

Complexity Results in Optimistic/Pessimistic Preference Reasoning

ICTAI, November 2016, San Jose

Christian Bessiere, Remi Coletta, Gaelle Hisler and Anastasia Paparrizou

Summary

- Background in preference reasoning
 - Semantics
 - Main problems

- Contributions
 - Complexity study of main problems in preference reasoning
 - Knowledge compilation : improving through preprocessing

How express a preference ?

Suppose the preference « I prefer salad to tomato »

- Quantitative preference
 - " I like a salad with weight 0.7 and tomato with weight 0.3 "

"I prefer salad rather than tomato"

Main problems

• Undominated

– " Does it exist an outcome which is the most preferred? "

• Dominance

– "Given two outcomes ω, ω' , is ω strictly preferred as ω' ?"

• Consistency

- "Is the network consistent ?" (absence of dominance cycle)

Formalisms - Complexity

	Dominance	Consistency
CP-nets[1]	PSPACE- complete[4]	PSPACE- complete[4]
Conditionnal Logic[2]	?	?
Prototypical preference logic[3]	PSPACE- complete[3]	PSPACE- complete[3]

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 5/21

Semantics – How to interpret a preference?

Suppose the preference « I prefer salad to tomato »

1:Optimistic

[Pearl, 1990]

at least one salad meal is strictly preferred to all tomato meals

3:Ceteris paribus

[Hansson, 1996]

2:Strong (called strict) [Boutilier, 1994]

all salad meals are strictly preferred to all tomato meals regardless main dish / wine

> **4:Pessimistic** [Benferhat et al., 2002]

Salad meals are strictly preferred to tomato meals all other things being equal at least one tomato meal is less preferred to all salad meals

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 6/21

• The set of all outcomes Ω

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 7/21

Problem	Strong Preferences	Optimistic	Pessimistic
Undominated	All		
	Not All		
Consistency	All		
	Not All		
Dominance	All		
	Not All		

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 10/21

Problem	Strong Preferences	Optimistic	Pessimistic
Undominated	All	NP-complete	Polynomial
	Not All	NP-complete	NP-complete
Consistency	All		
	Not All		
Dominance	All		
	Not All		

• Complexity depends on the semantic

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 11/21

Problem	Strong Preferences	Optimistic	Pessimistic
Undominated	All	NP-complete	Polynomial
	Not All	NP-complete	NP-complete
Consistency	All	Polynomial	Polynomial
Consistency	All Not All	Polynomial NP-complete	Polynomial NP-complete
Consistency Dominance	All Not All All	Polynomial NP-complete	Polynomial NP-complete

• Complexity depends if all preferences are strong

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 12/21

Problem	Strong Preferences	Optimistic	Pessimistic
Undominated	All	NP-complete	Polynomial
	Not All	NP-complete	NP-complete
Consistency	All	Polynomial	Polynomial
	Not All	NP-complete	NP-complete
Dominance	All	Polynomial	Polynomial
	Not All	DP-complete	DP-complete

- Dominance is the only problem called several times
 - > Many different pairs (ω, ω')
 - Unfortunately DP-complete

Complexity of Q[?] : Hard

Complexity of Q[?] : Easier

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 14/21

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 15/21

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 16/21

The deactivation of a strong preference is PolynomialComplexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler17/21

The deactivation of a preference is NP-completeComplexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler18/21

- Complexity study of main problems in preference reasoning in an existing framework
 - Depends on the semantic S
 - Depends on the set of strong preferences Str
- Dominance is compilable to polynomial time

Thank you for your attention

Complexity Results in Optimistic/Pessimistic Preference Reasoning – G.Hisler 21/21