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ON THE NUMBER OF CIRCUIT-COCIRCUIT REVERSAL

CLASSES OF AN ORIENTED MATROID

EMERIC GIOAN AND CHI HO YUEN

Abstract. The first author introduced the circuit-cocircuit reversal system
of an oriented matroid, and showed that when the underlying matroid is reg-
ular, the cardinalities of such system and its variations are equal to special
evaluations of the Tutte polynomial (e.g., the total number of circuit-cocircuit
reversal classes equals t(M ; 1, 1), the number of bases of the matroid). By
relating these classes to activity classes studied by the first author and Las
Vergnas, we give an alternative proof of the above results and a proof of the
converse statements that these equalities fail whenever the underlying matroid
is not regular. Hence we extend the above results to an equivalence of matroidal
properties, thereby giving a new characterization of regular matroids.

1. Introduction

The cycle-cocycle reversal system of a graph, introduced in [7], consists of
equivalence classes of orientations of the graph with respect to the cycle-cocycle
reversal relation, that is, two orientations are equivalent if they differ by suc-
cessive reversals of directed (co)cycles. As proven in the same paper, the num-
ber of cycle-cocycle reversal classes of G equals the evaluation t(G; 1, 1) of its
Tutte polynomial, which is also the number of spanning trees of G. This result
can be thought as a “linear algebra free” formulation of Kirchhoff’s Matrix-Tree
Theorem. In particular, the cycle-cocycle reversal system is related to various
combinatorial objects associated to the graph Laplacian, notably the sandpile
group (also known as the critical group or Jacobian group in the literature). The
notion of chip-firing (related to the abelian sandpile model) can also be partially
interpreted by cycle-cocycle reversals. We refer the reader to [7, Section 5] and
[1] for details.

The above setup, and further results involving Tutte polynomial evaluations
for related reversal classes, were generalized to regular matroids in [8] (in terms of
a circuit-cocircuit reversal system). This provides an approach to generalize the
theory of sandpile groups and chip-firing to regular matroids (different from the
approach in [12]). Such topic has been investigated since then in [3] in a unifying
way.
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The circuit-cocircuit reversal system is actually defined for general oriented
matroids, and it was shown in [8] that the aforementioned Tutte polynomial
evaluations are not available for U2,k, k ≥ 4. Since U2,4 is the excluded minor for
the class of regular matroids within oriented matroids, it was expected that these
enumerative results are not available when the oriented matroid is not regular;
we will prove this rigorously in this note. In particular, we extend the results
in [8] to an equivalence of (oriented) matroid properties. We use a noteworthy
general relation between circuit-cocircuit reversal classes and activity classes of
(re)orientations, which are known to be enumerated using the same Tutte poly-
nomial evaluations, and have been introduced in the context of active bijections
[5, 6, 9, 10]. We also use this to give a short proof of results in [8].

2. Preliminaries

We assume that the reader is familiar with the basic theory of oriented matroids
[4]. Given an oriented matroid M on E, we identify the set of its reorientations
with 2E via the bijection associating A ⊆ E with −AM .

Let M be an oriented matroid on E. Following [8], let us write M ∼ −CM
if C is a positive circuit or cocircuit of M (we say that −CM is obtained from
M by a circuit or cocircuit reversal, respectively). Applying the same rule to
reorientations −AM for A ⊆ E (i.e., writing −AM ∼ −C△AM when C is a
positive circuit or cocircuit of −AM) and taking the transitive closure of the
relation, we obtain an equivalence relation, whose equivalence classes are called
circuit-cocircuit reversal classes of reorientations of M . Allowing only the use
of positive circuits, resp. positive cocircuits, yields by the same way the circuit
reversal classes, resp. the cocircuit reversal classes. As observed in [8], circuit
reversals act on the totally cyclic part of M (the union of positive circuits of
M) and cocircuit reversals act on the acyclic part of M (the union of positive
cocircuits of M).

It was shown and geometrically illustrated in [8, Proposition 2 and Figure 1]
that, for any integer k, the number of acyclic cocircuit reversal classes of a uniform
oriented matroid U2,k equals 1, or 2, if k is even, or odd, respectively. On the
other hand, it is well-known that an oriented matroid M is regular if and only if
U2,4 is not a minor of M . Indeed, regular matroids are precisely the orientable
binary matroids [4, Theorem 7.9.3], so the claim follows from [13, Theorem 6.5.4].

Now, let M be an oriented matroid on a linearly ordered set E. Consider a
reorientation −AM of M such that A does not contain the minimum element
of a positive circuit or cocircuit of −AM , we call such a reorientation circuit-
cocircuit minimal (with respect to M); the terminology here is from [1], and it
is called active fixed and dual-active fixed in [9, 10]. Similarly, we can define a
circuit minimal (or active-fixed), resp. a cocircuit minimal (or dual-active-fixed),
reorientation −AM of M when A does not contain the minimum element of a
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positive circuit, resp. cocircuit. Let us denote by t(M ; x, y) the Tutte polynomial
of M . From the works on active bijections [5, 6, 9, 10], we have:

Theorem 2.1. Let M be an oriented matroid on a linearly ordered set. Then

(1) t(M ; 1, 1) = # circuit-cocircuit minimal reorientations of M ,
(2) t(M ; 1, 2) = # cocircuit minimal reorientations of M ,
(3) t(M ; 2, 1) = # circuit minimal reorientations of M ,
(4) t(M ; 1, 0) = # (circuit-)cocircuit minimal acyclic reorientations of M ,
(5) t(M ; 0, 1) = # circuit(-cocircuit) minimal totally cyclic reorientations ofM .

Let us explain this briefly; details can be found in [5, 6, 9, 10]. The active
partition of M is a partition of its ground set induced by taking differences of
unions of positive circuits/cocircuits whose the minimum element is greater than
a given element. Therefore, the minimum elements of the parts are precisely the
minimum elements of some positive circuits/cocircuits (called active/dual-active
elements). Activity classes of reorientations are the sets of reorientations obtained
from a given reorientation by arbitrarily reorienting parts of its active partition.
It turns out that all reorientations obtained by this way share the same active
partition. Hence activity classes partition the set of reorientations. By choosing a
suitable reorientation for each part, each activity class contains a unique circuit-
cocircuit minimal reorientation, which can be thought of as a representative of
the class. Finally, using a classical formula of the Tutte polynomial in terms
of orientation activities [11], one enumerates activity classes and gets the above
evaluations.

3. Results

We first give a noteworthy property relating reversal classes and activity classes.

Proposition 3.1. LetM be an oriented matroid on a linearly ordered ground set.
Every circuit-cocircuit reversal class of M contains at least one circuit-cocircuit
minimal reorientation.

The following proof is essentially given in [2] for graphs, but for the sake of
interest and completeness, we include it here. A corollary of the proof is that a
minimal reorientation can be obtained greedily. Moreover, we note that there is
an interpretation using combinatorial commutative algebra [2, Section 4].

Proof. Start with an arbitrary reorientation of M , and greedily reorient any pos-
itive (co)circuit whose minimal element is in the set of reoriented elements with
respect to M . Once the procedure stops, we will have a circuit-cocircuit minimal
reorientation equivalent to the starting reorientation, so it suffices to show the
procedure always terminates. If this is not the case, then, since the number of
reorientations is finite, without loss of generality, we must return to the starting
reorientation. Let e be the minimal element that was reoriented (which must
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occur at least twice) in the process. When e was reoriented for the first time,
we must have reoriented it to remove it from the set of reoriented elements with
respect to M , so the second reorientation is not valid, a contradiction. �

By combining Theorem 2.1 and Proposition 3.1, we can use the set of circuit-
cocircuit minimal reorientations (and variations thereof) as an intermediate ob-
ject, and get the following corollary concerning the enumeration of reversal classes
in terms of the Tutte polynomial.

Corollary 3.2. Let M be an oriented matroid on a linearly ordered ground set.
The number of circuit-cocircuit reversal classes is at most t(M ; 1, 1), with equality
if and only if no two circuit-cocircuit minimal reorientations are contained in the
same class. The number of acyclic cocircuit reversal classes is at most t(M ; 1, 0),
with equality if and only if no two acyclic cocircuit minimal reorientations are
contained in the same class. Analogous statements hold for each of the other
settings in Theorem 2.1.

Proof. The first statement follows from comparing Equation (1) of Theorem 2.1
and Proposition 3.1. The variations follow from comparing the other equations
of Theorem 2.1 and the corresponding counterparts of Proposition 3.1, since
circuit and cocircuit reversals preserve the acyclic and totally cyclic parts of
reorientations. �

Now we prove the main theorem of this note, which includes the original results
of [8] (the enumerations whenM is regular, with a new proof) and their converses.

Theorem 3.3. Let M be an oriented matroid. Consider the following six state-
ments:

(1) M is regular,
(2) t(M ; 1, 1) = # circuit-cocircuit reversal classes of M ,
(3) t(M ; 1, 2) = # cocircuit reversal classes of M ,
(4) t(M ; 2, 1) = # circuit reversal classes of M ,
(5) t(M ; 1, 0) = # acyclic (circuit-)cocircuit reversal classes of M ,
(6) t(M ; 0, 1) = # totally cyclic circuit(-cocircuit) reversal classes of M .

Then we have the following implications: (1) implies all other statements; (2),
(3), (4) each implies (1); (5) implies (1) if M has no loops; (6) implies (1) if M
has no coloops. In particular, if M has no loops nor coloops, then all statements
are equivalent. Moreover, if any of the equalities fail, then the left hand side is
larger.

Proof. Let us separate implications.

• (1) ⇒ (2). We give an alternative proof to that of [8]. By Corollary 3.2, it
suffices to show that every circuit-cocircuit reversal class contains a unique circuit-
cocircuit minimal reorientation. We claim that any two reorientations within a
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reversal class differ by a disjoint union of positive circuits and cocircuits, which
will imply that at most one of them can be minimal, thus proving the implication.

By induction and restricting to the totally circuit part (the acyclic part follows
from duality), it suffices to show that if C is a positive circuit of M and D is
a positive circuit of −CM , then C△D is a disjoint union of positive circuits of
M . By [4, Corollary 7.9.4], we may assume that some totally unimodular matrix
Q realizes M . By total unimodularity, if C is a positive circuit of M , then the
characteristic vector χ

C ∈ {0, 1}E of C is in the kernel ker(Q) of Q; similarly,
since D is a positive circuit of −CM , χD\C − χ

C∩D ∈ ker(Q). Since their sum
χ
C△D is in ker(Q), C△D is a positive vector and contains some positive circuit

C1 of M , thus χ(C△D)\C1
= χ

C△D − χ
C1

∈ ker(Q). Proceeding by induction, we
can write C△D as a disjoint union of positive circuits.

• (1) ⇒ (3), (4), (5), (6). Alternatively to [8], the proofs are similar to the
above one by restricting to circuit reversals only, then restricting to totally cyclic
reorientations only, and then taking duals.

• (5) ⇒ (1) assuming M has no loops. Suppose M is not regular. Then it
has a minor M/A \ B that is isomorphic to U2,4. By Corollary 3.2, it suffices
to show that there are two cocircuit minimal acyclic orientations in the same
(circuit-)cocircuit reversal acyclic class. Up to enlarging A, we can assume that
M/A is loopless and that the rank of M/A equals 2. Since M is loopless, up to
reorientation, we can assume that M and M/A are acyclic. Let C and D be the
two positive cocircuits of M/A (which are also cocircuits of M). Thus, −CM
and −DM are in the same acyclic reversal class. Denote S = C△D. Since the
rank of M/A is 2, any cocircuit of M/A is the union of all parallel classes but
one. Since S is the union of two parallel classes (C \D and D \ C) of M/A, no
cocircuit of M is contained in S (otherwise, the complement of S is a parallel
class in M/A, and reducing parallel classes of M/A yields U2,3, a contradiction).
Choose a linear ordering of E such that elements of S are greater than elements
of E \S, then S does not contain the minimum element of a cocircuit (otherwise
it would contain a cocircuit), thus −CM and −DM are both cocircuit minimal.

• (2) ⇒ (1). Suppose M is not regular. Then M ′, the oriented matroid
obtained from removing all loops of M , is also not regular. By the implication
(5) ⇒ (1) for M ′, there exist distinct acyclic reorientations −AM

′ and −BM
′ that

are (circuit-)cocircuit reversal equivalent and both (circuit-)cocircuit minimal.
Now −AM and −BM are circuit-cocircuit reversal equivalent reorientations of M
that are both circuit-cocircuit minimal. The implication follows from Corollary
3.2.

• (3) ⇒ (1). The proof is the same as for (2) ⇒ (1) except that, at the end,
−AM and −BM are cocircuit reversal equivalent reorientations of M that are
both cocircuit minimal. The implication again follows from Corollary 3.2.
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• (4) ⇒ (1), and (6) ⇒ (1) assuming M has no coloops. The two implications
are the dual statements of (3) ⇒ (1) and (5) ⇒ (1), respectively.

Finally, let us mention that the relations between the implication (5) ⇒ (1)
and the other ones could also be handled from the decomposition into acyclic and
totally cyclic parts, along with the convolution formula for the Tutte polynomial,
similarly as in [8]. �

We end with an open question. By direct computation, the number of circuit-
cocircuit reversal classes and the number of bases differ by a rather large margin
for small non-regular oriented matroids. So, does there exist an absolute constant
K > 1 such that the number of bases of a non-regular oriented matroid is at least
K times the number of circuit-cocircuit reversal classes?
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