W. Rosamond, K. Flegal, and K. Furie, Heart disease and stroke statistics-2007 update: A report from the American heart association statistics committee and stroke statistics subcommittee, Circulation, vol.115, issue.5, pp.69-86, 2007.

, World Health Organization, World health statistics. Epidemiology and Burden of Disease

P. Appelros, I. Nydevik, and M. Viitanen, Poor outcome after first-ever stroke: predictors for death, dependency, and recurrent stroke within the first year, Stroke, 2003.

S. Paolucci, M. Bragoni, and P. Coiro, Quantification of the probability of reaching mobility independence at discharge from a rehabilitation hospital in nonwalking early ischemic stroke patients: a multivariate study, Cerebrovasc Dis, vol.26, issue.1, pp.16-22, 2008.

L. Adams, R. J. Brown, and T. M. , Writing Group Members

, American Heart Association Statistics Committee and Stroke Statis-tics Subcommittee. Heart disease and stroke statistics-2010 update: a report from the American Heart Associa-tion, vol.121, pp.46-215, 2010.

S. Masiero and E. Carraro, Upper limb movements and cerebral plasticity in post-stroke rehabilitation, Aging Clin Exp Res, vol.20, issue.1, pp.103-108, 2008.
DOI : 10.1007/bf03324755

D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan, Principles of sensorimotor learning, Nature Rev. Neurosci, vol.12, issue.12, pp.739-751, 2011.
DOI : 10.1038/nrn3112

D. Huber, D. A. Gutnisky, and S. Peron, Multiple dynamic representations in the motor cortex during sensorimotor learning, Nature, vol.484, issue.7395, pp.473-478, 2012.

R. J. Nudo, Postinfarct cortical plasticity and behavioral recovery, Stroke, vol.38, issue.2, pp.840-845, 2007.
DOI : 10.1161/01.str.0000247943.12887.d2

URL : https://www.ahajournals.org/doi/pdf/10.1161/01.STR.0000247943.12887.d2

N. Oulad-ben-taib, M. Manto, M. A. Laute, and J. Brotchi, The cerebellum modulates rodent cortical motor output after ripetitive somatosensory stimulation, Neurosurgery, vol.56, issue.4, pp.811-831, 2005.

G. Nelles, Cortical reorganization-effects of intensive therapy, Restor Neurol Neurosci, vol.22, issue.3-5, pp.239-244, 2004.

C. Butefisch, H. Hummelsheim, P. Denzler, and K. H. Mauritz, Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand

, J Neurol Sci, vol.130, issue.1, pp.59-68, 1995.

N. A. Bayona, J. Bitensky, K. Salter, and R. Teasell, The role of task-specific training in rehabilitation therapies, Top Stroke Rehabil, vol.12, issue.3, pp.58-65, 2005.

J. W. Krakauer, S. T. Carmichael, D. Corbett, and G. F. Wittenberg, Getting neurorehabilitation right: what can be learned from animal models?, Neurorehabil Neural Repair, vol.26, issue.8, pp.923-954, 2012.
DOI : 10.1177/1545968312440745

URL : http://europepmc.org/articles/pmc4554531?pdf=render

M. J. Johnson, X. Feng, L. M. Johnson, and J. M. Winters, Potential of a suite of robot/computerassisted motivating systems for personalized, home-based, stroke rehabilitation, J Neuroeng Rehabil, vol.4, issue.6, 2007.

B. H. Dobkin, Strategies for stroke rehabilitation, Lancet Neurol, vol.3, issue.9, pp.528-564, 2004.

L. E. Kahn, P. S. Lum, W. Z. Rymer, and D. J. Reinkensmeyer, Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does?, J Rehabil Res Dev, vol.43, issue.5, pp.619-630, 2006.

T. H. Wagner, A. C. Lo, and P. Peduzzi, An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke, Stroke, vol.42, issue.9, pp.2630-2632, 2011.

V. Vliet, P. M. Wulf, and G. , Extrinsic feedback for motor learning after stroke: What is the evidence?, Disability and Rehabilitation, vol.28, pp.831-840, 2006.

G. B. Prange, M. J. Jannink, C. G. Groothuis-oudshoorn, H. J. Hermens, and M. J. Ijzerman, Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke, J Rehabil Res Dev, vol.43, issue.2, pp.171-184, 2006.

R. J. Sanchez, J. Liu, and S. Rao, Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment, IEEE Trans Neural Syst Rehabil Eng, vol.14, issue.3, pp.378-389, 2006.

K. J. Wisneski and M. J. Johnson, Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robotassisted ADL tasks, J Neuroeng Rehabil, vol.23, p.7, 2007.

J. A. Edmans, J. R. Gladman, M. Walker, A. Sunderland, A. Porter et al., Mixed reality environments in stroke rehabilitation: development as rehabilitation tools, 5th International Conference of Disability, 2004.
DOI : 10.1515/ijdhd.2007.6.1.39

URL : http://www.icdvrat.reading.ac.uk/2004/papers/S01_N1_Edmans_ICDVRAT2004.pdf

A. A. Timmermans, H. A. Seelen, and R. D. Willmann, Arm and hand skills: training preferences after stroke, Disabil Rehabil, vol.31, issue.16, pp.1344-52, 2009.
DOI : 10.1080/09638280902823664

W. M. Levack, K. Taylor, R. J. Siegert, S. G. Dean, K. M. Mcpherson et al., Is goal planning in rehabilitation effective? A systematic review, Clin Rehabil, vol.20, issue.9, pp.739-755, 2006.
DOI : 10.1177/0269215506070791

H. I. Krebs, Robot-Mediated Movement Therapy: a Tool for Training and Evaluation, European Symposium Technical Aids for Rehabilitation TAR, 2007.

B. French, L. Thomas, and M. Leathley, Does repetitive task training improve functional activity after stroke? A Cochrane systematic review and meta-analysis, J Rehabil Med, vol.42, issue.1, pp.9-14, 2010.
DOI : 10.2340/16501977-0473

URL : https://medicaljournals.se/jrm/content_files/download.php?doi=10.2340/16501977-0473

L. Wevers, I. Van-de-port, M. Vermue, G. Mead, and G. Kwakkel, Effects of task-oriented circuit class training on walking competency after stroke: a systematic review, Stroke, vol.40, issue.7, pp.2450-2459, 2009.
DOI : 10.1161/strokeaha.108.541946

URL : https://www.ahajournals.org/doi/pdf/10.1161/STROKEAHA.108.541946

I. G. Van-de-port, S. Wood-dauphinee, E. Lindeman, and G. Kwakkel, Effects of exercise training programs on walking competency after stroke: a systematic review, Am J Phys Med Rehabil, vol.86, issue.11, pp.935-51, 2007.

H. Schmidt, C. Werner, R. Bernhardt, S. Hesse, and J. Krüger, Gait rehabilitation machines based on programmable footplates, J Neuroeng Rehabil, vol.9, issue.2, 2007.

R. Riener, L. Lünenburger, S. Jezernik, M. Anderschitz, G. Colombo et al., Patientcooperative strategies for robot-aided treadmill training: first experimental results, IEEE Trans Neural Syst Rehabil Eng, vol.13, issue.3, pp.380-94, 2005.
DOI : 10.1109/tnsre.2005.848628

S. Hesse, J. Mehrholz, and C. Werner, Robot-assisted upper and lower limb rehabilitation after stroke: walking and arm/hand function, Dtsch Arztebl Int, vol.105, issue.2, pp.330-336, 2008.
DOI : 10.3238/arztebl.2008.0330

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707632

J. Mehrholz, C. Werner, J. Kugler, and M. Pohl, Electromechanical-assisted training for walking after stroke, Cochrane Database Syst Rev, vol.4, p.6185, 2007.
DOI : 10.1002/14651858.cd006185

B. H. Dobkin and P. W. Duncan, Should body weight-supported treadmill training and roboticassistive steppers for locomotor training trot back to the starting gate?, Neurorehabil Neural Repair, vol.26, issue.4, pp.308-325, 2012.
DOI : 10.1177/1545968312439687

URL : http://europepmc.org/articles/pmc4099044?pdf=render

S. Masiero, E. Carraro, C. Ferraro, P. Gallina, A. Rossi et al., Upper limb rehabilitation robotics after stroke: a perspective from the University of, J Rehabil Med, vol.41, issue.12, pp.981-986, 2009.

J. Mehrholz, A. Hädrich, T. Platz, J. Kugler, and M. Pohl, Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke, Cochrane Database Syst Rev, vol.13, p.6876, 2012.

H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, Robot-aided neurorehabilitation, IEEE Trans Rehabil Eng, vol.6, issue.1, pp.75-87, 1998.
DOI : 10.1109/86.662623

URL : http://europepmc.org/articles/pmc2692541?pdf=render

D. Reinkensmeyer, R. Mahoney, W. Z. Rymer, and C. Burgar, Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance, Top Stroke Rehabil, vol.8, issue.4, pp.40-53, 2002.

L. Dipietro, M. Ferraro, and J. J. Palazzolo, Customized interactive robotic treatment for stroke: EMG-triggered therapy, IEEE Trans Neural Syst Rehabil Eng, vol.13, issue.3, pp.325-334, 2005.
DOI : 10.1109/tnsre.2005.850423

URL : http://europepmc.org/articles/pmc2752646?pdf=render

J. Stein, H. I. Krebs, W. R. Frontera, S. E. Fasoli, R. Hughes et al., Comparison of two techniques of robot-aided upper limb exercise training after stroke, Am J Phys Med Rehabil, vol.83, issue.9, pp.720-728, 2004.

B. T. Volpe, H. I. Krebs, N. Hogan, L. Edelstein, C. Diels et al., A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation, Neurology, vol.54, issue.10, pp.1938-1944, 2000.
DOI : 10.1212/wnl.54.10.1938

P. S. Lum, C. G. Burgar, . Loos-m-van-der, P. C. Shor, M. Majmundar et al., MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study
DOI : 10.1682/jrrd.2005.02.0044

URL : https://doi.org/10.1682/jrrd.2005.02.0044

M. Ochi, S. Saeki, T. Oda, Y. Matsushima, and K. Hachisuka, Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients, J Rehabil Med, vol.45, issue.2, pp.137-177, 2013.

M. J. Johnson, Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke, J Neuroeng Rehabil, vol.18, p.29, 2006.

J. W. Krakauer, S. T. Carmichael, D. Corbett, and G. F. Wittenberg, Getting neurorehabilitation right: what can be learned from animal models?, Neurorehabil Neural Repair, vol.26, issue.8, pp.923-954, 2012.

R. Nielsen, K. Soerensen, D. Simonsen, and W. Jensen, Effect of Early and Late Rehabilitation Onset in a Chronic Rat Model of Ischemic Stroke-Assessment of Motor Cortex Signaling and Gait Functionality Over Time, IEEE Trans Neural Syst Rehabil Eng, 2013.

M. Mackay-lyons, A. Mcdonald, J. Matheson, G. Eskes, and M. A. Klus, Dual effects of bodyweight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial, Neurorehabil Neural Repair, vol.27, issue.7, pp.644-53, 2013.

B. Husemann, F. Müller, C. Krewer, S. Heller, and E. Koenig, Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study, Stroke, vol.38, issue.2, pp.349-54, 2007.

M. Iosa, G. Morone, and A. Fusco, Seven capital devices for the future of stroke rehabilitation, Stroke Res Treat. Epub, 2012.

C. D. Takahashi, L. Der-yeghiaian, V. Le, R. R. Motiwala, and S. C. Cramer, Robot-based hand motor therapy after stroke, Brain, vol.131, issue.2, pp.425-462, 2008.
DOI : 10.1093/brain/awm311

URL : https://academic.oup.com/brain/article-pdf/131/2/425/1133344/awm311.pdf

S. Masiero, A. Celia, M. Armani, G. Rosati, B. Tavolato et al., Robotaided intensive training in post-stroke recovery, Aging Clin Exp Res, vol.18, pp.261-65, 2006.

S. Masiero, A. Celia, M. Armani, and G. Rosati, A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs, Aging Clin Exp Res, vol.18, pp.531-566, 2006.

, A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy

G. Chen, C. K. Chan, Z. Guo, and H. Yu,

, Crit Rev Biomed Eng, vol.41, issue.4-5, p.343, 2013.

, The next generation of exoskeletons: lighter, cheaper devices are in the works

L. Mertz,

, IEEE Pulse, vol.3, issue.4, pp.56-61, 2012.