
L.B. U.B. Width L.B. U.B. Width L.B. U.B. Width L.B. U.B. Width

HS 0.860 −0.941 −0.765 0.176 −0.958 −0.753 0.205 −1.001 −0.737 0.264
10% −0.996 −0.732 0.264 Normal −1.088 −1.199 −1.002 0.197 −1.221 −0.986 0.235 −1.250 −0.956 0.294

GHYP −0.834 −0.933 −0.763 0.170 −0.946 −0.746 0.200 −0.969 −0.709 0.260
HS −1.253 −1.382 −1.130 0.252 −1.363 −1.145 0.218 −1.429 −1.085 0.344

S&P500 5% −1.394 −1.130 0.264 Normal −1.402 −1.527 −1.301 0.226 −1.548 −1.286 0.262 −1.598 −1.240 0.358
GHYP −1.207 −1.316 −1.112 0.204 −1.335 −1.090 0.245 −1.376 −1.040 0.336

HS −2.059 −2.208 −1.922 0.286 −2.235 −1.897 0.338 −2.308 −1.851 0.457
1% −2.230 −1.979 0.251 Normal −1.993 −2.163 −1.854 0.309 −2.192 −1.829 0.363 −2.268 −1.788 0.480

GHYP −2.067 −2.246 −1.936 0.310 −2.275 −1.909 0.366 −2.313 −1.832 0.481

HS −2.602 −2.937 −2.386 0.551 −3.021 −2.341 0.680 −3.119 −2.231 0.888
10% −3.024 −2.283 0.741 Normal −1.976 −2.176 −1.756 0.420 −2.235 −1.721 0.514 −2.350 −1.612 0.738

GHYP −2.517 −2.773 −2.254 0.519 −2.816 −2.209 0.607 −2.929 −2.090 0.839
HS −3.911 −4.359 −3.566 0.793 −4.486 −3.503 0.983 −4.647 −3.346 1.301

Nikkei225 5% −4.324 −3.616 0.708 Normal −2.539 −2.851 −2.298 0.553 −2.885 −2.246 0.639 −3.028 −2.170 0.858
GHYP −3.832 −4.338 −3.498 0.840 −4.384 −3.423 0.961 −4.441 −3.292 1.149

HS −6.273 −6.980 −5.697 1.283 −7.053 −5.599 1.454 −7.308 −5.425 1.883
1% −6.602 −6.052 0.550 Normal −3.595 −4.012 −3.263 0.749 −4.077 −3.182 0.895 −4.279 −3.081 1.198

GHYP −7.421 −8.262 −6.738 1.524 −8.432 −6.632 1.800 −8.695 −6.273 2.422

HS −0.851 −0.927 −0.763 0.164 −0.945 −0.755 0.190 −0.986 −0.742 0.244
10% −0.976 −0.743 0.233 Normal −1.072 −1.168 −0.968 0.200 −1.184 −0.953 0.231 −1.202 −0.926 0.276

GHYP −0.830 −0.906 −0.758 0.148 −0.930 −0.748 0.182 −0.981 −0.722 0.259
HS −1.245 −1.349 −1.148 0.201 −1.377 −1.136 0.241 −1.410 −1.088 0.322

DJI 5% −1.373 −1.161 0.212 Normal −1.379 −1.489 −1.286 0.203 −1.506 −1.263 0.243 −1.564 −1.230 0.334
GHYP −1.193 −1.300 −1.102 0.198 −1.319 −1.086 0.233 −1.375 −1.062 0.313

HS −1.816 −1.959 −1.694 0.265 −1.972 −1.664 0.308 −2.021 −1.622 0.399
1% −1.975 −1.752 0.223 Normal −1.956 −2.081 −1.815 0.266 −2.108 −1.790 0.318 −2.173 −1.726 0.447

GHYP −2.025 −2.169 −1.891 0.278 −2.197 −1.856 0.341 −2.256 −1.830 0.426

HS −1.963 −2.152 −1.832 0.320 −2.148 −1.771 0.377 −2.230 −1.742 0.488
10% −2.311 −1.658 0.653 Normal −1.630 −1.781 −1.507 0.274 −1.806 −1.482 0.324 −1.836 −1.428 0.408

GHYP −1.968 −2.137 −1.837 0.300 −2.161 −1.804 0.357 −2.235 −1.738 0.497
HS −2.740 −2.952 −2.563 0.389 −2.960 −2.537 0.423 −3.062 −2.435 0.627

CAC40 5% −3.095 −2.481 0.614 Normal −2.093 −2.255 −1.941 0.314 −2.295 −1.910 0.385 −2.359 −1.880 0.479
GHYP −2.756 −2.968 −2.588 0.380 −2.968 −2.518 0.450 −3.041 −2.448 0.593

HS −4.428 −4.770 −4.161 0.609 −4.806 −4.112 0.694 −4.903 −4.005 0.898
1% −4.855 −4.137 0.718 Normal −2.961 −3.157 −2.745 0.412 −3.198 −2.237 0.961 −3.348 −2.677 0.671

GHYP −4.519 −4.870 −4.268 0.602 −4.874 −4.178 0.696 −5.103 −4.034 1.069
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Table 8. A comparison between the bound estimates of the daily VaR based on the maxitive kernel estimation method and bootstrap confidence intervals of VaRs based on three different distributions: Historical
simulation method (HS), Normal, and GHYP distributions. These VaR methods are applied to four daily stock returns at several probability levels α% and time horizon of 6 years.

Returns α
Interval-Valued of VaR

pdf Estimated Bootstrap Confidence Intervals of VaRs

VaR BCa (90%) BCa (95%) BCa (99%)
L.B. U.B. Width L.B. U.B. Width L.B. U.B. Width L.B. U.B. Width

HS −1.070 −1.156 −1.007 0.149 −1.168 −0.994 0.174 −1.201 −0.968 0.233
10% −1.189 −0.941 0.248 Normal −1.233 −1.314 −1.155 0.159 −1.331 −1.141 0.190 −1.377 −1.111 0.266

GHYP −1.029 −1.103 −0.959 0.144 −1.121 −0.946 0.175 −1.152 −0.913 0.239
HS −1.574 −1.674 −1.481 0.193 −1.693 −1.463 0.230 −1.729 −1.432 0.297

S&P500 5% −1.679 −1.443 0.236 Normal −1.593 −1.699 −1.502 0.197 −1.720 −1.483 0.237 −1.754 −1.449 0.305
GHYP −1.548 −1.655 −1.468 0.187 −1.678 −1.450 0.228 −1.699 −1.410 0.289

HS −2.824 −2.979 −2.679 0.300 −3.007 −2.656 0.351 −3.086 −2.609 0.477
1% −2.939 −2.772 0.167 Normal −2.269 −2.407 −2.153 0.254 −2.430 −2.128 0.302 −2.475 −2.083 0.392

GHYP −2.810 −2.974 −2.665 0.309 −3.007 −2.637 0.370 −3.074 −2.582 0.492

HS −2.360 −2.532 −2.207 0.325 −2.561 −2.179 0.382 −2.629 −2.135 0.494
10% −2.717 −2.037 0.680 Normal −1.853 −1.996 −1.728 0.268 −2.021 −1.702 0.319 −2.120 −1.658 0.462

GHYP −2.331 −2.497 −2.184 0.313 −2.544 −2.159 0.385 −2.607 −2.119 0.488
HS −3.258 −3.486 −3.053 0.433 −3.535 −3.180 0.355 −3.627 −2.958 0.669

Nikkei225 5% −3.698 −2.991 0.707 Normal −2.386 −2.565 −2.240 0.325 −2.596 −2.207 0.389 −2.697 −2.154 0.543
GHYP −3.307 −3.533 −3.111 0.422 −3.571 −3.073 0.498 −3.653 −3.009 0.644

HS −5.589 −5.970 −5.252 0.718 −6.057 −5.206 0.851 −6.190 −5.055 1.135
1% −5.964 −5.284 0.680 Normal −3.386 −3.614 −3.171 0.443 −3.659 −3.127 0.532 −3.746 −3.035 0.711

GHYP −5.959 −6.389 −5.643 0.746 −6.451 −5.593 0.858 −6.631 −5.483 1.148

HS −0.917 −0.985 −0.856 0.129 −0.995 −0.845 0.150 −1.017 −0.823 0.194
10% −1.023 −0.815 0.208 Normal −1.147 −1.226 −1.080 0.146 −1.236 −1.067 0.169 −1.266 −1.038 0.228

GHYP −0.909 −0.972 −0.853 0.119 −0.994 −0.842 0.152 −1.022 −0.822 0.200
HS −1.341 −1.432 −1.273 0.159 −1.451 −1.260 0.191 −1.467 −1.227 0.240

DJI 5% −1.459 −1.252 0.207 Normal −1.482 −1.569 −1.400 0.169 −1.587 −1.386 0.201 −1.618 −1.357 0.261
GHYP −1.336 −1.422 −1.261 0.161 −1.437 −1.249 0.188 −1.468 −1.223 0.245

HS −2.292 −2.426 −2.183 0.243 −2.451 −2.161 0.290 −2.505 −2.124 0.381
1% −2.436 −2.192 0.244 Normal −2.109 −2.223 −2.005 0.218 −2.253 −1.984 0.269 −2.292 −1.938 0.354

GHYP −2.326 −2.450 −2.214 0.236 −2.474 −2.186 0.288 −2.533 −2.144 0.389

HS −2.197 −2.319 −2.090 0.229 −2.349 −2.066 0.283 −2.391 −2.024 0.367
10% −2.501 −1.888 0.613 Normal −1.764 −1.863 −1.665 0.198 −1.880 −1.650 0.230 −1.919 −1.623 0.296

GHYP −2.218 −2.351 −2.113 0.238 −2.372 −2.089 0.283 −2.416 −2.053 0.363
HS −3.235 −3.405 −3.091 0.314 −3.438 −3.062 0.376 −3.510 −3.005 0.505

CAC40 5% −3.577 −2.976 0.601 Normal −2.265 −2.384 −2.152 0.232 −2.410 −2.124 0.286 −2.456 −2.091 0.365
GHYP −3.142 −3.309 −3.005 0.304 −3.339 −2.978 0.361 −3.406 −2.931 0.475

HS −5.110 −5.367 −4.880 0.487 −5.412 −4.825 0.587 −5.532 −4.729 0.803
1% −5.477 −5.023 0.454 Normal −3.205 −3.370 −3.054 0.316 −3.407 −3.030 0.377 −3.470 −2.949 0.521

GHYP −5.281 −5.542 −5.053 0.489 −5.578 −5.013 0.565 −5.677 −4.921 0.756
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Next, in order to inspect the goodness-of-fit of the used models a graphical tool (PP-plot) is
constructed (Figure 5) to compare the empirical cumulative function to the fitted cumulative functions.
This plot confirms that the Epanechnikov kernel function and the GHYP distribution give a good
global fit for the 4 returns data. The points of the PP-plot are close to the 45 degree line and they also
lie within the interval estimation using maxitive kernel.

In contrast, from the same figure, the PP-plot of the normal cumulative function against the
empirical cumulative function shows that the left end pattern is above the 45 degree line and the right
end is below it. Thus, the normal distribution underestimates the VaR at low probability level. This is
due to the fact that the normal distribution ignores the presence of fat tails in the actual distribution.
Based on these results, we can conclude that the GHYP and the maxitive kernel method provide a
better fit than a normal distribution to market return data. Thus, the maxitive kernel method seems to
be a good choice to estimate the risk for VaR.
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Figure 5. A graphical tool (PP-plot) of the theoretical CDF of Epanechnikov (in black), Generalized
HYPerbolic (GHYP, in green), and normal (in violet) versus the empirical CDF for the four returns data
sets: (a) Daily CAC40 (b) Daily DJI (c) Daily Nikkei225 and (d) Daily S&P500. In each of the four plots,
the empirical CDF on the horizontal axis and the theoretical CDF on the vertical axis. The highest (in
red) and lowest (in blue) dotted lines correspond respectively to the upper and lower bounds of the
inteval CDF using maxitive kernel.
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6. Conclusions

Using an estimate of the Value-at-Risk (VaR) based on a small-sized sample may pose a risk to
financial application due to the high dependence of this VaR estimate to the computation method.
In fact, computing a VaR estimate can be performed in many ways including parametric and
nonparametric approaches. We have shown, with experiments based on daily closing prices data of
four stock indexes, that no method can be said to be optimal to achieve this estimate. Moreover, the bias
induced by choosing a particular method is particularly sensitive for estimates based on small samples.
In this paper, we have presented a new method for computing the VaR which highly differs from its
competitors in the sense that it is interval-valued. This interval-valued VaR estimate is the set of all
estimates that could have been obtained, with the same data sample, by using a set of kernel-based
estimation methods. In our experiments, we noted that the output of parametric methods, like the
GHYP VaR estimate, always belong to the interval-valued VaR we propose while others, like the
normal VaR estimate, do not. It appears that VaR estimates belonging to the interval-valued VaR
estimate we propose are likely to be less risky than those that do not. Moreover, a wide interval-valued
VaR estimate is a marker of a high risk for a trader since it reflects thick tails, pronounced skewness,
and excess kurtosis of financial asset price returns.

The interval-valued estimation, based on maxitive kernel, that we propose in this paper is a convex
envelope of the kernel VaR estimation. Although the VaR is probably one of the most popular tool in
risk management, an alternative measure for Value-at-Risk which satisfied the conditions for a coherent
risk measure has been proposed (see e.g., Rockafellar and Uryasev 2000; Artzner et al. 1999). This risk
measure is called Expected Shortfall (ES; also known as conditional VaR or average VaR). Indeed,
the Basel Committee published, in January 2016 Basel Committee on Banking Supervision (2016),
revised standards for minimum capital requirements for market risk which include a shift from
Value-at-Risk to expected shortfall as the preferred risk measure. Then, the future research should be
conducted into finding an interval-valued estimation of ES, based on maxitive kernel, and to compare it
with the interval-valued estimation of VaR and the ES for many distributions. In this regard, Broda and
Paolella (2011) presents easily-computed expressions for evaluating the expected shortfall for numerous
distributions which are now commonly used for modelling asset returns. Another interesting avenue
of research would be to construct a CoVaR interval combining GARCH model with maxitive kernel.

Author Contributions: All authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Matlab Code for Maxitive Interval-Valued Estimation of VaR

% Data d e f i n i t i o n
Data = load ( ’ S&P500_daily . t x t ’ ) ;
NbData = length ( Data ) ;

% D e f i n i t i o n of v i s u a l i z a t i o n samples

SampleSize = length ( Data ) ;
kernelBandwidth = 0 . 2 5 ;
MIN = min ( Data ) ;
MAX = max( Data ) ;
d e l t a = (MAX − MIN ) / SampleSize ;
MIN = MIN − 50∗ d e l t a ;
MAX = MAX + 50∗ d e l t a ;
d e l t a = (MAX − MIN)/ SampleSize ;
Absc = s o r t ( Data ) ;
SampleSize = length ( Absc ) ;
bandwidth = kernelBandwidth ;

% Summative kernel es t imat ion of CDF
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% Epanechnikov kernel

f o r n=1: SampleSize
F o n c t i o n E s c a l i e r 1 = KernelIntegralEpanechnikov ( Absc ( n)−Data , 0 , 0 . 3 0 5 ) ;
CDFEpanechnikov ( n ) = sum( F o n c t i o n E s c a l i e r 1 ) / NbData ;

end

% Cosine kernel

f o r n=1: SampleSize
F o n c t i o n E s c a l i e r 6 = Kerne l In tegra lCos ine ( Absc ( n)−Data , 0 , 0 . 7 ) ;
CDFBCosine ( n ) = sum( F o n c t i o n E s c a l i e r 6 ) / NbData ;

end

% Biweight kernel

f o r n=1: SampleSize
F o n c t i o n E s c a l i e r 4 = Kerne l In tegra lB iweight ( Absc ( n)−Data , 0 , 0 . 0 5 ) ;
CDFBiweight ( n ) = sum( F o n c t i o n E s c a l i e r 4 ) / NbData ;

end

% Triweight kernel

f o r n=1: SampleSize
F o n c t i o n E s c a l i e r 5 = Ke r ne l In t eg ra l Tr i we i gh t ( Absc ( n)−Data , 0 , 0 . 0 6 ;
CDFTriweight ( n ) = sum( F o n c t i o n E s c a l i e r 5 ) / NbData ;

end

% I n t e r v a l−valued es t imat ion of CDF

cumul_upp_plus = zeros ( SampleSize , 1 ) ;
cumul_low_plus = zeros ( SampleSize , 1 ) ;
cumul_upp_moins = zeros ( SampleSize , 1 ) ;
cumul_low_moins = zeros ( SampleSize , 1 ) ;

f o r n=1: SampleSize

f o r k =1: NbData
i f Data ( k ) <= ( Absc ( n ) )

cumul_upp_plus ( n ) = cumul_upp_plus ( n ) + 1 ;
e l s e

P o s s i b i l i t y = Max_kernel_Triangular ( Data ( k ) , Absc ( n ) , bandwidth ) ;
cumul_upp_plus ( n ) = cumul_upp_plus ( n ) + P o s s i b i l i t y ;

end

i f Data ( k ) >= ( Absc ( n ) )
cumul_low_plus ( n ) = cumul_low_plus ( n ) + 1 ;

e l s e
P o s s i b i l i t y = Max_kernel_Triangular ( Data ( k ) , Absc ( n ) , bandwidth ) ;
cumul_low_plus ( n ) = cumul_low_plus ( n ) + P o s s i b i l i t y ;

end
end

end

cumul_low_plus = NbData−cumul_low_plus ;
cumul_low_plus = cumul_low_plus/NbData ;
cumul_upp_plus = cumul_upp_plus/NbData ;
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% I n t e r v a l−valued es t imat ion of VaR

w_low=cumul_low_plus ;
w_upp=cumul_upp_plus ;

dataCDF = [ s o r t ( Data ) , w_low , w_upp ] ;

alpha = 0 . 0 1 ;
[ NotNeeded1 , idx1 ] = min ( abs ( dataCDF ( : , 2 ) − alpha ) ) ;
dataCDF ( idx1 ) ;

[ NotNeeded2 , idx2 ] = min ( abs ( dataCDF ( : , 3 ) − alpha ) ) ;
dataCDF ( idx2 ) ;

StandardMaxitiveVaR =[dataCDF ( idx1 ) , dataCDF ( idx2 ) ] ;
VaRInterval =[mean( Absc )+ std ( Absc )∗dataCDF ( idx1 ) , mean( Absc )+ std ( Absc )∗dataCDF ( idx2 ) ] ;

Integrated Summative Kernels

% I n t e g r a t e d Epanechnikov kernel

funct ion [ y ] = KernelIntegralEpanechnikov ( x , centre , d e l t a )

x = ( x−c e n t r e )/ d e l t a ;
y = zeros ( s i z e ( x ) ) ;

xxx = x .∗ x .∗ x ;

y = ( ( x > −1 ) .∗ ( x <= 0 ) .∗ (−0.25∗xxx + 0 .75∗ x + 0 . 5 ) ) ;
y = y + ( ( x < 1 ) .∗ ( x >= 0 ) .∗ (−0.25∗xxx + 0 .75∗ x + 0 . 5 ) ) + ( x >=1) ;

% I n t e g r a t e d Cosinus kernel

funct ion [ y ] = Kerne l In tegra lCos ine ( x , centre , d e l t a )

x = ( x−c e n t r e )/ d e l t a ;
y = zeros ( s i z e ( x ) ) ;

y = ( ( x > −1 ) .∗ ( x <= 0 ) .∗ ( 0 . 5∗ s i n ( 0 . 5∗ pi∗x )+ 0 . 5 ) ) ;
y = y + ( ( x < 1 ) .∗ ( x >= 0 ) .∗ ( 0 . 5∗ s in ( 0 . 5∗ pi∗x )+ 0 . 5 ) + ( x > = 1 ) ) ;

% I n t e g r a t e d Triweight kernel

funct ion [ y ] = K e rn e l I n t e gr a lT r i w e i g ht ( x , centre , d e l t a )

x = ( x−c e n t r e )/ d e l t a ;
y = zeros ( s i z e ( x ) ) ;

x3 = x .∗ x .∗ x ;
x5 = x .∗ x .∗ x .∗ x .∗ x ;
x7 = x .∗ x .∗ x .∗ x .∗ x .∗ x .∗ x ;

y = ( ( x > −1).∗ ( x <= 0 ) .∗ ( ( 3 5 / 3 2 )∗ x −(35/32)∗x3 + (21/32)∗ x5 −(5/32)∗x7 + 0 . 5 ) ) ;
y = y + ( ( x < 1 ) .∗ ( x >= 0 ) .∗ ( ( 3 5 / 3 2 )∗ x −(35/32)∗ x3 + (21/32)∗ x5 −(5/32)∗ x7 + 0 . 5 ) + ( x > = 1 ) ) ;

% I n t e g r a t e d Biweight kernel

funct ion [ y ] = Kerne l In tegra lB iweight ( x , centre , d e l t a )

x = ( x−c e n t r e )/ d e l t a ;
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y = zeros ( s i z e ( x ) ) ;

xxx = x .∗ x .∗ x ;
xxxxx = x .∗ x .∗ x .∗ x .∗ x ;

y = ( ( x > −1 ) .∗ ( x <= 0 ) .∗ ( ( 1 5 / 1 6 )∗ x −(5/8)∗xxx + (3/16)∗ xxxxx + 0 . 5 ) ) ;
y = y + ( ( x < 1 ) .∗ ( x >= 0 ) .∗ ( ( 1 5 / 1 6 )∗ x −(5/8)∗xxx + (3/16)∗ xxxxx + 0 . 5 ) + ( x >=1) ) ;

Triangular Maxitive Kernel

% T r i a n g u l a i r e maxit ive kernel

funct ion [ y ] = Max_kernel_Triangular ( x , centre , d e l t a )
x = ( x−c e n t r e )/ d e l t a ; y = zeros ( s i z e ( x ) ) ;
x = abs ( x ) ;
Mask = x <= 1 ;
y = ( 1 . 0 − x ) .∗ Mask ;
re turn ;
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