
HAL Id: lirmm-01987872
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01987872

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity Results in Optimistic/Pessimistic Preference
Reasoning

Christian Bessiere, Remi Coletta, Gaelle Hisler, Anastasia Paparrizou

To cite this version:
Christian Bessiere, Remi Coletta, Gaelle Hisler, Anastasia Paparrizou. Complexity Results in Op-
timistic/Pessimistic Preference Reasoning. ICTAI: International Conference on Tools with Artificial
Intelligence, Nov 2016, San Jose, CA, United States. pp.930-937, �10.1109/ICTAI.2016.0144�. �lirmm-
01987872�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01987872
https://hal.archives-ouvertes.fr

Complexity Results in Optimistic/Pessimistic Preference Reasoning

Christian Bessiere∗, Remi Coletta∗†, Gaelle Hisler∗† and Anastasia Paparrizou∗
∗ CNRS, University of Montpellier, France

† Tellmeplus, Montpellier, France
{bessiere,coletta,hisler,paparrizou}@lirmm.fr

Abstract—Preference reasoning is a central problem in
decision support. There exist various ways to interpret a
set of qualitative preferences. Conditional preference logics
allow to deal with semantics such as optimistic, pessimistic,
strong or not. In this paper, we study the complexity of
the main problems in optimistic/pessimistic preference logic:
undominated, consistency and dominance. We show that they
are all NP-hard in general, with some becoming polynomial
under specific semantics. Our second contribution is to show
that the dominance problem, which has an online component
in its definition, is compilable to polynomial time.

I. INTRODUCTION

Preferences appear in our everyday life each time we
make a choice. When the number of alternatives becomes
large, people/users unconsciously express preferences over
them. Preferences help in making a faster decision rather
than comparing an (potentially) exponential number of al-
ternatives. Preference reasoning aims at supporting the user
in making a choice reflecting her preferences. Reasoning
with preferences is a topic of increasing interest in decision
support.

Given a set of preferences defined by the user, determining
the best choice(s) is one of the main problems in preference
reasoning, called the undominated problem. Other main
problems are the consistency of a set of preferences, or the
ranking of pairs of outcomes, i.e. the dominance problem.

There exist two main ways to express preferences in
the literature: one for quantitative preferences and one
for qualitative preferences. The most popular formalism of
quantitative preferences is the GAI-net (Generalized Addi-
tive Independence) [1]. GAI-net offers the advantage that
dominance testing simply requires to compute the utility of
each outcome. But, all quantitative preference formalisms
suffer from the same drawback: how to specify the weights
of the alternatives? It can be difficult for a user to state
she prefers to buy a house with weight 0.7 rather than an
apartment with weight 0.3.

On the other hand, qualitative preferences are easier to
be expressed by the user. CP-nets [2] are a well-known
formalism of qualitative preference reasoning. CP-nets use
a semantics called ceteris paribus (i.e., ”all other things
being equal”), meaning that two outcomes can be compared
according to a variable only if these outcomes are equal
over all other variables. Both dominance and undominated

problems have been widely studied for this formalism. In
general, dominance testing in CP-nets has been proved
PSPACE-complete [3], whereas undominated outcomes are
the solutions of a set of hard constraints, thus not harder
than NP [4]. Dominance has been proved polynomial for
CP-nets with tree or poly-tree structures, and for acyclic
binary-valued CP-nets [5]. Undominated is also polynomial
for acyclic CP-nets [5].

Several semantics other than ceteris paribus have been
proposed: optimistic [6], pessimistic [7], strong (called strict
in [8]). The conditional logic of preferences of [9], [10]
provides a unified framework to deal with all these seman-
tics. This framework has the advantage that it allows the
user to choose a pessimistic or an optimistic semantics,
and to decide for each preference whether it is strong
or not. Unfortunately, the complexity of reasoning in this
framework is unknown. The only algorithm provided for
this framework requires exponential space.

In [11], Bienvenu et al. introduced another general frame-
work for preference reasoning, called prototypical prefer-
ence logic (PL for short). In PL, a logic formula involves
preference statements. Each preference statement involves
formulas α and β and a formula F under which α is
preferred to β (denoted by α B β ‖ F). Several well-
known preference frameworks are fragments of PL. For
instance, it has been shown in [11] that we can encode CP-
nets by putting in F all the propositional symbols that do
not appear in α and β. The expressive power of PL has a
price: dominance and consistency are shown to be PSPACE-
complete in the general case. In [11], Bienvenu et al. have
also studied fragments with lower complexity. They isolated
a part of PL in which F is empty and preferences only allow
conjunctions. This fragment is called free preferences. With
free preferences, consistency becomes co-NP-complete and
dominance NP-complete. Free preferences are presented as
”obviously related” to the strong semantics in [10].

In this paper, we study the optimistic/pessimistic pref-
erence logic defined in [9], [10]. We give a complete com-
plexity map of the main problems in this logic: undominated,
consistency and dominance. We show that their complexities
depend on the semantics under which they are interpreted.
All problems are NP-hard in general. When all preferences
are strong, consistency and dominance are polynomial, and
if in addition, the semantics is pessimistic, undominated is

polynomial too. Then, we prove that the dominance problem,
which has an online part in its definition, is compilable
to polynomial time. After this compilation process, the
dominance queries can be answered in linear time only,
overcoming the practical difficulties imposed by the frame-
work of [9], [10]. This result paves the way for using this
framework in applications where we need to rank sets of
outcomes on the fly.

II. BACKGROUND

We first define the vocabulary on which preferences will
be defined. Intuitively, a vocabulary specifies the space Ω of
all possible outcomes. A vocabulary V is a pair (X,D) such
that X is a set of n variables {x1, . . . , xn}, and D is a set
of finite domains {D(x1), . . . , D(xn)}. An instantiation on
a subset X ′ ⊆ X of variables is an assignment of a value
of D(xi) to every variable xi in X ′. Instantiations on X
are called outcomes, that is, Ω = Πi∈1..nD(xi). Given an
outcome I and an instantiation u on X ′ ⊆ X , we say that I
satisfies u (denoted by I |= u) if the projection of I on X ′ is
equal to u. A preference network N = (V, P) is defined by
a set P of m preferences over the vocabulary V = (X,D).
P is any preference formulation which allows to define an
irreflexive and transitive binary relation � over Ω. For two
outcomes I and I ′ in Ω, we say that I is strictly preferred
to I ′ when I � I ′.

A. Main problems in preference reasoning

The undominated, consistency, and dominance problems
are the main problems defined in the literature for preference
reasoning.

Definition 1 (Undominated): Given a preference network
N = (V, P), the undominated problem is to determine
whether there exists an outcome I ∈ Ω for which there
does not exist any outcome I ′ ∈ Ω such that I ′ � I .

Definition 2 (Consistency): Given a preference network
N = (V, P), the consistency problem is to determine
whether there does not exist any pair of outcomes I, I ′ ∈ Ω
such that I � I ′ and I ′ � I .

Definition 3 (Dominance): Given a preference network
N = (V, P) and two outcomes I, I ′ ∈ Ω, the dominance
problem is to determine whether I � I ′ and I ′ 6� I .

B. Optimistic/pessimistic preference logic

In this section, we present and formalize the conditional
logic of preferences introduced in [9], [10]. This formalism
can be used to build the relation � over the outcomes
in Ω. The relation � is induced by a set of preferences
and semantics under which the preferences are interpreted.
The user can define an optimistic (Opt) (resp. pessimistic
(Pes)) semantics for the whole set of preferences, to rank
the outcomes from best to worst (resp. from worst to best).
After setting the semantics for the whole set of preferences,
each preference can be defined either as strong (e.g., strong

optimistic, strong pessimistic [8][12]), or non-strong (e.g.,
simply optimistic [13], [6] or pessimistic [7]). Illustrations
of these semantics are given later. We give the definition of
a preference in conditional logic.

Definition 4 (Preference): Given a vocabulary V =
(X,D), a conditional logic preference p is defined by a
triplet (h, b, w), written p = (h : b > w), of instantiations in
V . h defines an hypothesis under which outcomes satisfying
b (better) are preferred to those satisfying w (worse). If
h = ∅ then b is unconditionally preferred to w.

In the following we consider that in all preferences p =
(h : b > w), h, b, and w are instantiations of bounded size.
Despite this restriction, all our hardness results will hold.

Having defined what a preference in conditional logic is,
we define the network of conditional logic preferences.

Definition 5 (CLP-net): A network of conditional logic
preferences (CLP-net) is a pair (V, P [S, Str]), where V =
(X,D) is the vocabulary and P is a set of conditional logic
preferences defined on V . S is a semantics for P (i.e., Opt
or Pes), Str is the set of the preferences of P that are
strong.

Hereafter, when we refer to a preference, we always
mean a conditional logic preference. We define two types
of preference satisfaction, i.e. the satisfaction and the full
satisfaction.

Definition 6 (Preference satisfaction): Given a prefer-
ence p = (h : b > w) on a vocabulary V , an outcome
I in Ω satisfies p in Opt, written I |=Opt p, if and only if
I 6|= h or I |= b or I 6|= w. Respectively, I satisfies p in
Pes, written I |=Pes p, if and only if I 6|= h or I 6|= b or
I |= w. If I does not satisfy p in S, we say that it violates
p, written I 6|=S p.

Given a CLP-net (V, P [S, Str]) and an outcome I ,
violated(P, I) denotes the set of preferences from P that
are violated by I in S. If violated(P, I) = ∅, we write
I |=S P .

An optimistic semantics (S = Opt) can be viewed as a
first best choice (namely the best outcome is given first),
whereas a pessimistic semantics (S = Pes) is a first worst
choice (namely a choice by elimination).

We now give the definition for the preference full satis-
faction, which requires to satisfy the hypothesis.

Definition 7 (Preference full satisfaction): Given a pref-
erence p = (h : b > w) on a vocabulary V , an outcome I in
Ω fully satisfies p in Opt, denoted by I |=f

Opt p, if and only
if I |= h, I |= b, and I 6|= w. Respectively, I fully satisfies p
in Pes, denoted by I |=f

Pes p, if and only if I |= h, I |= w,
and I 6|= b.

We give an example to illustrate the preference (full)
satisfaction.

Example 1 ((Full) satisfaction): When organizing a trip,
there is an option between a day (d) or a night (d) flight

and between a stop flight (s) or a non-stop one (s). The
user says: ”If the flight is non-stop then I prefer a night
flight to a day one”, written as: p1 = (s : d > d). An
outcome I satisfies p1 in Opt if and only if I violates s
or satisfies d. In other words, any stop flight or (non-stop)
night flight satisfies user’s preference in Opt. Similarly, any
stop flight or (non-stop) day flight satisfies p1 in Pes. An
outcome I fully satisfies p1 in Opt if and only if I satisfies
s and satisfies d (i.e., a non-stop night flight). A non-stop
day flight fully satisfies p1 in Pes.

Before defining the main notion that will allow us to com-
pare outcomes, we need to define the notion of preference
deactivation.

Definition 8 (Preference deactivation): Given a CLP-net
(V, P [S, Str]), we say that P deactivates a preference p,
denoted by P p, if and only if

• p /∈ Str and there exists an outcome I ∈ Ω such that
I fully satisfies p in S and I satisfies P in S, that is,
P p↔ ∃I ∈ Ω | I |=f

S p and I |=S P .
• p ∈ Str and for any outcome I ∈ Ω, if I fully satisfies
p in S then I satisfies P in S, that is, P p↔ ∀I ∈
Ω, I |=f

S p→ I |=S P .

Example 2 (Deactivation): In the problem of Example 1
where p1 = (s : d > d), the user adds the following
preference: ”I prefer a non-stop flight to a stop one”, written
p2 = (∅ : s > s). Then, P = {p1, p2}. If the user sets S
to Opt and p1, p2 are not strong, P deactivates p1 because
the outcome I = (s, d) (i.e., ”non-stop night flight”) fully
satisfies p1 and satisfies P . P also deactivates p2.

Preference deactivation allows us to define layers, which
is the central notion to compare outcomes in this conditional
logic. A layer is a set of outcomes. Each layer includes
the outcomes that do not belong to previous layers and
that satisfy all preferences that have not been deactivated in
previous layers. We give the inductive definition of layers.

Definition 9 (Layer): Given a CLP-net (V, P [S, Str]),
P0 = P , and Pi is the set of the preferences in Pi−1 that are
not deactivated by Pi−1, that is, Pi = Pi−1\{p | Pi−1 p}.
The layer Ei is the set of outcomes that do not belong to
previous layers and that satisfy all preferences in Pi, that is,
Ei = {I ∈ Ω | I |=S Pi} \

⋃
j∈0..i−1Ej . The index last

is the smallest index such that all outcomes satisfying Plast
belong to previous layers E0, . . . , Elast−1. We define Elast
to be the set of remaining outcomes Ω \

⋃
j∈0..last−1Ej .

Given an outcome I ∈ Ω, layer(I) is the index of the
layer to which I belongs, that is, I ∈ Elayer(I).

It is important to observe that Elast can be empty or not.
If Elast is non-empty, none of the outcomes in Elast can
satisfy Plast and the construction of layers cannot proceed.

We define now the preference relation � according to the
semantics used in CLP-nets.

Table I
THE RANKINGS OF EXAMPLE 3

p1, p2 /∈ Str p1 /∈ Str, p2 ∈ Str
i Pi Ei Pi Ei

0 p1, p2 (s, d) p1, p2 (s, d)

1 ∅ (s, d), (s, d), (s, d) p2 (s, d)

2 ∅ ∅ ∅ (s, d), (s, d)
3 — — ∅ ∅

Definition 10 (Layer based order): Given two outcomes
I and I ′ in Ω, we have,
• I is strictly preferred to I ′ in Opt, denoted by I �Opt
I ′, if and only if layer(I ′) = last or layer(I) <
layer(I ′).

• I is strictly preferred to I ′ in Pes, denoted by I �Pes
I ′, if and only if layer(I) = last or layer(I) >
layer(I ′).

When S = Opt (resp. S = Pes), the best (resp. worst)
outcome is ranked first. Namely, the best outcome appears
in E0 for Opt (resp. in Elast−1 for Pes). If an outcome I
belongs to a layer which precedes (resp. follows) the layer
where an outcome I ′ belongs to, I is strictly preferred to
I ′.

Example 3 (Layers): Recall the preferences of the previ-
ous examples: p1 = (s : d > d) and p2 = (∅ : s > s). Table
I illustrates the different rankings of the outcomes depending
on p2 being strong or not. Suppose that p1 /∈ Str and
p2 /∈ Str. According to Definition 6, the best outcome for
S = Opt is the same regardless of the set Str, i.e. a non-stop
night flight (s, d). Hence, E0 = {(s, d)}. From Definitions 7,
8 and 9, if p1 /∈ Str and p2 /∈ Str then P0 = P = {p1, p2}
deactivates both p1 and p2. Indeed, (s, d) satisfies P0 and
fully satisfies p1 and p2. Therefore, the set of outcomes in
E1 which satisfy P1 = P0 \ {p1, p2} = ∅ is equal to all
remaining outcomes, namely E1 = {(s, d), (s, d), (s, d)}.
E2 = ∅ and last = 2.

Suppose now that p1 /∈ Str and p2 ∈ Str. P0 deacti-
vates p1 due to (s, d), but does not deactivate p2 because
p2 ∈ Str and there exists I ′ = (s, d) such that I ′ fully
satisfies p2 but violates p1. Thus, E0 = {(s, d)} and
P1 = P0\{p1} = {p2}. (s, d) and (s, d) satisfy p2, resulting
in E1 = {(s, d), (s, d)} \ E0 = {(s, d)}. The outcomes
that fully satisfy p2 (i.e., (s, d) and (s, d)) also satisfy P1.
Thus, P1 deactivates p2. P2 = ∅, E2 = {(s, d), (s, d)}, and
last = 3.

We have shown how a preference is interpreted under its
semantics. In the following section, we show the complexity
of the three problems undominated/consistency/dominance
depending on the semantics.

III. COMPLEXITY MAP

In this section we draw the complexity map for the three
problems undominated/consistency/dominance. We first fo-

cus on the optimistic semantics and then adapt the results
to the pessimistic case.

A. Optimistic semantics

Theorem 1: The undominated problem is NP-complete
on CLP-nets with S = Opt, even if Str = P .

Proof: Membership. Given an outcome I ∈ Ω, checking
whether I is an undominated outcome in Opt is equivalent
to checking if I belongs to E0 and last 6= 0. (Outcomes
in Elast are all preferred one to each other (Definition 10).
Thus, no outcome in Elast can be an undominated outcome.)
Following Definition 9, I belongs to E0 and last 6= 0 if and
only if I satisfies all p ∈ P in Opt. I satisfies a preference
p = (h : b > w) in Opt if and only if I violates the
hypothesis h or w or satisfies b. Checking if I violates h
or w or if I satisfies b is polynomial and this verification is
performed exactly |P | times.
Completeness. We reduce an instance φ = (cl1, . . . clm) of
3-SAT to the undominated problem: the set of variables X
is defined by variables(φ) and D is {0, 1}X . P is built
as follows. For each clause cli = (li,1, li,2, li,3) of φ, we
introduce a preference pi = (hi : bi > wi) with hi = ¬li,1,
bi = li,2 and wi = ¬li,3. An outcome I satisfies a preference
pi if and only if I violates hi or wi or satisfies bi. Hence, I
satisfies pi if and only if it satisfies li,1 or li,2 or li,3, that is,
it satisfies the clause cli. Now, there exists an undominated
outcome if and only if there exists an outcome I that belongs
to E0, last 6= 0. I belongs to E0 with last 6= 0 if and only
if I satisfies P , and I satisfies P if and only if it satisfies
all clauses in φ.

The proof still holds if Str = P because the satisfaction
of a preference p is the same whatever p is in Str or not.

To prove the complexity of the consistency and dominance
problems we will use the following lemmas.

Lemma 1: Given a CLP-net N with S = Opt, these three
propositions are equivalent:
(1) N is consistent,
(2) Elast is empty,
(3) Plast is empty.

Proof: ((1)⇒ (3)) We show that if Plast is not empty,
then N is inconsistent. Let p be a preference in Plast. There
necessarily exists an outcome I in Ω violating p. I cannot be
in

⋃
i∈0..last−1Ei as p is still active in Plast. So, I ∈ Elast.

There also necessarily exists an outcome I ′ in Ω that fully
satisfies p. Again, I ′ cannot be in

⋃
i∈0..last−1Ei, otherwise

p would have been deactivated and would not be in Plast.
Thus, both I and I ′ belong to Elast. I ′ cannot be equal
to I because I ′ satisfies p whereas I does not, and by
Definition 10, we know that for any I, I ′ in Elast, I � I ′

and I ′ � I . Therefore, N is inconsistent.
((3) ⇒ (2)) Assume Elast is not empty. By Definition
9, Elast contains those outcomes that do not satisfy Plast.

Therefore, Plast is not empty because any outcome satisfies
an empty set of preferences.
((2) ⇒ (1)) Assume Elast is empty. From Definition 10,
there exists a pair of outcomes I, I ′ such that I � I ′ and
I ′ � I if and only if both I and I ′ belong to Elast. Since
Elast is empty, there does not exist such a pair of outcomes
and then N is consistent.

Lemma 2: Given a CLP-net N = (V, P [Opt, Str]), de-
ciding whether a preference p is deactivated by a set Pi ⊆ P
is polynomial if p ∈ Str.

Proof: By definition of deactivation (Definition 8), Pi
deactivates a strong preference p = (h : b > w) if and only
if there does not exist any outcome I that fully satisfies
p and violates a preference p′ = (h′ : b′ > w′) in Pi.
Testing whether there exists I such that I fully satisfies p
and violates p′ is equivalent to testing whether there exists
I satisfying h∧b∧¬w∧h′∧¬b′∧w′. Such a test is linear in
the number of variables n as all terms of the conjunction are
instantiations. We do this process for each p′ in Pi, p′ 6= p.
Pi deactivates p if and only if all the |Pi| − 1 tests return
false. Therefore, deciding deactivation of a strong preference
is polynomial in Opt.

Theorem 2: The consistency problem is NP-complete on
CLP-nets with S = Opt.

Proof: By Lemma 1, a CLP-net with S = Opt is
consistent if and only if Plast is empty.
Membership. Let us first observe that if a set Q of prefer-
ences deactivates a preference p, then any subset of Q also
deactivates p. A sequence of preferences 〈pi1 , . . . , pik〉 such
that ∀j ∈ 1..k, P \ {pil | l < j} deactivates pij is called
sequence of deactivations. Given a sequence of deactiva-
tions 〈pi1 , . . . , pij , . . . , pik〉, if P \{pi1 , . . . , pij} deactivates
pik , then 〈pi1 , . . . , pij , pik , . . . , pik−1

〉 is also a sequence
of deactivations because of our first observation. Hence,
a polynomial certificate for Plast = ∅ is any sequence of
deactivations that wipes out P . Let Seq be the sequence
〈〈pi1 , Ii1〉, . . . , 〈pim , Iim〉〉 such that P = {pi1 , . . . , pim},
pik is deactivated by P \{pij | j < k} for all k ∈ 1..m, and
for each pik /∈ Str, Iik is an outcome that fully satisfies pik
and that satisfies P \ {pij | j < k}. If pik ∈ Str, checking
if pik is deactivated by P \ {pij | j < k} is polynomial by
Lemma 2. If pik /∈ Str, checking if pik is deactivated by
P \ {pij | j < k} is equivalent to checking if Iik satisfies
P \ {pij | j < k} and fully satisfies pik , which is also
polynomial. Thus, Seq is a polynomial certificate for the
consistency problem.
Completeness. We reduce an instance φ = (cl1, . . . clm−1)
of 3-SAT to the problem Elast = ∅ in the CLP-net
(V, P [Opt, Str]). The set of variables X is defined by
variables(φ) ∪ {lb} and D = {0, 1}X . For each clause
cli = (li,1, li,2, li,3) of φ, we add to P a preference
pi = (∅ : lb > ¬li,1 ∧ ¬li,2 ∧ ¬li,3), and pi /∈ Str. We
add to P an extra preference pextra = (∅ : ¬lb > lb) with

pextra /∈ Str. We prove that φ is satisfiable if and only if
Elast = ∅.
(⇒) Let Iφ be a model of φ. By construction, Iφ∪{lb = 0}
satisfies all preferences in P and fully satisfies pextra.
No outcome can satisfy pextra and fully satisfy another
preference in P . Hence, P1 = P \{pextra}. By construction
again, Iφ ∪ {lb = 1} fully satisfies all preferences in P1,
which leads to P2 = ∅ and E3 = Elast = ∅.
(⇐) Assume Elast is empty. Then, last cannot be equal
to 0 because by definition, E0 cannot be empty. Thus,
E0 contains at least an outcome I , and by construction I
satisfies P , as last 6= 0. To satisfy pextra I must violate
lb. Thus, I satisfies P if and only if for all pi in P , I
violates ¬li,1∧¬li,2∧¬li,3, and thus satisfies cli. Therefore,
I satisfies φ.

Theorem 3: The dominance problem is DP -complete on
CLP-nets with S = Opt.

Proof: Membership. Let N = (V, P [Opt, Str]) be
a CLP-net and I, I ′ two outcomes. A certificate for
the dominance problem is a certificate for the prob-
lem of the existence of an integer j such that I ∈⋃
i∈0..j Ei and I ′ /∈

⋃
i∈0..j Ei. Let Sj = 〈〈p11, I11 〉, . . . ,

〈p1i1 , I
1
i1
〉, . . . , 〈pj1, I

j
1〉, . . . , 〈p

j
ij
, Ijij 〉〉 be a sequence of de-

activations such that each 〈pxy , Ixy 〉 ∈ Sj has the following
properties: (1) P \{pab | 〈pab , Iab 〉 ∈ Sj ∧a < x} pxy , (2) if
pxy /∈ Str, Ixy is a witness of the deactivation in (1), and (3)
violated(P, I) ⊆ {pxy | 〈pxy , Ixy 〉 ∈ Sj}. Let S′j = 〈〈p′11 , I ′11 〉,
. . . , 〈p′1i′1 , I

′1
i′1
〉, . . . , 〈p′j1 , I

′j
1 〉, . . . , 〈p

′j
i′j
, I ′ji′j
〉〉 be a sequence of

deactivations built in a way similar to Sj , that is, for each
〈p′xy , I ′xy 〉 ∈ S′j , (1) P \ {p′ab | 〈p′ab , I ′ab 〉 ∈ S′j ∧ a < x}
 p′xy , (2) if p′xy /∈ Str, I ′xy is a witness of the deactivation
of p′xy , and (3) violated(P, I ′) ⊆ {p′xy | 〈p′xy , I ′xy 〉 ∈ S′j}.
Sj is a certificate of I ∈

⋃
i∈0..j Ei and S′j is a certificate

of I ′ ∈
⋃
i∈0..j Ei. They are both polynomial to check: for

each pair 〈p, I〉 in Sj and S′j , if p ∈ Str we know by
Lemma 2 that deactivation is polynomial, and if p /∈ Str,
we check whether I fully satisfies p and satisfies the set
of preferences specified in (1). Finally, we check that all
preferences in violated(P, I) (resp. violated(P, I ′)) are
covered. As dominance says ’yes’ if and only if there exists
such an Sj and there does not exist such an S′j , we conclude
that dominance is in DP .
Completeness. We reduce an instance of SAT-UNSAT
to the dominance problem. Let F = (cl1, . . . , cl|F |)
and F ′ = (cl′1, . . . , cl

′
|F ′|) be the two 3-CNF formu-

las of the SAT-UNSAT instance. We build the CLP-net
((X,D), P [Opt, Str]), and two outcomes I and I ′, as
an instance of the dominance problem. X is the union
of variables(F) and variables(F ′) plus four additional
variables {lh, lh′ , lw, lw′}, and D = {0, 1}X . For each
clause cli = (li,1, li,2, li,3) of F , we define a preference
pi = (lh : li,1 > ¬li,2 ∧ ¬li,3). For each clause cl′i =
(l′i,1, l

′
i,2, l

′
i,3) of F ′, we define a preference p′i = (lh′ :

l′i,1 > ¬l′i,2∧¬l′i,3). We introduce two additional preferences
p = (∅ : lh > lw) and p′ = (∅ : lh′ > lw′). We then
have, P = {p1, . . . , p|F |, p′1, . . . , p′|F ′|, p, p

′}, and we set
Str = ∅. We define I as an arbitrary outcome over X
satisfying ¬lh∧lw∧¬lh′∧¬lw′ . Similarly, we define I ′ as an
arbitrary outcome over X satisfying ¬lh ∧¬lw ∧¬lh′ ∧ lw′ .

We now prove that I dominates I ′ (i.e., I � I ′ and I ′ 6� I)
if and only if F is SAT and F ′ is UNSAT. We first prove
that F is SAT if and only if I belongs to E1. I violates p
because I |= ¬lh ∧ lw. Hence, I cannot belong to E0. By
construction, I satisfies all other preferences in P . Thus, I
belongs to E1 if and only if P deactivates p, which means
that there exists an outcome I∗ such that I∗ satisfies P and
fully satisfies p. If we set lw′ and lh′ to false in I∗, I∗

satisfies p′ and all p′i. To fully satisfy p, I∗ needs to satisfy
lh ∧ ¬lw. As I∗ |= lh, to satisfy any pi (obtained from a
cli of F), I∗ needs to satisfy li,1 ∨¬(¬li,2 ∧¬li,3), namely
(li,1∨li,2∨li,3). Since I∗ satisfies all these pi, I∗ is a model
of F . Then I belongs to E1 if and only if F is SAT.

Second, we prove that I ′ does not belong to E1 if and
only if F ′ is UNSAT. I ′ violates p′ because I ′ |= ¬lh′ ∧ lw′ .
Hence, I ′ cannot belong to E0. I ′ does not belong to E1 if
and only if P does not deactivate p′, which means that there
does not exist an outcome I ′∗ such that I ′∗ satisfies P and
fully satisfies p′. By using the same reasoning as previously,
there does not exist such an I ′∗ if and only if F ′ is UNSAT.
Thus I ′ does not belong to E1 if and only if F ′ is UNSAT.

Finally, we observe that if F and F ′ are both UNSAT,
neither p nor p′ can be deactivated, so I and I ′ both belong
to E2, which is equal to Elast, and I does not dominate I ′.

Theorem 1 tells us that the undominated problem is NP-
complete for S = Opt even if Str = P . Interestingly, this
is not the case for the consistency and dominance problems,
which become polynomial when Str = P .

Theorem 4: The consistency problem is polynomial on
CLP-nets with S = Opt and Str = P .

Proof: A CLP-net (V, P [Opt, Str]) is consistent if and
only if Plast is empty (Lemma 1). This means that there
exists a sequence of deactivations that wipes out P , that is, a
sequence of preferences 〈pi1 , . . . , pim〉 such that P = {pij |
j ∈ 1..m} and for all k ∈ 1..m, P \{pij | j < k} pik . By
Lemma 2, deciding the deactivation of a strong preference
by a set of preferences is polynomial. Thus, given a set Q of
strong preferences, finding whether there exists a preference
in Q deactivated by Q is polynomial too. It is sufficient to
iteratively check every preference in Q. Next, as in the proof
of Theorem 2, we observe that if Q deactivates a preference
p, then any subset of Q also deactivates p. Thus, there exits
a sequence of deactivations that wipes out P if and only if a
greedy algorithm iteratively finding deactivated preferences
and removing them from P terminates by wiping out P . As
a result, if P can be wiped out by this process, the CLP-net

is consistent, otherwise it is inconsistent. In the worst case,
finding a preference that is deactivated by P or by a subset
of P requires |P | calls to the deactivation problem. This
search for deactivated preference is performed |P | times.
Therefore, the consistency problem is polynomial.

Theorem 5: The dominance problem is polynomial on
CLP-nets with S = Opt and Str = P .

Proof: (Sketch.) Given a CLP-net (V, P [Opt, Str]) and
two outcomes I and I ′, dominance says ’yes’ if and only
if there exists an integer j such that I ∈

⋃
i∈0..j Ei and

I ′ /∈
⋃
i∈0..j Ei. We can design an algorithm that iteratively

builds the sets of preferences P1, . . . , Pj , where Pi is the set
of preferences not deactivated by Pi−1 and j is the smallest
integer such that I |=Opt Pj . Pj is such that I � I ′ if and
only if I ′ 6|=Opt Pj .

Building P1, . . . , Pj is polynomial because deciding the
deactivation of a strong preference by a set of preferences
is polynomial (Lemma 2) and the number of deactivation
tests is bounded above by |P |2. Finally, checking whether
I ′ satisfies Pj is again polynomial to check.

B. Pessimistic semantics

As seen in Definition 6, the pessimistic semantics ranks
first layers of the worst outcomes whereas optimistic seman-
tics ranks first layers of the best outcomes. As a result, most
of the proofs given in this section are slight adaptations of
previous ones.

Theorem 6: The consistency problem is NP-complete on
CLP-nets with S = Pes.

Proof: (Sketch.) Membership is essentially the same
as in the proof of Theorem 2. Completeness is obtained by
changing the way we encode clauses in the proof of Theorem
2: For each clause cli = (li,1, li,2, li,3) of φ, we introduce
a preference pi = (∅ : ¬li,1 ∧ ¬li,2 ∧ ¬li,3 > lb) instead of
pi = (∅ : lb > ¬li,1 ∧ ¬li,2 ∧ ¬li,3). The extra preference
becomes pextra = (∅ : lb > ¬lb).

Theorem 7: The dominance problem is DP -complete on
CLP-nets with S = Pes.

Proof: Direct adaptation of the proof of Theorem 3.

The undominated problem in pessimistic semantics is
substantially different from the optimistic case as we have
to build the whole sequence of layers from worst to best
before proving the existence of an undominated outcome.
It follows a strong connection between the consistency and
undominated problems.

Lemma 3: A CLP-net with S = Pes is consistent if and
only if it has an undominated outcome.

Proof: (⇒) Let N be a consistent CLP-net with S =
Pes. From a slightly adapted Lemma 1, N is consistent if
and only if Elast is empty. As Elast is empty, there exists
an outcome I belonging to Elast−1. By Definition 10, there

does not exist any outcome I ′ such that I ′ � I . Thus, I is
undominated.
(⇐) Assume N is inconsistent. Then, there exist two out-
comes I and I ′ such that I � I ′ and I ′ � I . According to
Definition 10, it can only happen if I and I ′ both belong to
Elast. Suppose there exists an undominated outcome I∗. I∗

necessarily belongs to Elast, but it is impossible as I would
dominate it.

Corollary 1: The undominated problem is NP-complete
on CLP-nets with S = Pes.

Proof: From Lemma 3 and Theorem 6.
Theorem 8: The undominated/consistency/dominance

problems are polynomial on CLP-nets with S = Pes and
Str = P .

Proof: (Sketch.) Consistency and dominance are similar
to the optimistic case (Theorems 4 and 5). Undominated
comes from Lemma 3.

Table II summarizes the complexity results of this section.

Table II
SUMMARY OF OUR COMPLEXITY RESULTS

Problem Str S = Opt S = Pes

Undominated P NP-complete (Th. 1) NP-complete (Co. 1)
= P NP-complete (Th. 1) polynomial (Th. 8)

Consistency P NP-complete (Th. 2) NP-complete (Th. 6)
= P polynomial (Th. 4) polynomial (Th. 8)

Dominance P DP -complete (Th. 3) DP -complete (Th. 7)
= P polynomial (Th. 5) polynomial (Th. 8)

IV. SOLVING AND COMPILING CLP-NETS

The three problems undominated/consistency/dominance
introduced in Section II-A are NP-hard to solve in gen-
eral. The undominated and consistency problems are static
problems belonging to NP. They can be solved by a simple
call to a SAT or CSP solver. The dominance problem, on
the contrary, is more difficult for two reasons. First, it is
beyond NP. But more importantly, dominance queries can
be repeatedly asked on the same CLP-net for comparing
different pairs of outcomes. Such queries arise for instance
in recommendation applications, where the system/provider
wants to propose to the customer the most appropriate
outcome among two (or more) outcomes, according to
her preferences. As these queries can be involved in an
interactive process, it is crucial to have fast responses.

Compilation theory aims at improving the efficiency
of on-line computation of difficult problems through pre-
processing [14], [15]. The intuition is to remove sources of
complexity to obtain cheaper queries (belonging to a lower
complexity class) using a compiled form of the initial data Σ.
The pre-processing, or off-line compilation phase, consists
in transforming parts of this fixed part Σ into a compiled
form of size polynomial in |Σ|. This transformation can take
exponential time. The varying part of the problem appears
at execution time, called on-line phase. If the output can be

produced in polynomial time, then the problem is said to
be compilable to polynomial time. We show that dominance
queries become polynomial after a compilation phase that
produces an array indexP [·] of indices, where indexP [j]
is the index of the first layer where pj is not active, that is,
indexP [j] = i if and only if pj ∈ Pi−1 \ Pi.

Algorithm 1 CLP-net compilation for dominance
Require: N=(V, P [S, Str])
Ensure: indexP [·]

1: i← 0;
2: nextP ← P ;
3: indexP [j]← +∞,∀j ∈ 1..m;
4: repeat
5: i← i+ 1;
6: oldP ← nextP ;
7: for all pj ∈ oldP do
8: if pj ∈ Str then
9: deactivate← true;

10: for all p ∈ oldP \ {pj} do
11: if ∃I ∈ Ω, I |=f

S pj and I 6|=S p then
12: deactivate← false;
13: break;
14: end if
15: end for
16: if deactivate then
17: nextP ← nextP \ {pj}
18: indexP [j]← i
19: end if
20: else if ∃I ∈ Ω, I |=f

S pj and I |=S oldP then
21: nextP ← nextP \ {pj}
22: indexP [j]← i
23: end if
24: end for
25: until (nextP = oldP)
26: return indexP [·]

Algorithm 1 takes as input a CLP-net (V, P [S, Str]) and
returns the array indexP [·]. In line 3 indexP [·] is initialized
to a value greater than any possible layer. Then, the loop
of line 4 iteratively builds indexP [·]. The ith execution of
the loop sets oldP to the set of preferences still active at
the previous layer i − 1 (line 6) and will compute the set
nextP of preferences still active at layer i. The loop of
line 7 iterates over all preferences pj that belong to oldP
to check if pj can be deactivated. The deactivation depends
on whether the semantics of pj is strong or not. If pj ∈ Str
(lines 8–19), we need to iterate over all other preferences p
in oldP . If there exists an I fully satisfying pj and violating
p (line 11), flag deactivate becomes false (line 12) and we
proceed to the next preference in oldP . If such an I is not

found, then pj is deactivated (that is, removed from nextP),
and indexP [j] is set to i (lines 16–19). When pj /∈ Str
(lines 20–22), we need to check if there exists an outcome
I that fully satisfies pj and satisfies all preferences in oldP .
This line is NP-complete and can be solved by a call to a
SAT/CSP solver. If such an outcome is found, again pj is
deactivated (removed from nextP) and indexP [j] is set to
i (lines 21–22). Finally the test of the main loop (in line 4)
detects whether at least one preference has been deactivated
from one layer to another. If not, we exit the loop and return
indexP [·].

Theorem 9: The Dominance problem in CLP-nets is com-
pilable to linear time.

Proof: A problem is compilable to a complexity class
C if it is in C once the fixed part Σ of any instance has
been pre-processed, i.e. turned off-line into a data structure
of size polynomial in |Σ|. Given (V, P [S, Str]), Algorithm 1
computes off-line the array indexP [·], where indexP [j] = i
if and only if pj ∈ Pi−1 \ Pi. This structure indexP [·] is
linear in |P |, the initial data.
Correctness. We iterate over violated(P, I) to compute
i = maxpj∈violated(P,I)indexP [j] and over violated(P, I ′)
to compute i′ = maxpj∈violated(P,I′)indexP [j]. By con-
struction of indexP [·], i = layer(I), or i = +∞ and
I ∈ Elast. Similarly, i′ = layer(I ′), or i′ = +∞ and
I ′ ∈ Elast. As a result, I dominates I ′ with S = Opt (resp.
S = Pes) if and only if i < i′ (resp. i > i′).
Complexity. Checking if an outcome satisfies a prefer-
ence is constant time. Thus, building violated(P, I) and
violated(P, I ′) is linear in |P |. Computing the maximum
values i and i′ is done by a traversal of the structure
indexP [·], which is linear in |P | as well.

V. CONCLUSION

We have studied the theoretical complexity of the main
problems in optimistic/pessimistic preference logic: undom-
inated, consistency, and dominance. We have shown that
these problems are NP-hard in general, though they become
polynomial for some specific semantics. We also show that,
interestingly, the dominance problem, which is the only
problem beyond NP and which in addition contains an online
part, can be compiled to polynomial time. This opens the
door to the use of CLP-nets in applications where we need
to rank sets of outcomes on the fly.

REFERENCES

[1] C. Gonzales and P. Perny, “GAI networks for utility elicita-
tion,” in KR, D. Dubois, C. A. Welty, and M.-A. Williams,
Eds. AAAI Press, 2004, pp. 224–234.

[2] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole,
“Reasoning with conditional ceteris paribus preference state-
ments,” in Uncertainty in Artificial IntelligenceI, K. B. Laskey
and H. Prade, Eds. Morgan Kaufmann, 1999, pp. 71–80.

[3] J. Goldsmith, J. Lang, M. Truszczynski, and N. Wilson, “The
computational complexity of dominance and consistency in
cp-nets,” J. Artif. Intell. Res. (JAIR), vol. 33, pp. 403–432,
2008. [Online]. Available: http://dx.doi.org/10.1613/jair.2627

[4] S. D. Prestwich, F. Rossi, K. B. Venable, and
T. Walsh, “Constraint-based preferential optimization,”
in Proceedings, The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative
Applications of Artificial Intelligence Conference, July
9-13, 2005, Pittsburgh, Pennsylvania, USA, M. M.
Veloso and S. Kambhampati, Eds. AAAI Press /
The MIT Press, 2005, pp. 461–466. [Online]. Available:
http://www.aaai.org/Library/AAAI/2005/aaai05-073.php

[5] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and
D. Poole, “CP-nets: A tool for representing and reasoning
with conditional ceteris paribus preference statements,” Jour-
nal of Artificial Intelligence Research, vol. 21, pp. 135–191,
2004.

[6] J. Pearl, “System Z: A natural ordering of defaults with
tractable applications to nonmonotonic reasoning,” in Pro-
ceedings of the 3rd Conference on Theoretical Aspects of
Reasoning about Knowledge, Pacific Grove, CA, March 1990,
R. Parikh, Ed. Morgan Kaufmann, 1990, pp. 121–135.

[7] S. Benferhat, D. Dubois, S. Kaci, and H. Prade, “Bipolar
representation and fusion of preferences on the possibilistic
logic framework,” in Proceedings of the Eights Interna-
tional Conference on Principles and Knowledge Represen-
tation and Reasoning (KR-02), Toulouse, France, April 22-
25, 2002, D. Fensel, F. Giunchiglia, D. L. McGuinness, and
M. Williams, Eds. Morgan Kaufmann, 2002, pp. 421–448.

[8] C. Boutilier, “Toward a logic for qualitative decision theory,”
in Proceedings of the 4th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR’94).
Bonn, Germany, May 24-27, 1994., J. Doyle, E. Sandewall,
and P. Torasso, Eds. Morgan Kaufmann, 1994, pp. 75–86.

[9] S. Kaci and L. van der Torre, “Algorithms for a nonmono-
tonic logic of preferences,” in Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, 8th European
Conference, ECSQARU 2005, Barcelona, Spain, July 6-8,
2005, Proceedings, ser. Lecture Notes in Computer Science,
L. Godo, Ed., vol. 3571. Springer, 2005, pp. 281–292.

[10] S. Kaci and L. van der Torre, “Reasoning with various kinds
of preferences: logic, non-monotonicity, and algorithms,” An-
nals of Operation Research, vol. 163, no. 1, pp. 89–114, 2008.

[11] M. Bienvenu, J. Lang, and N. Wilson, “From
preference logics to preference languages, and back,” in
Principles of Knowledge Representation and Reasoning:
Proceedings of the Twelfth International Conference,
KR 2010, Toronto, Ontario, Canada, May 9-13,
2010, F. Lin, U. Sattler, and M. Truszczyn-
ski, Eds. AAAI Press, 2010. [Online]. Available:
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1360

[12] S. Benferhat and K. Souhila, “A possibilistic logic handling
of strong preferences,” in IFSA World Congress and 20th
NAFIPS International Conference, 2001. Joint 9th, vol. 2,
July 2001, pp. 962–967 vol.2.

[13] S. Benferhat, D. Dubois, and H. Prade, “Representing default
rules in possibilistic logic,” in Proceedings of the 3rd Interna-
tional Conference on Principles of Knowledge Representation
and Reasoning (KR’92). Cambridge, MA, October 25-29,
1992., B. Nebel, C. Rich, and W. R. Swartout, Eds. Morgan
Kaufmann, 1992, pp. 673–684.

[14] M. Cadoli and F. M. Donini, “A survey on knowledge com-
pilation,” AI Commun., vol. 10, no. 3-4, pp. 137–150, 1997.
[Online]. Available: http://content.iospress.com/articles/ai-
communications/aic133

[15] P. Liberatore, “Compilation of intractable problems and its
application to artificial intelligence,” Ph.D. dissertation, Di-
partimento di Informatica e Sistemistica, Universitá di Roma
”La Sapienza”, 1998.

