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Abstract

Motivation: Discovering DNA binding sites in genome sequences is crucial for understand-
ing genomic regulation. Currently available computational tools for finding binding sites
with Position Weight Matrices of known motifs are often used in restricted genomic regions
because of their long run times. The ever-increasing number of complete genome sequences
points to the need for new generations of algorithms capable of processing large amounts of
data.
Results: Here we present MOTIF, a new algorithm for seeking transcription factor binding
sites in whole genome sequences in a few seconds. We propose a web service that enables
the users to search for their own matrix or for multiple JASPAR matrices. Beyond its effi-
cacy, the service properly handles undetermined positions within the genome sequence and
provides an adequate output listing for each position the matching word and its score.
Availability: MOTIF is freely available for use through an interface at http://www.

atgc-montpellier.fr/motif. The source code of the stand-alone search method of MO-
TIF is freely available at https://gite.lirmm.fr/rivals/motif.git. It is written in
C++ and tested on Linux platforms.
Contact: motif@lirmm.fr

1 Introduction

Gene expression is a complex process requiring a tight regulation involving a wide range of
mechanisms. Among them, regulation of transcription plays a key role in modulating the amount
of mRNA produced by the RNA polymerase II. It involves a wide array of proteins, among
which transcription factors [14] (TFs). These regulatory proteins typically bear a DNA-binding
domain allowing them to interact with the DNA in the vicinity of the gene(s) they regulate, often
found at the promoter and/or within more remote regulatory elements (enhancers) [9]. They
also contain regulatory domains able to activate or repress the triggering of the polymerase,
and eventually protein-protein interaction domains to recruit other actors of the transcriptional
regulation machinery [8]. TFs bind to DNA in a sequence-specific manner: they are able to
recognize a restricted set of nucleic acid segments called binding sites (TFBSs). Their binding
specificity can be modeled computationally as the alignment of a collection of the TFBSs a given
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TF recognizes. This alignment is then converted into a motif (or pattern) in the form of an
alignment matrix, also referred to as position-frequency matrix (PFM) or position-count matrix
(PCM) [15]. Such matrices are available through dedicated public (Jaspar [11], Hocomoco
[6]) or private (TransFac [16]) databases, for motif search purpose. In this context, various
transformations of a PFM into a position-weight matrix (PWM) have been proposed so far.
The PWM is used to scan a DNA sequence and returns a score at each position. The higher
the score, the better a sequence segment resembles to the matrix. Putative binding sites,
or hits, are those DNA segments whose score is above a user-defined score threshold. The
choice of this threshold is specific for each matrix and organism. Various methods exist to set
the threshold, from the intuitive ones, like the percentage value of the matrix score range or
the expected number of hits, to empirical methods like P-value calculations [13] or Receiver
Operating Characteristic curves [1]. This last method requires that the TFBSs used to build
the matrix are available in their genomic context, which is rarely the case in practice.

Recently, with the development of deep sequencing technologies, the number of completed
genomic sequences has increased dramatically. Moreover, larger genomes can nowadays be
sequenced such as plant genomes. Additionally, new technologies such as HT-Selex allow the
characterization of DNA-binding profiles at a large scale [4]. This points the need for a new
generation of algorithms capable of facing the analysis of this huge amount of sequence and
pattern data. Here we present a new method, called MOTIF, for fast and accurate scanning
of large genomes with PWMs. We also compare the implementation of our method with the
fastest program known to date, MOODS [5], and show the gain in terms of speed, accuracy and
ease of use.

2 Methods

2.1 Search algorithm

Contrarily to classic methods, MOTIF does not scan every possible position in the target
genome. Instead, it uses an efficient strategy to generate all solutions (DNA words) from a
given matrix passing the threshold score, and then maps them on the genome sequence using an
optimized index structure (Figure 1). In some ways, our approach transforms PWM searching
into a mapping problem. In practice, reference genomes are quite stable and users perform
numerous searches on the same genome sequence. Scanning several times a genome from end
to end for each search would be extremely long and redundant in terms of computation. Our
approach takes advantage of this situation and adopts what is called an off-line strategy. In
the first step, the genome sequence is preprocessed only once to build an index, which enables
MOTIF to find the occurrences of any word in the genome. Indeed, the index offers a query
procedure that takes a word as input and returns all positions of that word within the genome.
This procedure takes an optimal time, proportional to the length of the word, rather than to
the genome length with a scanning strategy. It can be used repeatedly to search for as many
words as needed. However, querying the index one performs an exact search: it returns only the
positions where the genome matches the word exactly. Let us now explain how index queries
can be used in the context of search for PWMs.

Assume one searches for a PWM of width w with a given threshold score. Only words of
length w can match that PWM. With 4 nucleotides, there exist 4w possible words. However, only
a subset of these can achieve a score larger than the threshold. Such a word is called a matching
word. Instead of scanning the genome sequence to find whether each window of length w has a
sufficient score (i.e., an on-line strategy), we adopt a combinatorial search. Our strategy is to list
all possible words of length w whose score exceeds the threshold, and to output their occurrences
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positions by querying the index. Typical width for transcription factor matrices ranges from 4 to
30 nucleotides/columns in public databases (Figure 2a, Supplementary Data), and brute-force
enumeration for large widths would be excessively time-consuming. We developed an algorithm
to perform this enumeration very quickly by cutting down branches of the solution tree through
constrained programming. The underlying idea is to take advantage of the information content
(IC) - i.e. the variability of letters that can be found in a column of the matrix (Figure 2a).
The less variable a position, the higher its IC, and the stronger its contribution to the DNA
segment score. Using this property, DNA strings can be generated exhaustively and efficiently
by discarding those containing penalizing letters at strong IC positions, which would cause the
segment score to fall below the threshold (Figure 1).

The 4w possible words can be represented by a search tree with w levels, where each word
appears in a leaf, and an internal node stores a prefix of the words in its subtree. Even for
width below 30 nucleotides, testing all possible 4w words and computing their score can be
extremely long. We exploit an important property: since in a PWM model all positions are
independent, the score of a word is the sum of the scores of each position. Hence, it does not
depend on the order in which positions are summed. We use a combinatorial exploration of the
tree that avoids visiting branches as soon as a partial score of an internal node is too low to
allow any leaf below it to reach the threshold (Figure 1). This can be done by visiting nodes of
the tree with Depth-First-Search strategy; it is a Branch and Bound algorithm. In the case of
PWM search, we can improve on this for the following reason: the positions of a PWM do not
contribute equally to the score. As explained above, their contribution depends on the IC of
the corresponding matrix column. Hence, we order the positions according to the information
content of the matrix columns (Figure 1). That way, the branch and bound algorithm first sets
the positions that contribute the most to the score, and deeper in the tree those positions that
contribute less. We implemented this strategy using constraint programming.

In practice, two cases arise:

1. The matrix width is small (w ≤ 10). It is very fast to enumerate all possible DNA words
(i.e. 4w words) and compute their score. Only those with a score above the threshold are
kept for the search.

2. The matrix width is large (w > 10).

The exhaustive enumeration option becomes too slow, for the number of words grows expo-
nentially. Thus, we adopt a strategy based on constraint programming to limit the generation
to only those words having a sufficient score. We take advantage of the score additivity (the
total score sums the score for each column); this sum does not depend on the order in which
the matrix columns are considered. The algorithm explores gradually and virtually the search
tree in which all 4w possible words are leaves (Figure 1). Our algorithm considers the columns
one after the other in the order of decreasing information content, because the higher the in-
formation content of a column, the larger its contribution to the score. For a given column, it
will consider all four possibilities one after the other by order of decreasing score. After visit-
ing a node (column), the algorithm computes the partial score for the current set of columns,
and deduces the amount of score missing to reach the threshold. If the partial scores reaches
the threshold, then any combination of nucleotides for the remaining columns will generate a
matching word. If not, it faces two alternative situations. Either the remaining columns may
contribute enough to the score to reach the threshold or not. This is checked by summing the
maximum score for each of the remaining columns. If this maximum is not sufficient, then the
algorithm does not explore this subtree further for any sequence at the leaves have a score that
certainly do not reach the threshold. Hence, the algorithm iterates by choosing a new column.
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This procedure is iterated until an end has reached when exploring each branch of the search
tree. This generation algorithm follows a strategy known as A* strategy.

Once the solution strings have been generated, they are efficiently mapped onto the genome
sequence using a adapted genome index [10]. Our strategy could seem costly at first glance,
because of the enumeration; however, the results of the comparison with MOODS demonstrate
its practical efficiency.

2.2 Transforming a PFM into a PWM

To convert PFMs into PWMs, we used the log-odds transformation [13, 2] (Figure 1). Moreover,
we used pseudocounts equal to one and background frequencies equal to nucleotidic frequencies
in the searched genome.

2.3 Relative score threshold

In our work, we decided to use threshold values in the form of relative scores, as it is done
in popular cis-regulatory analysis tools such as oPOSSUM [7], since this type of threshold is
intuitive to biologists. The user gives the relative score threshold as a percentage p of the PWM
matrix score range. Let us denote the score range as [pwm.min, pwm.max]. The following
formula computes the absolute score threshold:

absscore = (pwm.max− pwm.min) ∗ relscore + pwm.min

Only the words whose score is above the absscore are searched in the chosen genome.

2.4 Data

We used vertebrate and plant matrices from the JASPAR core database [11], version 5.0 (2014).
Genome sequences from human16 and maize [12] were downloaded from Ensembl [3]. We used
releases GRCh37 (hg19) and AGPv3 (GCA 000005005.5) respectively.

3 Results

3.1 Comparison with other search tools

Seeking matching binding sites in a target sequence for a given matrix and a given threshold score
can be solved exactly, meaning that tools such as MOTIF or MOODS report all occurrences of
words matching the matrix with a sufficient score and only those (provided that the sequence
lacks undetermined positions - e.g. N). We verified in practice the equality of output positions
between MOTIF and MOODS in this general case. The only difference comes from MOTIF
ability to prevent reporting matches in regions containing undetermined. Given the correctness
of the search, we turn to comparisons in terms of efficacy, and as MOODS has clearly been
demonstrated as being much faster than the other used tools for this task, we include solely
MOODS in the tests.

We compared the time and memory usages of MOODS and MOTIF for searching complete
subsets of JASPAR matrices on the Human and the Maize genomes (Figure 2b, Supplementary
Data). To control the number of matching words, the user provides a relative score. The
oPOSSUM documentation advised to use values above 80%. For a matrix whose maximum
achievable score is smax, a percentage threshold of, say p=85%, means that only words whose
score exceeds 85% of smax are accepted as matches. The same threshold was then used for both
methods, to ensure that they find the same occurrences, which they do.
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Figure 1: Overview of the word enumeration process in MOTIF. The matrix in the form of a
Position Count Matrix (PCM, top left) is first converted into a Position Weight Matrix (PWM,
bottom left) using the log-odds transformation. The PCM is also used to derive the information
content for each position in the matrix. In this example, consider a threshold value of 25. To
generate the strings above this threshold, we build a tree of solutions (right), starting with
those positions of higher information content at the lower levels of the tree. This permits to
discard the letters at those positions penalizing the score so that it cannot pass the threshold,
and subsequently to stop the enumeration for those branches of the tree (red nodes in the tree).
This is achieved by constrained programming. In the end of the process, the letters from each
string above the threshold are placed back in the correct position to obtain the set of matching
words to be mapped onto the genome sequence. For instance, the path reading A at position
2, T at position 3 and A at position 1 yields the matching word AAT.
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The run time of MOTIF sums the time of three phases: loading the index, generating possible
matching words for a matrix, searching the words in the index and writing the results. MOODS
has two phases: first it analyses the matrices to check whether matches are possible according
to the threshold, then scans the genome in both orientations and simultaneously writes the
results. A notable difference in output: for each occurrence MOODS yields only the genome
position and its score, while MOTIF also gives the matching word found. The output volume
is thus considerably larger for MOTIF than for MOODS when searching complete genomes.

Clearly, one expects the search time of MOODS to be dominated by the genome scan, while
that of MOTIF shall depend on the number of possible matching words and positions. Indeed,
the time of MOODS is stable, almost independent of the matrix ( 104 +/- 9 sec for the maize
genome with p=85%). MOTIF takes from 0.5 to 53 sec. depending on the matrix, with an
average time of 3.49 sec. Its time depends on the matrix, but most of all on the numbers of
matches. As illustrated by an example on Human, for two matrices of length 8, with MA0033
MOTIF yields 3 millions matches in 36 sec., while for MA0067 it reports 46000 matches in
only 6 sec. Its time depends more on the number of reported positions (and hence on the size
of the output), than on the matrix itself.

Despite variable numbers of matching words depending on the matrices, with parameter
p=85% on the Human genome, we observed that, in median over all matrices, MOTIF is 106
time faster than MOODS (minimum 2x faster, maximum 180x faster - see Figure 2b). This
median speedup increases with p to reach 138x faster when p=90%, and 222x faster when
p=95%. The median speed up remains highly favorable to MOTIF even with looser thresholds:
for instance 44x faster with p=75% (Supplementary Data) . Logically, MOTIF uses 7 gigabytes
of main memory for searching the Human genome whatever the percentage p (70-95%). The
memory needed remains in the range of current desktop computers.

This comparison demonstrates the ability of MOTIF to search for complete sets of PWM
motifs on the largest genomes much more efficiently than the fastest available solution and for
a large range of parameter values. The important speed up is observed despite the additional
output given by MOTIF: indeed, it lists the DNA sequences that match the motif, thereby al-
lowing the user to refine its analysis. Many genome sequences contain numerous undetermined
positions (typically coded by an N). In other programs, those are replaced by a predefined or
a random nucleotide, thereby generating fake matches. MOTIF handles such regions transpar-
ently for the user: in the genome indexes, those are removed and matching regions never overlap
them. Those practical features of MOTIF also make the program unique. Altogether, MOTIF
shows the power of index-based search algorithms for highly variable nucleotidic motifs.

3.2 Web service description

We propose a fast web service to search the JASPAR motifs in large genomes (http://www.atgc-
montpellier.fr/motif). The user selects the matrices, the genome, sets the parameter as the
percentage of matching words and the strands to search, then gets the results via email. The
user may also enter any other matrix interactively. Extensions to the lists of matrices and of
searchable sequences are easy to make and could also include a compilation of gene upstream
regions for instance, upon user request. To the best of our knowledge, no equivalent services
are available for large scale searches of PWM motifs on entire genomes.

4 Discussion

In this article we have shown that our new algorithm for predicting TFBS outperforms the
fastest existing program known to date. The median speed improvement is 106 fold for a
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Figure 2: Performance comparison with MOODS. (a) - Distribution of the matrix width and
corresponding average information content for all matrices of Transcription Factor Binding Sites
from the vertebrate section of JASPAR database. The same figure for JASPAR plant section is
in Supplementary Data. (b) - Comparison of median run times between MOODS and MOTIF
for searching each vertebrate matrix with a search threshold p=85% in the Human genome.
Time scale is logarithmic. MOODS times are almost constant. MOTIF times decrease quickly
with the matrix width due to decreasing number of hits found at search stage. MOTIF behaves
differently with the unique matrix of width 30 nucleotides due to its very low information
content (0.5 bits, see A and Supplementary Data). Similar figures for various thresholds and
for plant matrices are provided in Supplementary Data.
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threshold value of 85%. We shown that the gain is always favorable to MOTIF when the
threshold varies, and the improvement reaches more than 220 fold with stringent threshold
values, while it drops to 44 fold when using a loose threshold such as 75%. Only one matrix out
of the whole JASPAR collection shows longer running times using MOTIF with lower thresholds
(Supplementary Data). In any case, it makes it feasible to scan an entire genome for a whole
collection of TF motifs in seconds. Moreover, MOTIF provides a detailed output including the
precise location, strand and sequence for each hit, making it more useful for further analysis.
We also tackled the problem of matching Ns within the genome sequence, while other programs
randomly convert them to any nucleotide. Finally, our service is easy to use, with a user friendly
web interface, and the users may decide to use matrix collections provided on our website such
as JASPAR, or use their own. While more genomic sequences are being characterized, notably
large plant genomes (such as the 22-Gb Loblolly Pine genome [17], our strategy will show
stable run times while other algorithms are sequence-length dependent. Moreover, ChIP-Seq
has become a routine experimental procedure and may help to refine matrix models in the near
future. We could expect those matrices to be more informative (better global IC) and eventually
shorter than current ones, which would further enhance the performance of our algorithm.
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Supplemental Data

4.1 A vertebrate matrix with very weak information content

We observe that one vertebrate matrix induces much longer search times than all other matrices,
because it generates huge numbers of potential matching words especially with low thresholds
(see result graph with p = 80%). This matrix (JASPAR ID MA0068) has a width of 30. Usually
the search time of our tool decreases with the width. Investigating the reason of this unusual
behavior, we looked at the information content of that matrix: the matrix MA0068 is the only
matrix of that width, and the only matrix in vertebrate and even in plant sections with an
information content way below 0.5.

The logo view of matrix MA0068 is displayed below.
The evolution of Motif search time for MA0068 in the Human genome when p varies from

70 to 95% suggests that a threshold value of at least 90% is reasonable for this weak matrix.

Figure 3: LOGO visualisation of JASPAR matrix MA0068. The height of the stack of letter
in each column gives the information content in bits of that column. Only one out of thirty
columns reaches a value of 1.
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4.2 Search time comparison

We compared the running time of Moods [5] and Motif for searching each matrix on a large
genome and let the main parameter p vary with values in [70, 95]% with a step of 5. The default
value of p is 85%, which is the value advised by JASPAR [11].

As in the article, to illustrate the difference in running times between both tools, we plot
for each value of p a histogram of average search times for both tools with respect to matrix
width.

Figure 5 displays the histograms for searching the reference Zea mays genome using all
JASPAR plant matrices for p = 70 and 75, p = 80 and 85, and p = 90 and 95, respectively.
Figure 6 plots the pendant histograms for searching the Human genome with all JASPAR
vertebrate matrices (the figure for p = 85% is also shown in Figure 2 the manuscript).

4.3 With JASPAR plant matrices
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Figure 4: Distribution of the matrix width and corresponding average information content for
all matrices of Transcription Factor Binding Sites from the plant section of JASPAR database
[11].
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Figure 5: Median running times of Moods and Motif for searching JASPAR plant matrices in
the Zea mays genome with parameter (a) p = 70 or 75%, (b) p = 80 or 85%, (c) p = 90 or 95%.
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4.4 With JASPAR vertebrate matrices
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Figure 6: Median running times of Moods and Motif for searching JASPAR vertebrate matrices
in the Human genome with parameter (a) p = 70 or 75%, (b) p = 80 or 85%, (c) p = 90 or 95%.
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