S. Backman, Riemann-Roch theory for graph orientations, Advances in Mathematics, vol.309, pp.655-691, 2017.

S. Backman, Partial graph orientations and the Tutte polynomial, Adv. in Appl. Math, vol.94, pp.103-119, 2018.

S. Backman, M. Baker, and C. H. Yuen, Geometric bijections for regular matroids, zonotopes, and Ehrhart theory, 2017.

A. Björner, M. L. Vergnas, B. Sturmfels, N. White, M. Günter et al., of Encyclopedia of Mathematics and its Applications, vol.46, 1999.

E. Gioan, Correspondance naturelle entre bases et réorientations des matroïdes orientés, 2002.

E. Gioan and M. Vergnas, Activity preserving bijections between spanning trees and orientations in graphs, Discrete Mathematics, vol.298, issue.1, pp.169-188, 2005.
URL : https://hal.archives-ouvertes.fr/lirmm-00154519

E. Gioan, Enumerating degree sequences in digraphs and a cycle-cocycle reversing system, European Journal of Combinatorics, vol.28, issue.4, pp.1351-1366, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00154515

E. Gioan, Circuit-cocircuit reversing systems in regular matroids, Annals of Combinatorics, vol.12, issue.2, pp.171-182, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324552

E. Gioan and M. Vergnas, The active bijection for graphs, Advances in Applied Mathematics, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01996135

E. Gioan and M. Vergnas, The Active Bijection 2.b -Decomposition of activities for oriented matroids, and general definitions of the active bijection, 2018.

V. Michel-las, The Tutte polynomial of a morphism of matroids. II. Activities of orientations, Progress in graph theory, pp.367-380, 1982.

L. Criel-merino, Matroids, the Tutte polynomial and the chip firing game, 1999.

G. James and . Oxley, Emeric Gioan: CNRS, LIRMM, Matroid theory, 2011.

C. Ho-yuen, Atlanta