Hilbert’s Error? - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue The Mathematical Intelligencer Année : 2018

Hilbert’s Error?

Alexander Shen

Résumé

Geometric constructions have been a topic of interest among mathematicians for centuries. The Euclidean tradition uses two instruments: a straightedge (ruler) and a compass. However, limited constructions have also been studied. The Mohr–Mascheroni theorem says that every construction using both instruments can be replaced by a construction of the same object that uses only a compass. (Obviously, a line cannot be drawn with a compass; we construct two distinct points on that line instead.) Another result, the Poncelet–Steiner theorem, says that in a construction using straightedge and compass, a single application of a compass suffices: if a circle with its center is given, then every straightedge–compass construction can be performed with only a straightedge. Today, such results are considered to belong to recreational mathematics, and they can be found in many books, such as [6], for example.
Fichier principal
Vignette du fichier
1801.04742.pdf (161.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-01982335 , version 1 (20-04-2019)

Identifiants

Citer

Alexander Shen. Hilbert’s Error?. The Mathematical Intelligencer, 2018, 40 (4), pp.6-11. ⟨10.1007/s00283-018-9792-8⟩. ⟨lirmm-01982335⟩
132 Consultations
125 Téléchargements

Altmetric

Partager

More