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Information Distance Revisited

Bruno Bauwens∗

October 3, 2019

Abstract

We consider the notion of information distance between two objects x and y introduced by Bennett,
Gács, Li, Vitanyi, and Zurek [1] as the minimal length of a program that computes x from y as well as
computing y from x, and study different versions of this notion. In the above paper, it was shown that
the prefix version of information distance equals max(K(x|y),K(y|x) up to additive logarithmic terms.
It was claimed by Mahmud [12] that this equality holds up to additive O(1)-precision. We show that
this claim is false, but does hold if the distance is at least logarithmic. This implies that the original
definition provides a metric on strings that are at superlogarithmically separated.

1 Introduction
Informally speaking, Kolmogorov complexity measures the amount of information in an object (say, a bit
string) in bits. The complexity C(x) of x is defined as the minimal bit length of a program that generates
x. This definition depends on the programming language used, but one can fix an optimal language that
makes the complexity function minimal up to an O(1) additive term. In a similar way one can define
the conditional Kolmogorov complexity C(x|y) of a string x given some other string y as a condition.
Namely, we consider the minimal length of a program that transforms y to x. Informally speaking, C(x|y)
is the amount of information in x that is missing in y, the number of bits that we should give in addition
to y if we want to specify x.

The notion of information distance was introduced in [1] as “the length of a shortest binary program
that computes x from y as well as computing y from x.” It is clear that such a program cannot be shorter
than C(x|y) or C(y|x) since it performs both tasks; on the other hand, it cannot be much longer than the
sum of these two quantities (we can combine the programs that map x to y and vice versa with a small
overhead needed to separate the two parts and to distinguish x from y). As the authors of [1] note, “being
shortest, such a program should take advantage of any redundancy between the information required to
go from x to y and the information required to go from y to x”, and the natural question arises: to what
extent is this possible? The main result of [1] gives the strongest upper bound possible and says that the
information distance equals ab with logarithmic precision. In many applications, this characterization
turned out to be useful [some ref]. In fact, in [1] the prefix version of complexity, denoted by K(x|y), and
the corresponding definition of information distance were used; see, e.g. [15] for the detailed explanation
of different complexity definitions. The difference between prefix and plain versions is logarithmic, so
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it does not matter whether we use plain or prefix versions if we are interested in results with logarithmic
precision. However, the prefix version of the above characterization has an advantage: after adding a
large enough constant, this distance satisfies the triangle inequality. The plain variant does not have this
property, and this follows from Proposition 3 below. However, several inequalities that are true with
logarithmic precision for plain complexity become true with O(1)-precision if prefix complexity is used.
So one could hope that a stronger result with O(1)-precision holds for prefix complexity. One could hope
that a similar result with O(1)-precision also holds for prefix complexity. If this is true, then also the
original definition satisfies the triangle inequality (after a constant increase). Such a claim was indeed
made in [12]; in [11] a similar claim is made with reference to [1].1 Unfortunately, the proof in [12]
contains an error and (as we will show) the result is not valid for prefix complexity with O(1)-precision.
On the other hand, it is easy to see that the original argument from [1] can be adapted for plain complexity
to obtain the result with O(1)-precision, as noted in [16].

In this paper we try to clarify the situation and discuss the possible definitions of information distance
in plain and prefix versions, and their subtle points (one of these subtle points was the source of an error
in [12]). We also discuss some related notions. In Section 2 we consider the easier case of plain com-
plexity; then in Section 3 we discuss the different definitions of prefix complexity (with prefix-free and
prefix-stable machines, as well as definitions using the a priori probability) and in Section 4 we discuss
their counterparts for the information distance. In Section 5 we use the game approach to show that in-
deed the relation between information distance (in the prefix version) and conditional prefix complexity
is not valid with O(1)-precision, contrary to what is said in [12]. Finally, we show that if the information
distance is at least logarithmic, then equality holds.

2 Plain complexity and information distance
Let us recall the definition of plain conditional Kolmogorov complexity. Let U(p,x) be a computable
partial function of two string arguments; its values are also binary strings. We may think of U as an
interpreter of some programming language. The first argument p is considered as a program and the
second argument is an input for this program. Then we define the complexity function

CU (y|x) = min{|p| : U(p,x) = y};

here |p| stands for the length of a binary string p, so the right hand side is the minimal length of a
program that produces output y given input x. The classical Solomonoff–Kolmogorov theorem says that
there exists an optimal U that makes CU minimal up to an O(1)-additive term. We fix some optimal U
and then denote CU by just C. (See, e.g., [10, 15] for the details.)

Now we want to define the information distance between x and y. One can try the following approach:
take some optimal U from the definition of conditional complexity and then define

EU (x,y) = min{|p| : U(p,x) = y and U(p,y) = x},

i.e., consider the minimal length of a program that both maps x to y and y to x. However, there is a caveat,
as the following simple observation shows.

Proposition 1. There exists some computable partial function U that makes CU minimal up to an O(1)
additive term, and still EU (x,y) is infinite for some strings x and y and therefore not minimal.

1The authors of [11] define (section 2.2) the function E(x,y) as the prefix-free non-bipartite version of the information distance
(see the discussion below in section 4.1) and then write: “the following theorem proved in [4] was a surprise: Theorem 1. E(x,y) =
max{C(x|y),C(y|x)}”. They do not mention that in the paper they cited as [4] (it is [1] in our list) there is a logarithmic error term;
in fact, they do not mention any error terms (though in other statements the constant term is written explicitly). Probably this is a
typo, since more general Theorem 2 in [11] does contain a logarithmic error term.
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Proof. Consider an optimal function U and then define U ′ such that U(Λ,x) = Λ where Λ is the empty
string, U ′(0p,x)= 0U(p,x) and U ′(1p,x)= 1U(p,x). In other terms, U ′ copies the first bit of the program
to the output and then applies U to the rest of the program and the input. It is easy to see that CU ′ is
minimal up to an O(1) additive term, but U ′(q, ·) has the same first bit as q, so if x and y have different
first bits, there is no q such that U(q,x) = y and U(q,y) = x at the same time.

On the other hand, the following proposition is true (and can be proven in the same way as the
existence of the optimal U for conditional complexity):

Proposition 2. There exists a computable partial function U that makes EU minimal up to O(1) additive
term.

Now we may define information distance for plain complexity as the minimal function EU . It turns
out that the original argument from [1] can be easily adapted to show the following result (that is a special
case of a more general result about several strings proven in [16]):

Theorem 1. The minimal function EU equals max(C(x|y),C(y|x))+O(1).

Proof. We provide the adapted proof here for the reader’s convenience. In one direction we have to
prove that C(x|y)6 EU (x,y)+O(1), and the same for C(y|x). This is obvious since the definition of EU
contains more requirements for p (it should map both x to y and y to x, while in C(x|y) it is enough to
map y to x).

To prove the reverse inequality, consider for each n the binary relation Rn on strings (of all lengths)
defined as

Rn(x,y)⇔ C(x|y)< n and C(y|x)< n.

By definition, this relation is symmetric. It is easy to see that Rn is (computably) enumerable uniformly
in n, since we may compute better and better upper bounds for C reaching ultimately its true value. We
think of Rn as the set of edges of an undirected graph whose vertices are binary strings. Note that each
vertex x of this graph has degree less than 2n since there are less than 2n programs of length less than n
that map x to its neighbors.

For each n, we enumerate edges of this graph (i.e., pairs in Rn). We want to assign colors to the edges
of Rn in such a way that edges that have a common endpoint have different colors. In other terms, we
require that for every vertex x all edges of Rn adjacent to x have different colors. For that, 2n+1 colors
are enough. Indeed, each new edge needs a color that differentiates it from less than 2n existing edges
adjacent to one its endpoint and less than 2n edges adjacent to other endpoint.

Let us agree to use (n+1)-bit strings as colors for edges in Rn, and perform this coloring in parallel
for all n. Now we define U(p,x) for a (n+1)-bit string p and arbitrary string x as the string y such that
the edge (x,y) has color p in the coloring of edges from Rn. Note that n can be reconstructed as |p|−1.
The uniqueness property for colors guarantees that there is at most one y such that (x,y) has color p, so
U(p,x) is well defined. It is easy to see now that if C(x|y)< n and C(y|x)< n, and p is the color of the
edge (x,y), then U(p,x) = y and U(p,y) = x at the same time. This implies the reverse inequality (the
O(1) terms appears when we compare our U with the optimal one).

Remark 1. In the definition of information distance given above we look for a program p that transforms
x to y and also transforms y to x. Note that we do not tell the program which of the two transformations is
requested. A weaker definition would provide also this information to p. This modification can be done
in several ways. For example, we may require in the definition of E that U(p,0x) = y and U(p,1y) = x,
using the first input bit as the direction flag. An equivalent approach is to use two computable functions U
and U ′ in the definition and require that U(p,x) = y and U ′(p,y) = x. This corresponds to using different
interpreters for both directions.
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It is easy to show that the optimal functions U and U ′ exist for this (two-interpreter) version of the
definition. A priori we may get a smaller value of information distance in this way (the program’s task is
easier when the direction is known, informally speaking). But it is not the case for the following simple
reason. Obviously, this new quantity is still an upper bound for both conditional complexities C(x|y)
and C(y|x) with O(1) precision. Therefore Theorem 1 guarantees that this new definition of information
distance coincides with the old one up to O(1) additive terms. (For the prefix versions of information
distance such a simple argument does not work anymore, see below.)

We have seen that different approaches lead to the same (up to O(1) additive term) notion of plain in-
formation distance. There is also a simple and natural quantitative characterization of this notion provided
by the following theorem.

Theorem 2. The function EU for optimal U is the minimal up to O(1) additive terms upper semicom-
putable non-negative symmetric function E with two string arguments and natural values such that

#{y : E(x,y)< n}6 c2n (∗)

for some c and for all integers n and strings x.

Recall that upper semicomputability of E means that one can compute a sequence of total upper
bounds for E that converges to E. The equivalent requirement: the set of triples (x,y,n) where x,y are
strings and n are natural numbers, such that E(x,y)< n, is (computably) enumerable.

Proof. The function max(C(x|y),C(y|x)) is upper semicomputable and symmetric. The inequality (∗)
is true for it since it is true for the smaller function C(y|x) (for c = 1; indeed, the number of programs of
length less than n is at most 2n).

On the other hand, if E is some symmetric upper semicomputable function that satisfies (∗), then one
can for any given x and n enumerate all y such that E(x,y) < n. There are less than c2n strings y with
this property, so each y can be described (given x) by a string of n+dlogce bits, its ordinal number in the
enumeration. Note that the value of n can be reconstructed from this string (by decreasing its length by
dlogce), so C(y|x)6 n+O(1) if E(x,y)< n. It remains to apply the symmetry of E and Theorem 1.

Remark 2. The name “information distance” motivates the following question: does the plain information
distance satisfy the triangle inequality? For the logarithmic precision the answer is positive, because

C(x|z)6 C(x|y)+C(y|z)+O(log(C(x|y)+C(y|z))).

However, if we replace the last term by an O(1)-term, then the triangle inequality is no more true. Indeed,
for every strings x and y the distance between an empty string Λ and x is C(x)+O(1), and the distance
between x and some encoding of a pair (x,y) is at most C(y) +O(1), and the triangle inequality for
distances with O(1)-precision would imply C(x,y) 6 C(x)+C(y)+O(1), and this is not true, see, e.g.,
[15, section 2.1].

One may ask whether a weaker statement saying that there is a maximal (up to an O(1) additive term)
function in the class of all symmetric non-negative functions E that satisfy both the condition (∗) and the
triangle inequality, is true. The answer is negative, as the following proposition shows.

Proposition 3. There are two upper semicomputable symmetric functions E1, E2 that both satisfy the
condition (∗) and the triangle inequality, such that no function that is bounded both by E1 and E2 can
satisfy (∗) and the triangle inequality at the same time.

Proof. Let us agree that E1(x,y) and E2(x,y) are infinite when x and y have different lengths. If x and y
are n-bit strings, then E1(x,y) 6 k means that all the bits in x and y outside the first k positions are the
same, and E2(x,y) 6 k is defined in a symmetric way (for the last k positions). Both E1 and E2 satisfy
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the triangle inequality (and even the ultrametric inequality) and also satisfy the condition (∗), since the
ball of radius k consist of strings that coincide except for the first/last k bits. If E is bounded both by
E1 +O(1) and E2 +O(1) and satisfies the triangle inequality, then by changing the first k and the last l
positions in a string x we get a string y such that E(x,y) 6 k+ l, and it is easy to see that the number of
strings that can be obtained in this way is not O(2k+l), but Θ((k+ l)2k+l).

3 Prefix complexity: different definitions
The notion of prefix complexity was introduced independently by Levin [6, 8, 4] and later by Chaitin [2].
There are several versions of this definition, and they all turn out to be equivalent, so people usually do
not care much about technical details that are different. However, if we want to consider the counterparts
of these definitions for information distance, the difference becomes important if we are interested in
O(1)-precision.

Essentially there are four different definitions of prefix complexity that appear in the literature.

3.1 Prefix-free definition
A computable partial function U(p,x) with two string arguments and string values is called prefix-free
(with respect to the first argument) if U(p,x) and U(p′,x) cannot be defined simultaneously for a string p
and its prefix p′ and for the same second argument x. In other words, for every string x the set of strings
p such that U(p,x) is defined is prefix-free, i.e., does not contain a string and its prefix at the same time.

For a prefix-free function U we may consider the complexity function CU (y|x). In this way we
get a smaller class of complexity functions (compared with the definition of plain complexity discussed
above), and the Solomonoff–Kolmogorov theorem can be easily modified to show that there exists a
minimal complexity function in this smaller class (up to O(1) additive term, as usual). This function is
called prefix conditional complexity and usually is denoted by K(y|x). It is greater than C(y|x) since
the class of available functions U is more restricted; the relation between C and K is well studied (see,
e.g., [15, chapter 4] and references within).

The unconditional prefix complexity K(x) is defined in the same way, with U that does not have a
second argument. We can also define K(x) as K(x|y0) for some fixed string y0. This string may be chosen
arbitrarily; for each choice we have K(x) = K(x|y0)+O(1) but the constant in the O(1) bound depends
on the choice of y0.

3.2 Prefix-stable definition
The prefix-stable version of the definition considers another restriction on the function U . Namely, in
this version the function U should be prefix-stable with respect to the first argument. This means that if
U(p,x) is defined, then U(p′,x) is defined and equal to U(p,x) for all p′ that are extensions of p (i.e.,
when p is a prefix of p′). We consider the class of all computable partial prefix-stable functions U and
corresponding functions CU , and observe that there exists an optimal prefix-stable function U that makes
CU minimal in this class (for prefix-stable functions).

It is rather easy to see that the prefix-stable definition leads to a version of complexity that does not
exceed the prefix-free one (each prefix-free computable function can be easily extended to a prefix-stable
one). The reverse inequality is not so obvious and there is no known direct proof; the standard argument
compares both versions with the third one (the logarithm of a maximal semimeasure, see Section 3.4
below for this definition).

Prefix-free and prefix-stable definitions correspond to the same intuitive idea: the program should be
“self-delimiting”. This means that the machine gets access to an infinite sequence of bits that starts with
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the program and has no marker indicating the end of a program. The prefix-free and prefix-stable defini-
tions correspond to two possible ways of accessing this sequence. The prefix-free definition corresponds
to a blocking read primitive (if the machine needs one more input bit, the computation waits until this bit
is provided). The prefix-stable definition corresponds to a non-blocking read primitive (the machine has
access to the input bits queue and may continue computations if the queue is currently empty). We do not
go into details here; the interested reader could find this discussion in [15, section 4.4].

3.3 A priori probability definition
In this approach we consider the a priori probability of y given x, the probability of the event “a random
program maps x to y”. More precisely, consider a prefix-stable function U(p,x) and an infinite sequence
π of independent uniformly distributed random bits (a random variable). We say that U(π,x) = y if
U(p,x) = y for some p that is a prefix of π . Since U is prefix-stable, the value U(π,x) is well defined.
For given x and y, we denote by mU (y|x) the probability of this event (the measure of the set of π such
that U(π,x) = y). For each prefix-stable U we get some function mU . It is easy to see that there exists an
optimal U that makes mU maximal (up to an O(1)-factor). Then we define prefix complexity K(y|x) as
− logmU (y|x) for this optimal U .

It is also easy to see that prefix-free functions U (used instead of prefix-stable ones) lead to the same
definition of prefix complexity. Informally speaking, if we have an infinite sequence of random bits as
the first argument, we do not care whether we have blocking or non-blocking read access, the bits are
always there. The non-trivial and most fundamental result about prefix complexity is that this definition
(as logarithm of the probability) is equivalent to the two previous ones. As a byproduct of this result we
see that the prefix-free and prefix-stable definitions are equivalent. This proof and the detailed discussion
of the difference between the definitions can be found, e.g., in [15, chapter 4].

3.4 Semimeasure definition
The semimeasure approach defines a priori probability in a different way, as a convergent series that
converges as slow as possible. More precisely, a lower semicomputable semimeasure is a non-negative
real-valued function m(x) on binary strings such that m(x) is a limit of a computable (uniformly in x)
increasing sequence of rational numbers and ∑x m(x) 6 1. There exists a maximal (up to O(1)-factor)
lower semicomputable semimeasure m(x), and its negative logarithm coincides with (unconditional) pre-
fix complexity K(x) up to an O(1) additive term.

We can define conditional prefix complexity in the same way, considering semimeasures with param-
eter y. Namely, we consider lower semicomputable non-negative real-valued functions m(x,y) such that
∑x m(x,y) 6 1 for every y. Again there exists a maximal function among them, denoted by m(x|y), and
its negative logarithm equals K(x|y) up to an O(1) additive term.

To prove this equality, we note first that the a priori conditional probability mU (x|y) is a lower semi-
computable conditional semimeasure. The lower semicomputability is easy to see: we can simulate the
machine U and discover more and more programs that map y to x. The inequality ∑x mU (x|y) also has a
simple probabilistic meaning: the events “π maps y to x” for a given y and different x are disjoint, so the
sum of their probabilities does not exceed 1. The other direction (starting from a semimeasure, construct
a machine) is a bit more difficult, but in fact it is possible (even exactly, without additional O(1)-factors).
See [15, chapter 4] for details.

The semimeasure definition can be reformulated in terms of complexities (by taking exponents):
K(x|y) is a minimal (up to O(1) additive term) upper semicomputable non-negative integer function
k(x,y) such that

∑
x

2−k(x,y) 6 1
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for all y. A similar characterization of plain complexity would use a weaker requirement

#{x : k(x,y)< n}< c2n

for some c and all y. (We discussed a similar result for information distance where the additional symme-
try requirement was used, but the proof is the same.)

3.5 Warning
There exists a definition of plain conditional complexity that does not have a prefix-version counterpart.
Namely, the plain conditional complexity C(x|y) can be equivalently defined as the minimal uncondi-
tional plain complexity of a program that maps y to x. In this way we do not need the programming lan-
guage used to map y to x to be optimal; it is enough to assume that we can computably translate programs
in other languages into our language; this property, sometimes called s-m-n-theorem or Gödel property
of a computable numbering, is true for almost all reasonable programming languages. Of course, we still
assume that the language used in the definition of unconditional Kolmogorov complexity is optimal.

One may hope that K(x|y) can be similarly defined as the minimal (unconditional) prefix complexity
of a program that maps y to x. The following proposition shows that it is not the case.

Proposition 4. The prefix complexity K(x|y) does not exceed the minimal prefix complexity of a program
that maps y to x; however, the difference between these two quantities is not bounded.

Proof. To prove the first part, assume that U1(p) is a prefix-stable function of one argument that makes
the complexity function

CU1(q) = min{|p| : U(p) = q}
minimal. Then CU (q) = K(q)+O(1). (We still need an O(1) term since the choice of an optimal prefix-
stable function is arbitrary). Then consider the function

U2(p,x) = [U1(p)](x)

where [q](x) denotes the output of a program q on input x. Then U2 is a prefix-stable function from the
definition of conditional prefix complexity, and

CU2(y|x)6 CU1(q)

for any program q that maps x to y (i.e., [q](x) = y). This gives the inequality mentioned in the proposition.
Now we have to show that this inequality is not an equality with O(1)-precision.

Note that K(x|n) 6 n+O(1) for every binary string x of length n. Indeed, a prefix-stable (or prefix-
free) machine that gets n as input can copy n first bits of its program to the output. (The prefix-free
machine should check that there are exactly n input bits.) In this way we get n-bit programs for all strings
of length n.

Now assume that the two quantities coincide up to an O(1) additive term. Then for every string x
there exists a program qx that maps |x| to x and K(qx)6 |x|+ c for all x and some c. Note that qx may be
equal to qy for x 6= y, but this may happen only if x and y have different lengths. Consider now the set Q
of all qx for all strings x, and the series

∑
q∈Q

2−K(q). (∗∗)

This sum does not exceed 1 (it is a part of a similar sum for all q that is at most 1, see above). On the other
hand, we have at least 2n different programs qx for all n-bit strings x, and they correspond to different
terms in (∗∗); each of these terms is at least 2−n−c. We get a converging series that contains, for every
n, at least 2n terms of size at least 2−n−c. It is easy to see that such a series does not exist. Indeed, each
tail of this series should be at least 2−c−1 (consider these 2n terms for large n when at least half of these
terms are in the tail), and this is incompatible with convergence.
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Why do we get a bigger quantity when considering the prefix complexity of a program that maps y
to x? The reason is that the prefix-freeness (or prefix-stability) requirement for the function U(p,x) is
formulated separately for each x: the decision where to stop reading the program p may depend on its
input x. This is not possible for a prefix-free description of a program that maps x to y. It is easy to
overlook this problem when we informally describe prefix complexity K(x|y) as “the minimal length of
a program, written in a self-delimiting language, that maps y to x”, because the words “self-delimiting
language” implicitly assume that we can determine where the program ends while reading the program
text (and before we know its input), and this is a wrong assumption.

3.6 Historical digression
Let us comment a bit on the history of prefix complexity. It appeared first in 1971 in Levin’s PhD the-
sis [6]; Kolmogorov was his thesis advisor. Levin used essentially the semimeasure definition (formulated
a bit differently). This thesis remained unpublished for a very long time (and it was in Russian). In 1974
Gács’ paper [4] appeared where the formula for the prefix complexity of a pair was proven. This paper
mentioned prefix complexity as “introduced by Levin in [4], [5]” ([7] and [8] in our numbering). The first
of these two papers does not say anything about prefix complexity explicitly, but defines the monotone
complexity of sequences of natural numbers, and prefix complexity can be considered as a special case
when the sequence has length 1 (this is equivalent to the prefix-stable definition of prefix complexity).
The second paper (we discuss it later in this section) has a comment “(to appear)” in Gács’ paper.

Gács does not reproduce the definition of prefix complexity saying only that it is “defined as the
complexity of specifying x on a machine on which it is impossible to indicate the endpoint [the English
translation says “halting” instead of “endpoint” but this is an obvious translation error] of a master pro-
gram: an infinite sequence of binary symbols enters the machine and the machine must itself decide how
many binary symbols are required for its computation”. This description is not completely clear, but it
looks more like a prefix-free definition (if we understand it in such a way that the program is written on a
one-directional tape and the machine decides where to stop reading). Gács also notes that prefix complex-
ity (he denotes it by KP(x)) “is equal to the [negative] base two logarithm of a universal semicomputable
probability measure that can be defined on the countable set of all words”.

Levin’s 1974 paper [8] says that “the quantity KP(x) has been investigated in details in [6,7]”. Here
[7] in Levin’s numbering is Gács paper cited above ([4] is our numbering) and has the comment “in press”,
and [6] in Levin’s numbering is cited as [Levin L.A., On different version of algorithmic complexity of
finite objects, to appear]. Levin does not have a paper with exactly this title, but the closest approximation
is his 1976 paper [9], where prefix complexity is defined as the logarithm of a maximal semimeasure.
Except for these references, [8] describes the prefix complexity in terms of prefix-stable functions: “It
differs from the Kolmogorov complexity measure 〈. . .〉 in that the decoding algorithm A has the following
“prefix” attribute: if A(p1) and A(p2) are defined and distinct, then p1 cannot be a beginning fragment of
p2”.

The prefix-free and a priori probability definitions were given independently by Chaitin in [2] (in
different notation) together with the proof of their equivalence, so [2] was the first publication containing
this (important) proof.

Now it seems that the most popular definition of prefix complexity is the prefix-free one (it is given
as the main definition in [10], for example).
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4 Prefix complexity and information distance

4.1 Four versions of prefix information distance
Both the prefix-free and prefix-stable versions of prefix complexity have their counterparts for the infor-
mation distance.

Let U(p,x) be a partial computable prefix-free [prefix-stable] function of two string arguments having
string values. Consider the function

EU (x,y) = min{|p| : U(p,x) = y and U(p,y) = x}

As before, one can easily prove that there exists a minimal (up to O(1)) function among all functions EU
of the class considered. It will be called prefix-free [resp. prefix-stable] information distance function.
We clarify the difference between these variants.

Note that only the cases when U(p,x) = y and also U(p,y) = x matter for EU . So we may assume
without loss of generality that U(p,x) = y⇔ U(p,y) = x waiting until both equalities are true before
finalizing the values of U . Then for every p we have some matching Mp on the set of all strings: an edge
x–y is in Mp if U(p,x) = y and U(p,y) = x. This is indeed a matching: for every x only U(p,x) may be
connected with x.

The set Mp is enumerable uniformly in p. In the prefix-free version the matchings Mp and Mq are
disjoint (have no common vertices) for two compatible strings p and q (one is an extension of the other).
For the prefix-stable version Mp increases when p increases (and remains a matching). It is easy to see
that a family Mp that has these properties always corresponds to some function U (here we have two
statements: for prefix-free and prefix-stable version).

There is another way in which this definition could be modified. As we have discussed for the plain
complexity, we may consider two different functions U and U ′ and consider the distance function

EU,U ′(x,y) = min{|p| : U(p,x) = y and U ′(p,y) = x}.

Intuitively this means that we know the transformation direction in addition to the input string. This
corresponds to matchings in a bipartite graph where both parts consist of all binary strings; the edge x–y
is in the matching Mp if U(p,x) = y and U ′(p,y) = x. Again instead of the pair (U,U ′) we may consider
the family of matchings that are disjoint (for compatible p, in the prefix-free version) or monotone (for
the prefix-stable version). In this way we get two other versions of information distance that could be
called bipartite prefix-free and bipartite prefix-stable information distances.

In [1] the information distance is defined as the prefix-free information distance (with the same func-
tion U for both directions, not two different ones). The definition (section III) considers the minimal
function among all EU . This minimal function is denoted by E0(x,y) (while max(K(x|y),K(y|x)) is de-
noted by E1(x,y), see section I of the same paper). The inequality E1 6 E0 is obvious, and the reverse
inequality (with logarithmic precision) is proven in [1] as Theorem 3.3.

Which of the four versions of prefix information distance is the most natural? Are they really differ-
ent? It is easy to see that the prefix-stable version (bipartite or not) does not exceed the corresponding
prefix-free version, since every prefix-free function has a prefix-stable extension. Also each bipartite
version (prefix-free or prefix-stable) does not exceed the corresponding non-bipartite version for obvi-
ous reasons (one may take U = U ′). It is hard to say which version is most natural, and the question
whether some of them coincide or all four are different, remains open. But as we will see (Theorem 4),
the smallest of all four, the prefix-stable bipartite version, is still bigger than E1 (the maximum of condi-
tional complexities), and the difference is unbounded, so for all four versions (including the prefix-free
non-bipartite version used both in [1, 11, 12]) the equality with O(1)-precision is not true, contrary to
what is said in [12].

However, before going to this negative result, we prove some positive results about the definition of
information distance that is a counterpart of the a priori probability definition of prefix complexity.
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4.2 A priori probability of going back and forth
Fix some prefix-free function U(p,x). The conditional a priori probability mU (y|x) is defined as

Pr
π
[U(π,x) = y]

where U(π,x) = y means that U(p,x) = y for some p that is a prefix of π . As we discussed, there exists
a maximal function among all mU , and its negative logarithm equals the conditional prefix complexity
K(y|x).

Now let us consider the counterpart of this construction for the information distance. The natural way
to do this is to consider the function

eU (x,y) = Pr
π
[U(π,x) = y and U(π,y) = x].

Note that in this definition the prefixes of π used for both computations are not necessarily the same. It
is easy to show, as usual, that there exists an optimal machine U that makes eU maximal. Fixing some
optimal U , we get some function e(x,y) (different optimal U lead to functions that differ only by O(1)-
factor). The negative logarithm of this function coincides with E1 (from [1]) with O(1)-precision, as the
following result says.

Theorem 3.
− loge(x,y) = max(K(x|y),K(y|x))+O(1).

Proof. Rewriting the right-hand side in the exponential scale, we need to prove that

e(x,y) = min(m(x|y),m(y|x))

up to O(1)-factors. One direction is obvious: e(x,y) is smaller than m(x|y) since the set of π in the
definition of e is a subset of the corresponding set for m, if we use the probabilistic definition of m = mU .
The same is true for m(y|x).

The non-trivial part of the statement is the reverse inequality. Here we need to construct a machine U
such that

eU (x,y)> min(m(x|y),m(y|x))

up to O(1)-factors.
Let us denote the right-hand side by u(x,y). The function u is symmetric, lower semicomputable and

∑y u(x,y)6 1 for all x (due to the symmetry, we do not need the other inequality where y is fixed). This
is all we need to construct U with the desired properties; in fact eU (x,y) will be at least 0.5u(x,y) (and
the factor 0.5 is important for the proof).

Every machine U has a “dual” representation: for every pair (x,y) one may consider the subset Ux,y
of the Cantor space that consists of all π such that U(π,x) = y and U(π,y) = x. These sets are effectively
open (i.e., are computably enumerable unions of intervals in the Cantor space) uniformly in x,y, are
symmetric (Ux,y = Uy,x) and have the following property: for a fixed x, all sets Ux,y for all y (including
y = x) are disjoint.

What is important to us is that this correspondence works in both directions. If we have some family
Ux,y of uniformly effectively open sets that is symmetric and has the disjointness property mentioned
above, there exists a prefix-free machine U that generates these sets as described above. This machine
works as follows: given some x, it enumerates the intervals that form Ux,y for all y (it is possible since the
sets Ux,y are effectively open uniformly in x,y). One may assume without loss of generality that all the
intervals in the enumeration are disjoint. Indeed, every effectively open set can be represented as a union
of a computable sequence of disjoint intervals (to make intervals disjoint, we represent the set difference
between the last interval and previously generated intervals as a a finite union of intervals). Note also that
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for different values of y the sets Ux,y are disjoint by the assumption. If the enumeration for Ux,y contains
the interval [p] (the set of all extensions of some bit strings p), then we let U(p,x) = y and U(p,y) = x (we
assume that the same enumeration is used for Ux,y and Uy,x). Since all intervals are disjoint, the function
U(p,x) is prefix-free.

Now it remains (and this is the main part of the proof) to construct the family Ux,y with required
properties in such a way that the measure of Ux,y is at least 0.5u(x,y). In our construction it will be
exactly 0.5u(x,y). For that we use the same idea as in [1] but in the continuous setting. Since u(x,y) is
lower semicomputable, we may consider the increasing sequence u′(x,y) of approximations from below
(that increase with time, though we do not explicitly mention time in the notation) that converge to u(x,y).
We assume that at each step one of the values u′(x,y) increases by a dyadic rational number r. In response
to that increase, we add to Ux,y one or several intervals that have total measure r/2 and do not intersect
Ux,z and Uz,y for any z. For that we consider the unions of all already chosen parts of Ux,z and of all chosen
parts of Uz,y. The measure of the first union is bounded by 0.5∑z u′(x,z) and the measure of the second
union is bounded by 0.5∑z u′(z,y) where u′ is the lower bound for u before the r-increase. Since the sums
remain bounded by 1 after the r-increase, we may select a subset of measure r/2 outside both unions.
(We may even select a subset of measure r, but this will destroy the construction at the following steps,
so we add only r/2 to Ux,y.)

Remark 3. As for the other settings, we may consider two functions U and U ′ and the probability of the
event

eU,U ′(x,y) = Pr
π
[U(π,x) = y and U ′(π,y) = x]

for those U,U ′ that make this probability maximal. The equality of Theorem 3 remains valid for this
version. Indeed, the easy part can be proven in the same way, and for the difficult direction we have
proven a stronger statement with additional requirement U =U ′.

One can also describe the function e as a maximal function in some class, therefore getting a quanti-
tative definition of E0. This is essentially the statement of theorem 4.2 in [1]. In terms of semimeasures
it can be reformulated as follows.

Proposition 5. Consider the class of symmetric lower semicomputable functions u(x,y) with string argu-
ments and non-negative real values such that ∑y u(x,y) 6 1 for all x. This class has a maximal function
that coincides with min(m(x|y),m(y|x)) up to an O(1) factor.

(Indeed, we have already seen that this minimum has the required properties; if some other func-
tion u(x,y) in this class is given, we compare it with conditional semimeasures m(x|y) and m(y|x) and
conclude that u does not exceed both of them.)

In logarithmic scale this statement can be reformulated as follows: the class of upper semicomputable
symmetric functions D(x,y) with string arguments and real values such that ∑y 2−D(x,y) 6 1 for each x,
has a minimal element that coincides with max(K(x|y),K(y|x)) up to an O(1) additive term. Theorem
4.2 in [1] says the same with the additional condition for D: it should satisfy the triangle inequality. This
restriction makes the class smaller and could increase the minimal element in the class, but this does not
happen since the function

max(K(x|y),K(y|x))+ c

satisfies the triangle inequality for large enough c. This follows from the inequality K(x|z) 6 K(x|y)+
K(y|z)+O(1) since the left hand size increases by c and the right hand size increases by 2c when K is
increased by c.

Remark 4. To be pedantic, we have to note that in [1] an additional condition D(x,x) = 0 is required for
the functions in the class; to make this possible, one has to exclude the term 2−D(x,x) in the sum (now
this term equals 1) and require that ∑y 6=x 2−D(x,y) 6 1 (p. 1414, the last inequality). Note that the triangle
inequality remains valid if we change D and let D(x,x) = 0 for all x.
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5 A counterexample
In this section we present the main negative (and most technically difficult) result of this paper that shows
that none of the four prefix distances coincides with

E1(x,y) = max(K(x|y),K(y|x)).

Theorem 4. The bipartite prefix-stable information distance exceeds E1(x,y) more than by a constant:
the difference is unbounded.

As we have mentioned, the other three versions of the information distance are even bigger, so the
same result is true for all of them. We will explain the proof for the non-bipartite prefix-stable version (it
is a bit easier and less notation is needed) and then explain the changes needed for the bipartite prefix-
stable version. Our proof also provides a lower bound in terms of the length: for strings of length n, the
difference can be as large as

log logn−O(log loglogn).

The proof uses the game approach (see [14, 13] for the general context, but the proof is self-contained).
In the next section (A.1) we explain the game rules and prove that a computable winning strategy in the
game implies that the difference is unbounded, and then (in Section A.2) we explain the strategy. Finally
(in Section A.3) we discuss the modifications needed for the bipartite case.

6 Equality if the distance is superlogarithmic
Given the previous result, all distances become equal for pairs of strings of equal length, provided their
distance is not too small.

Theorem 5. If |x| = |y| and E1(x,y) > 6log |x|, then all four prefix information distances are equal to
E1(x,y)+O(1).

This seems to be the first equality in information theory whose precision becomes smaller if the
quantity becomes larger. The proof is given in the second appendix.
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A Proof of Theorem 4

A.1 It is enough to win a game
Consider the following two-player full information game. Fix some parameter c, a positive rational
number. The game field is the complete graph on a countable set (no loops); we use binary strings as
graph vertices. Alice and Bob take turns.

Alice increases weights of the graph edges. We denote the weight of the edge connecting vertices
u and v by mu,v (here u 6= v). Initially all mu,v are zeros. At each move Alice may increase weights of
finitely many edges using rational numbers as new weights. The weights should satisfy the inequality
∑v 6=u mu,v 6 1 for every u (the total weight of the edges adjacent to some vertex should not exceed 1).

Bob assigns some subsets of the Cantor space to edges. For each u,v (where u 6= v) the set Mu,v
assigned to the edge u–v is a clopen subset of the Cantor space (clopen subsets are subsets that are closed

13

http://www.cs.bu.edu/fac/lnd/dvi/diss/1-dis.pdf
doi:10.1145/1458082.1458242
https://arxiv.org/abs/1003.4712
https://arxiv.org/pdf/1204.0198.pdf
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf
https://arxiv.org/pdf/1410.7328.pdf


and open at the same time, i.e., finite unions of intervals in the Cantor space). Initially all Mu,v are empty.
At each move Bob may increase sets assigned to finitely many edges (using arbitrary clopen sets that
contain the previous ones). For every u, the sets Mu,v (for all v 6= u) should be disjoint.

The game is infinite, and the winner is determined in the limit (assuming that both Alice and Bob
follow the rules). Namely, Bob wins if for every u and v (where u 6= v) the limit value limMu,v (the union
of the increasing sequence of Bob’s labels for edge u–v) contains an interval in the Cantor space whose
size is at least c · limmu,v (the limit value of Alice’s labels for u–v, multiplied by c). Recall that the interval
[z] in the Cantor space is the set of all extensions of some string z, and its size is 2−|z|. In the sequel the
size of the maximal interval contained in X is denoted by ν(X).

We claim that the existence of a computable (uniformly in c) winning strategy for Alice in this game
is enough to prove Theorem 4. But first let us make some remarks on the game rules.

Remark 5. Increasing the constant c, we make Bob’s task more difficult, and Alice’s task easier. So our
claim says that Alice can win the game even for arbitrarily small (positive) values of c.

Remark 6. In our definition the result of the game is determined by the limit values of mu,v and Mu,v, so
both players may postpone their moves. Two consequences of this observation will be used. First, we
may assume that Bob always has empty Mu,v when mu,v = 0 (he may postpone his move). Second, we
may assume that Bob has to satisfy the requirement ν(Mu,v) > cmu,v after each of his moves. Indeed,
Alice may wait until this requirement is satisfied by Bob: if this never happens, Alice wins the game in
the limit (due to compactness: if an infinite family of intervals covers some large interval in the Cantor
space, a finite subfamily exists that covers it, too).

Now let us assume that Alice has a (uniformly) computable strategy for winning the game for every
c> 0. Since the factor c is arbitrary, we may strengthen the requirement for Alice and require ∑v6=u mu,v 6
d for some d > 0. This corresponds to the factor cd in the original game. Given some integer k > 0,
consider Alice’s winning strategy for c = 2−k and d = 2−k. We play all these strategies simultaneously
against a “blind” strategy for Bob that ignores Alice’s moves and just follows the optimal machine U used
in the definition of information distance. Here are the details.

Consider the function U that makes the function

EU (u,v) = min{|p| : U(p,u) = v and U(p,v) = u}

minimal. For each edge u–v consider the union of the sets [p] for all p such that U(p,u) = v and U(p,v) =
u at the same time. This union is an effectively open set, and Bob enumerates the corresponding intervals
and adds them to the label for the edge u–v when they appear in the enumeration. (Note that this set is
the same for (u,v) and (v,u) by definition.) For the limit set Mu,v we then have ν(Mu,v) > 2−EU (u,v) by
construction (consider the interval that corresponds to the shortest p in the definition of EU (u,v)).

Let Alice use her winning strategy (for c = 2−k and d = 2−k) against Bob. Since Bob’s actions and
Alice’s strategy are computable, the limit values of Alice’s weights are lower semicomputable uniformly
in k. Let us denote these limit values by mk

u,v (for the kth game). We know that for every u and k the sum
∑v 6=u mk

u,v does not exceed 2−k. Therefore the sum

mu,v = ∑
k

mk
u,v

satisfies the requirement
∑
v6=u

mu,v 6 1

and we can apply Proposition 5, where we let mu,u = 0. This proposition guarantees that

mu,v 6 O(min(m(u|v),m(v|u)) = 2−E1(u,v)+O(1).
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If, contrary to the statement of Theorem 4, the value of the prefix-stable (non-bipartite) information
distance between u and v is bounded by E1(u,v)+O(1), then E1(u,v) in the right hand side of the last
inequality can be replaced by EU (u,v). But this means, by our construction, that Bob wins the kth game
for large enough k, since the maximal intervals in Mu,v are large enough to match mu,v (and therefore
mk

u,v) for large enough k, according to this inequality. We get a contradiction that finishes the proof of
Theorem 4 for the non-bipartite case, assuming the existence of a uniformly computable winning strategy
for Alice.

A.2 How to win the game
Now we present a winning strategy for Alice. It is more convenient to consider an equivalent version of
the game where Alice should satisfy the requirement ∑mu,v 6 d (for some constant d; we assume without
loss of generality that d is a negative power of 2) and Bob should match Alice’s weights without any
factor, i.e., satisfy the requirement ν(Mu,v)> mu,v. We need to show that even for small values of d Alice
has a winning strategy.

The idea of the strategy is that Alice maintains a finite set of “currently active” vertices, initially very
large and then decreasing. The game is split into N stages where N = 2/d (as we will see, this is enough).
After each stage the set of active vertices and the edge labels satisfy the following conditions:

• Alice has zero weights on edges that connect active vertices (as we have said, we may assume
without loss of generality that Bob has empty labels on these edges, too);

• for each active vertex, only a small weight is used by Alice on edges that connect it to other
vertices (inactive ones; edges to active ones are covered by the previous condition and do not carry
any weight); this weight will never exceed d/2;

• more and more space is unavailable to Bob for use on edges between active vertices, since it is
already used on edges connecting active and inactive vertices.

The amount of unavailable space (for Bob) grows from stage to stage until no more space is available and
Alice wins. In fact, at each stage the amount of unavailable space grows by d/2, so Alice needs N = 2/d
stages to make all the space unavailable for Bob; then she makes one more request and wins since Bob
has no available space to fulfull this request.

In the previous paragraph we used the words “unavailable space” informally. What do we mean by
unavailable space? Consider some active vertex x and edges that connect it to inactive vertices. These
edges have some of Bob’s labels (subsets of the Cantor space). The part of the Cantor space occupied
by these labels is not available to Bob for edges between x and other active vertices. Moreover, if Alice
requests an interval of size ε , and some part (even a small one) of an interval of this size is occupied, then
this interval cannot be used by Bob (is unavailable). In this way the unavailable space can be much bigger
than the occupied space, and this difference is the main tool in our argument.2

Let us explain this technique. First, let us agree that Alice increases only zero weights, and the new
non-zero weight she uses depends on the stage only. At the first stage she uses some very small ε0, at the
second stage she uses some bigger ε1, etc. (so at the ith stage weights εi−1 are used). We will use values
of εi that are powers of 2 (since interval sizes in the Cantor space are powers of 2 anyway), and assume
that ε0� ε1� ε2 . . .. More precisely, we let εN = d/2 and assume that εi−1/εi = d/2.

ε0 ε1 ε2 . . . εN

stage 1 stage 2 stage N
2This type of accounting goes back to Gács’ paper [5] where he proved that monotone complexity and continuous a priori

complexity differ more than by a constant, see also [15] for the detailed exposition of his argument.

15



This commitment about the weights implies that, starting from the (i+1)th stage, only the εi-neighborhood
of the space used by Bob matters. Here by ε-neighborhood (where ε is a negative power of 2) of a subset
X of the Cantor space we mean the union of all intervals of size ε that have nonempty intersection with
X ; note that the ε-neighborhood of X increases when ε increases (or X increases).

More precisely, let us call an interval dirty for active vertex x (at some moment) if some part of this
interval already appears in Bob’s labels for edges that connect x to inactive vertices. This interval cannot
be used later by Alice. After stage i, we consider all the intervals of size εi that are “everywhere dirty”,
i.e., dirty for all vertices (those that are dirty for some active vertices but not for the others, do not count).
The everywhere dirty intervals form the unavailable space after stage i, and the total measure of this
space increases at least by d/2 at each stage. In other terms, after stage i we consider for every active
vertex x the space allocated by Bob to all edges connecting x with (currently) inactive vertices, and the
εi-neighborhood of this space. The intersection of these neighborhoods for all active vertices x is the
unavailable space (after stage i).

After stage i the total size of unavailable space will be at least i/N (recall that N = 2/d). At the
end (after the Nth stage) we have εN = d/2, so the total size of everywhere dirty intervals of size d/2 is
N/N = 1, while the total weight used by Alice at any vertex is d/2. Then Alice makes one more request
with weight d/2 and wins. Of course, we need that at least two vertices remain active after stage N, and
this will be guaranteed if the initial number of active vertices is large enough.

The picture above places εi between stages since εi is used for accounting after stage i and before
stage i+1.

It remains to explain how Alice plays at stage i using requests of size εi−1 and creating (new) ev-
erywhere dirty intervals of size εi with total size (=the size of their union) at least d/2. This happens in
several substages; each substage decreases the set of active vertices and increases the set of everywhere
dirty intervals of size εi (for the remaining active vertices).

Before starting each substage, we look at two subsets of the Cantor space:

(a) the set of intervals of size εi−1 that were everywhere dirty after the previous stage;

(b) the set of intervals of size εi that are everywhere dirty now (after the substages that are already
performed).

The second set is bigger for two reasons. First, we changed the granularity (recall the εi-neighborhood of
some set can be bigger than εi−1-neighborhood). Second, the previous substages create new everywhere
dirty intervals of size εi. Our goal is to make the second set larger than the first one; the required difference
in size is d/2. If this goal is already achieved, we finish the stage (no more substage are necessary). If
not, we initiate a new substage that creates a new everywhere dirty εi-interval.

. . . . . . . . .

Alice’s strategy for a substage

The key idea is that if Alice makes requests for all edges of a large star, she may use a lot of weight
for the central vertex (the sum of the weights could be up to d/2, since in our process the total weight on
edges that connect some active vertex to inactive ones, never exceeds d/2, and the maximal total weight
is d). Still for all other vertices of the star only one new edge of non-zero weight εi−1 is added, and the
central vertex will be made inactive after the substage. Bob has to allocate some intervals of size at least
εi−1 for every edge in the star, and these intervals should be disjoint (due to the restrictions for the center
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of the star). The total measure of these intervals is at least d/2, and all of them are outside the zone (a).
Therefore, since the goal is not yet achieved, one of these new intervals used by Bob is also outside the
zone (b).

Alice does the same for many stars (assuming that there are enough active vertices) and gets many
new εi-intervals outside the (b)-zone (one per star). Some of them have to coincide: if we started with
many stars, we may select many new active vertices that have the same new εi-dirty interval. Making all
other vertices inactive, we get a smaller (but still large if we started with a large set of active vertices)
set of active vertices and a new everywhere dirty εi-interval. The goal of a substage is achieved, and we
may look again at the set of everywhere dirty εi-intervals (with new interval added) to decide whether the
difference between (b) and (a) is now enough (d/2) or a new substage is needed. The maximal number
of substages needed to finish the stage is (d/2)/εi, since each substage creates a new εi-interval.

The same procedure is repeated for all N stages. We need to check that Alice does not violate her
obligation on the sum of weights connecting some active vertex to all inactive vertices. For that, we
look at the “amplification factor”: in the construction Alice uses a new weight εi−1 (for every new active
vertex) to get a dirty interval of size εi, therefore the amplification factor is εi/εi−1 = 2/d. Since the total
size of dirty intervals is at most 1, the total weight used by Alice (for each active vertex) never exceeds
d/2, as required.

It remains to explain why Alice can choose enough active vertices in the beginning, so she will never
run out of them in the construction and at least two active vertices exist at the end (so the last request
d/2 for the edge connecting them wins the game). Indeed, the backwards induction shows that for each
substage of each stage there is some finite number of active vertices that is sufficient for Alice to follow
her plan till the end. If we want to upper bound the length on the strings where a given difference between
two quantities in the statement of Theorem 4 is achieved, we need to compute this number explicitly. But
the qualitative statement (the unbounded difference) is already proven for the prefix-stable non-bipartite
case. The prefix-free case is a corollary (the distance becomes bigger), but for the bipartite case we need
to adapt the argument, and this is done in the next section.

A.3 Modifications for the bipartite case
In the bipartite case the game should be changed. Namely, we have a complete bipartite graph where left
and right parts contain all strings. Alice increases weights on edges; for each vertex (left or right) the
sum of the weights for all adjacent edges should not exceed some d (the parameter of the game). In other
terms, at each step Alice’s weights form a two-dimensional table mx,y indexed by pairs of strings x and y,
all entries are zeros except for finitely many positive rational numbers, and

∀x

(
∑
y

mx,y 6 1

)
, ∀y

(
∑
x

mx,y 6 1
)

(now we have two requirements since the table is not symmetric anymore; note that the diagonal entries
mx,x do not have special status).

Bob replies by assigning increasing sets Mx,y to edges such that ν(Mx,y) > mx,y. For each x the sets
Mx,y (with different y) should be disjoint; the same should be true for sets Mx,y for fixed y and different x.

Again, to prove that the bipartite prefix-free information distance exceeds E1(x,y)=max(K(x|y),K(y|x))
by a constant, we show that for every d Alice has a computable (uniformly in d) winning strategy in this
game. Then we consider games with total weight 2−k and factor condition ν(Mx,y) > 2−kmx,y and let
Alice play her winning strategy against the “blind” strategy for Bob that (for the edge x–y) enumerates all
intervals [p] such that U(p,x) = y and U ′(p,y) = x at the same time.

The winning strategy for Alice works in stages as before, and the request size grows with the stage
in the same way. Alice keeps the list of active vertices (both in the left and the right part), and after each
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stage (and substage) all weights on edges between (left and right) active vertices are zeros, and sum of
Alice’s weights on edges between each active vertex and all inactive vertices is small. After the ith stage
we consider intervals of size εi. When defining dirty intervals, we look only at one part (say, the right
one). An interval I of size εi is considered as dirty for a right vertex y if some part of this interval is
allocated to some edge connecting y to some vertex x from the left part. We are interested in intervals that
are dirty everywhere (i.e., for every right vertex y). At each substage (of the ith stage), to create a new
everywhere dirty interval, we use stars as shown.

. . . . . .

In each star the sum of Alice’s weights is d/2; we choose an edge for which Bob’s label is not in the
everywhere dirty intervals found during previous substage, and look at the εi interval where it goes. Since
there are many stars, some dirty interval occurs many times; Alice selects such an interval and uses the
right vertices of corresponding edges as new active right vertices. On the left side, Alice uses vertices that
do not appear in the stars, as new active left vertices. (In this way we have much more active vertices on
the left; if for some reason we want to keep the same number of left and right vertices, Alice may delete
part of the remaining vertices..)

B Proof of Theorem 5

Easy strategies for Bob
We use the same game as before, but this time, we only consider strings of length exactly n. The game
has 2 parameters, n and d > 0. Alice must satisfy mu,v 6 d, and Bob can use all of his Cantor spaces, in
other words, we set c = 1. This time, we must provide a winning strategy for Bob that works for some
fixed constant d > 0 and all n.

Each time Alice increases a weight mu,v to a value ε , we say that she makes a request of the form ({u,v},ε).
To each string u, we associate a Cantor space Ωu. If Bob replies by enumerates an interval [q] in Mu,v,
we say that he allocates [q] both in Ωu and Ωv. Recall that prefix-free non-bipartite information distance
is maximal. Hence, we assume that Alice’s requests are negative powers of 2 and that Bob must always
reply by assigning an interval of at least the same size, unless he has already done this.
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To understand the main ideas behind Bob’s strategy, we first consider variants of the game that are
easier for Bob to win.

In the most basic variant, we require that Alice can only make requests of a fixed size ε . In this case,
the game reduces to the argument we used for the plain information distance, and a greedy strategy works
for all d 6 1/2.

In a related variant, we assume that Alice only uses request sizes from a finite set E . We also assume
that Alice and Bob are given a probability measure P over E , and that all values of P and E are dyadic.
For each string u and ε ∈ E , let Wu,ε be the total measure of requests of size ε on u, in other words, it is
equal to ε times the number of requests of the form ({u, ·},ε). We consider the game in which Alice’s
requests should satisfy Wu,ε 6 d ·P(ε) for all u and ε ∈ E .

In this case a winning strategy for Bob exists if d 6 1/2: he divides each Cantor space in regions,
and to each size ε ∈ E , he associates a region of measure P(ε). All Cantor spaces Ωu are partitioned in
the same way. When given a request of size ε , Bob uses the same greedy strategy as before inside the
corresponding region. For the same reason as before, this strategy works for all d 6 1/2.

Now, consider the variant in which E has size s, i.e., Alice can use s different sizes, and she can
choose P during the game. In other words, Alice’s requests should satisfy:

∑
ε∈E

max
|u|=n
{Wε,u} 6 d .

Bob has a winning strategy for d = 1/4. It goes as follows. He creates 2s regions of equal size
in Cantor space. He assigns the first s regions to elements of E . Initially, the other s regions remain
unassigned. For all strings u, he uses the same partition of Ωu into regions. Each time maxu Wu,ε exceeds
half of the measure of the ε-regions, a new region is assigned to ε .

What is the maximal number r of assigned regions that can appear? If rε is the number of assigned
regions for some ε , then d ·P(ε)> (rε −1) · 1

2 ·
1
2s . Summing over ε , this implies d > (r− s)/(4s). Thus

at most r = 2s regions can be assigned, and hence, the strategy can always proceed.

In the above variant, we considered a finite E , and we soon explain why this is not an important restriction
if E has size s = n. However, in the last strategy, we assumed that the distribution over request sizes in E
is somehow the same for all strings, and avoiding this restriction is the hardest part of the argument.

To understand that the last strategy fails in the general case, assume that Alice makes requests of s
different sizes, and fixes s strings for which she makes only requests of a single size. Then the previous
strategy needs s2/2 regions, but has only 2s regions available.

This suggests the following approach. She creates r = 2s regions by partitioning the Cantor space in a
large (but still polynomial) number of blocks of equal size, and the regions are obtained as random unions
of blocks. In other words, the partitions of Cantor space is obtained from a random partition of the set of
blocks. Each string receives its own random partition. The idea is to use only 1 size in each block, so that
the greedy strategy in the blocks is sufficient.

We explain this idea in more detail. The regions are numbered by 1,2, . . . ,r. For each pairs of strings,
about a fraction 1/r of the blocks will be assigned to the same region. We assign sizes to regions, as in
the previous example: if the regions for a size gets too full, we add an unassigned region to this size. We
say that a block is non-full if less than half of its measure is assigned. When given a request ({u,v},ε),
we choose a block that, both for u and for v, is non-full and lies in an ε-region. If such a block exists, we
allocate an available interval in this block. Note that such interval exists, because inside blocks we can
again play the trivial strategy.

The problem is that the required block might not exist. We will prove that in a random partition, this
event does not happen very often and that there exists a different strategy that can handle all remaining
requests.
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In the next four subsections we present the proof. First, we discuss a game in which Alice’s moves are
restricted, and show how a winning strategy for Bob implies the theorem. Then, we present the strategy
discussed above that handles the bulk of the requests. Afterwards, we present a second strategy that
handles the remaining requests. Finally, some combinatorial statements are proven that imply correctness
of the two above strategies.

The restricted game
We consider the game as described above. Recall that c = 1, is played on n-bit strings, and Alice’s
requests sizes are negative powers of 2. We additionally require that Alice’s requests satisfy the following
conditions.

(A) All requests have size at least 2−n.

(B) All requests have size at most n−p. (We use this at the end with p = 6.)

Assumption (A) implies that at most n different request sizes are used. If Bob has a winning strategy in
a game with parameter d in which Alice is restricted by (A), then he also has a winning strategy in an
unrestricted game with parameter at most d/2, because Bob can start by connecting all pairs using the
bottom half of the Cantor spaces. After this, he can ignore all small requests.
Assumption (B) changes the situation significantly, because it prevents Alice from playing the winning
strategy of the previous result. In the next subsections, we present Bob’s winning strategy. We now show
that this implies Theorem 5.

Lemma 1. If there exists a d > 0 such that Bob has a computable winning strategy in the restricted game
for p = 6 and for all n, then Theorem 5 is true.

Proof. We construct a prefix-free machine V such that for all different n-bit strings x,y there is a program
q for which V (q,x) = y, V (q,y) = x and |q|6 E1(x,y)+O(log 1

d ).

Computation of V on input (q,x). Bob’s winning strategy for strings of length n = |x| is played against
Alice’s strategy in which she sets mu,v = d2−E1(u,v), using a non-increasing approximation of E1. Note
that when approximations improve, the weights increase. Bob replies by enumerating intervals Mu,v, and
if [q] is enumerated in some set Mx,v, the output is V (q,x) = v.

Note that the winning condition indeed implies that for all different n-bit x,y, there exists a string q of
length log 1

d +E1(x,y) with V (q,x) = y and V (q,y) = x. Also, The prefix-free non-bipartite information
distance defined using V satisfies the conditions of the lemma.

The first substrategy
The first substrategy uses the top halves of all Cantor spaces Ωu, and the second strategy the bottom
halves. It allocates most requests ({x,y},ε), and when it fails to allocate some request, it does something
extra: it blames either x or y. We show that:

Every string is blamed at most O(n3) times. (*)

Let n be large. The substrategy starts by partitioning the Cantor space in ` = 27n4 blocks of equal size.
These blocks are assigned to r = 2n regions. For each string, this partitioning happens differently. The
assignment is represented by a colouring of the blocks using r different colours from a set Σ. Thus, each
assignment corresponds to an element v ∈ Σ`, and vice versa, each such v and a ∈ Σ determine a region
containing blocks with indices

v[a] = {i : vi=a}.
For each n-bit x, we use a list v from a set S⊆ Σ` that satisfies the conditions of the following lemma.
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Lemma 2. Let |Σ| = r > 2. If n > 2+ logr and ` > 27r3n, there exists a set S ⊆ Σ` of size 2n such that
for all (v,a) ∈ S×Σ:

• at least a 1
2r -fraction of elements in v are equal to a, i.e.,

∣∣v[a]∣∣ > `
2r ,

• for every I ⊆ v[a] of size `/(8r), there are at most O(r2) pairs (w,b) ∈ S×Σ for which∣∣∣I ∩ w[b]
∣∣∣ > 1

2

∣∣∣v[a] ∩ w[b]
∣∣∣.

We postpone the proof to the last subsection, and continue with the substrategy. Before the first request
arrives, the substrategy searches for a set S that satisfies the conditions of the lemma. For each n-bit x,
it determines the corresponding allocation of blocks into regions. It assigns the request sizes 2−1, 2−2,
. . . , 2−n to the first n regions. These regions are called the ε-active regions for the corresponding request
sizes ε . To the other n regions, no sizes are assigned, and they are inactive. For every request size, there
will always be a unique active region.

Let x be an n-bit string. A block in Ωx is full if at least half of its measure is allocated. A region in Ωx
is full if at least 1

8 -th of its blocks are full.

Allocating a request ({x,y},ε). The substrategy considers the ε-active regions of x and y. It searches
for a common block that is non-full for both strings. If no such block exists, then no interval is assigned,
and a string is blamed for which at least half of the common blocks are full, (ties can be broken in an
arbitrary way, or both strings can be blamed). If an ε-active region becomes full, it is made inactive, and
a new ε-active region is assigned from the unused ones.

Recall that r = 2n and that only half of the Cantor space is used by this substrategy. By the first item
of Lemma 2, each region has size at least 1/(4r). Thus, if d 6 n

4r
1
8

1
2 = 2−7, at most n regions can be

full. Besides this, at most n active regions are needed, and hence, r regions are enough in order to always
allocate an unused region.

The requirement * follows from the second item of the lemma. Indeed, for some string, let I be the
set of the full blocks at a given moment. Each time a string is blamed while a region is active, at least half
of the common blocks are inside I. By the lemma, for a fixed region, there are at most O(n2) strings for
which this can happen, and hence there are at most O(n2) requests for which the string can be blamed.
Because there are 2n regions, the maximal number of times a string can be blamed is O(n3). Hence, the
requirement for the first substrategy are satisfied.

The second substrategy
This strategy must allocate all remaining requests. Each string receives 2 types of requests.

Requests on which it is blamed. The number of such requests is at most O(n3). Recall from assumption
(B) that requests have size at most n−p, and hence, their measure is at most O(n3−p). For large p, this
can be made arbitrarily small. We will again use regions and blocks, and will choose p such that all these
requests can fit in a small fraction of a single block (which has size about 1/n2).

Requests on which the string is not blamed. Averaged over all strings, this number of requests is also
O(n3). But for some strings the total measure can be a constant fraction of the Cantor space, but in any
case, at most a fraction d.

The main idea is that since each string is blamed so rarely, it does not matter much where the corre-
sponding allocations happen. But the other requests need to be properly structured. Thus in a request,
the string that is not blamed will play a dominant role by determining in which region the interval will
be assigned. The terminology is inspired by human relationships, where a person who can create blame
(and guilt) in the other, typically has more influence in a decision.
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We explain the initialization of the second substrategy, which uses the remaining half of the Cantor
spaces. Again it is partitioned into 2n regions, but now the partition is straightforward: the regions have
equal size, and are identical for all strings. Each region is further subdivided in blocks. We use 2 types of
blocks: the dominant blocks are used to allocate requests in which the string is not blamed, and submissive
blocks, which are used for the other requests. Each region is partitioned in s = 64n equal blocks, and this
partition is different for all strings. For a fixed string, we use the same subdivision for all the regions (or
different ones, it does not matter as long as the combinatorial requirements are met), and for each pair
of strings, there should be a sufficient overlap between dominant blocks of the first string and submissive
blocks of the second one. For a fixed region, the division of each string can be represented as an s-bit
string. If a,b ∈ {0,1}s represent divisions of the same region for two different strings, then the number of
indices i with ai = 1 and bi = 0 equals ∑

s
i=1 ai(1−bi), and should be at least s/8. The following lemma

provides the required sets of partitions.

Lemma 3. For s > 64n, there exists a subset of {0,1}s of size 2n such that ∑
s
i=1 ai(1−bi)> s/8 for any

two different elements a and b in the set.

We postpone the proof to the next subsection. We say that a dominant block is full if the total measure of
allocated intervals in it is at least half of its measure. We call a region full if at least 1

8 th of its dominant
blocks are full. As before, if a region is full, a new region is assigned for the measure and if d is small, a
total of 2n regions is enough to execute the strategy.

For each request, the substrategy selects a block in the active region of the non-blamed string that is
(1) is submissive for the blamed string, and (2) dominant and non-full for the string that is not blamed.
Inside this block, an unallocated interval is selected.

We need to prove that this strategy always works under the assumption *. Thus, we need to explain
that a required block exists, and that it has a free interval.

The required block exists by the conditions of the lemma: for a given region in two different strings,
at least 1

8 th of the dominant blocks overlap with the submissive blocks of the other string. Less than 1
8 of

these blocks are full for the dominant string, so a non-full block exists.
The existence of a free interval in this block follows by bounding the allocated measure of the block.

By definition of non-full blocks, less than half of its measure is allocated by the string that is not blamed.
The other string can have at most an allocated measure O(n3−p), because as we discussed, this is the total
measure of requests in which the string is not blamed, and since the block is submissive, this string has
allocated only such requests. If we choose p = 6, then for large n this is less than half of the size of a
single block (which is proportional to 1/n2).

We have proven that the given substrategy allocates all remaining requests. To prove the theorem, it
remains to prove the 2 combinatorial lemmas.

Combinatorial statements
We start with Lemma 3 from the previous subsection. It is a slightly stronger variant of the following
known result: for all s sufficiently larger than n, there exist 2n bitstrings of length s whose pairwise
Hamming distances are at least s/8. We restate the lemma.

Lemma. For s > 64n, there exists a subset of {0,1}s of size 2n such that ∑
s
i=1 ai(1− bi) > s/8 for any

two different elements a and b in the set.

Proof. We use the probabilistic method. If we generate a,b ∈ {0,1}s randomly, then each term xi(1−yi)
in the sum equals 1 with probability 1

4 . The probability that the sum is smaller than s/8 is at most

exp
(
−2

s
82

)
6 exp(−2n).
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Now assume we generate 2n bitstrings randomly. By the union bound, the probability that the condition
is violated for some pair of bitstrings is at most 22n exp(−2n)< 1. Hence, there must be at least 1 set of
strings that satisfies the condition of the lemma.

We now proceed to Lemma 2.

Lemma. Let |Σ|= r > 2. If n > 2+ logr and `> 27r3n, there exists a set S⊆ Σ` of size 2n such that for
all (v,a) ∈ S×Σ:

• at least a 1
2r -fraction of elements in v are equal to a, i.e.,

∣∣v[a]∣∣ > `
2r ,

• for every I ⊆ v[a] of size `/(8r), there are at most O(r2) pairs (w,b) ∈ S×Σ for which∣∣∣I ∩ w[b]
∣∣∣ > 1

2

∣∣∣v[a] ∩ w[b]
∣∣∣.

Proof. Again, we use the probabilistic method. We need to show that a random set S ⊆ Σ` satisfies the
requirements of the lemma with positive probability. We show that the requirements are satisfied if for
some k 6 O(r2), neither of the following conditions hold:

• There exist two pairs (v,a) and (w,b) in S×Σ such that either∣∣v[a]∩w[b]
∣∣ < `

2r2 or
∣∣v[a]∩w[b]

∣∣ > 2`
r2 .

• There exist (v,a),(w1,b1), . . . ,(wk,bk) ∈ S×Σ and I ⊆ v[a] of size `
8r , such that for all i 6 k:∣∣∣I ∩ wi[bi]

∣∣∣ >
`

4r2 .

The first item of the lemma follows from the negation of the first condition after summing the left possi-
bility over all b ∈ Σ. For later use, note that the right possibility implies that |v[a]|6 2`/r.

Note that by the negation of the first condition, |I ∩wi[bi]| > `/(4r2) implies the inequality of the
second item of the lemma. Thus, if this happens for less than k pairs, then the number of pairs (w,b) in
the second requirement is also less than k.

We show that such that the probability of the first condition is true, is less than 1
2 , and that for some

k 6 O(r2), the conditional probability of the second condition, given the negation of the first, is also less
than 1

2 . Hence, with positive probability none of the conditions are true, and this implies the existence of
the required set.

The first condition. The probability that vi = wi for random v,w ∈ Σ` is 1/r. By the Chernoff bound,
the probability that this deviates more than `/(2r) is at most 2exp(− `

2r2 ). By the union bound, this
happens for 2 pairs in S×Σ with probability at most

2 · (r2n)2 · exp
(
− `

2r2

)
.

This is less than 1
2 if 2(n+2+ logr)2r2 6 `, and this is true by assumption on n and `.

The second condition. For a fixed (v,a), b1 and I the quantity |I∩w1[b1]| is the sum of |I| independent
Bernoulli variables with p = 1

r . If the condition is satisfied, then

∑
i6k
|I ∩ wi[bi]| >

k`
4r2 .
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The first quantity is the sum of k|I| = k`/8r independent Bernoulli variables with p = 1
r . By the

Chernoff bound, this happens with probability at most exp(−2 1
(2r)2 k|I|). The probability that this happens

for some choice of (v,a),(w1,b1), . . . ,(wk,bk) ∈ S×Σ and I ⊆ v[a] is bounded by

(r2n)k+1 22`/r exp
(
− k`

16r3

)
,

where the second term bounds the number of different subsets I ⊆ v[a] as 2|v[a]|, and is bounded using the
negation of the first condition. This expression is less than 1

2 if

(n+ logr+1)(k+1)6 1
2

k`
16r3

2`
r

6 1
2

k`
16r3 .

The first inequality follows from k + 1 6 2k and the assumptions on n and `. The second follows by
choosing k 6 O(r2). The lemma is proven.
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